LOCAL MILD SOLUTIONS TO THREE-DIMENSIONAL
MAGNETOHYDRODYNAMIC SYSTEM IN MORREY SPACES

ZIRONG ZENG

ABSTRACT. In this article, the Cauchy problem of three-dimensional (3-D) incompressible mag-
netohydrodynamic system with infinite energy initial data is investigated. Via some elaborate
analysis of the time evolution of both the vorticity ® := V X u and the current density j =: V x b,
the local-in-time well-posedness of mild solutions with arbitrarily large initial data in Morrey
spaces is established.

1. INTRODUCTION

Magnetohydrodynamic (MHD) theory discusses the motion of plasma (a conductive fluid
which consist of electrons), ions and neutral particles in an electromagnetic field. In the MHD
system, there is a strong interaction between the dynamic motion of fluid and magnetic field. So
researchers use the equations which combined with the Navier-Stokes equations and Maxwell’s
equations to describe the MHD system. There is a wide range of applications of magnetohydro-
dynamic in many fields, for example, the magnetic drug targeting and cancer tumour treatment in
biomedical engineering, the motion of liquid metals models in physics and so on. In this paper,
we consider the viscous incompressible magnetohydrodynamic system, namely

1
dutt—V AU+ (u-V)u— (b-V)b+v(p+§|b|2) —0, (x,f) €R®x (0,00),

(1.1) Ib—MAb+V x (bxu)=0, (x,1)€R> x (0,c),
divu=0, divb=0, (x,1)€R>x(0,00),

with initial conditions
u(x,0) = up(x), b(x,0) = bo(x), x € R,

where b(x,t), u(x,t) and p(x,t) denote the magnetic field, fluid velocity and pressure field, re-
spectively. In the equations, Vv is the kinematic viscosity coefficient and 1 is the magnetic diffu-
sion. Without lose of generality, we assume that v =1 = 1 for simplicity. Here we focus on the
case which the initial vortex profiles are vortex rings and filaments. On this occasion, the initial
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data is of infinite energy (i.e. ug,bo ¢ L?). Thus, the commonly used classical energy method
and Leray’s method are no longer available.

There are quite a lot of literature investigate the incompressible Navier-Stokes equations.
Kato-Fujita [6] firstly established the existence of mild solutions in H*(R“) space. Consider-
ing the L”(R?) space, Kato in [11] proved a locally well-posed result for arbitrary initial data
and a global well-posed result when the initial data is small enough. This result was subse-
quently extended to some different function spaces which have larger scale, for example, the

homogeneous Besov space BZ{ﬁ_l(Rd) by Cannone [2] and Planchon [17], the BMO™' space
by Koch-Tataru [13] and the space x’l by Lei-Lin [16]. In order to overcome the inconvenience
of the finite total variation assumption on the initial data, Giga and Miyakawa [8] introduced the
Morrey space MP(R?) and constructed the global existence of solutions to the N-S equations.
Their result then extended by Kato [12] to a more general Morrey space M P4(R?). Instead of
considering the vorticity, Kato in [8] directly analysed the velocity u and established a global
existence and uniqueness result. For more related reference about incompressible N-S equations
in measure spaces, we refer to [4, 7, 9, 14, 20].

Due to the fact that there exists a strong coupling effect between u and b, the MHD system
is more complicated. For the well-posedness result of incompressible MHD system, we refer to
[5, 10, 15, 18] and the reference therein. When the initial data is of finite energy, Duvaut and
Lions [5] constructed the local well-posedness result of a solution in H*(R¢) space. They also
proved the global existence provided the initial data is sufficiently small. Sermange and Temam
in [18] established the local existence and uniqueness of a strong solution to the MHD equations.
Moreover, in [18] they also proved the global well-posedness of the solution in two dimensional
case. Here we would like to point out that the uniqueness of the global weak solution in three
dimensional case is still a challenging open problem. Considering the axisymmetric initial data,
Lei in [15] provided the first example of large global solutions to the ideal MHD equations.

The goal of the present paper is to analyse the local-in-time well-posedness of mild solutions
to the Cauchy problem (1.1) in Morrey space MP(R3). First of all, since the commonly used
Leray operator (P) j ( (P),; = O, + R R; with B = 8k(—A)1/2, k=1,2,3) is unbounded in
MP(R3). Here following the analogue analysis of [8], we apply the curl operator to (1.1) to
eliminate the pressure term V ( p+ % |b|2> and investigate the following equations of the vorticity

o :=V x u and the current density j =: V X b:

(0;0 — Ao+ 9y, (' — w'u — b’ j + j'b) =0,
dj—Nj+V x ((u-V)b—(b-V)u) =0,
(1.2) u=Kx®, b=Kx]j,

divo =divj =0,

L0(x,0) =mp, j(x,0)= jo.
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Here K (x) = — 4~ (o "i‘%’”) denotes the Biot-Savart kernel.

Due to the existence of strong nonlinear coupling terms between ® and j, the methods which
used in [8] to consider the NS equations could not directly apply to our case. Moreover, since we
can not use |V x u||, and ||V x b||, to control ||Vu||, and ||Vb||,, there arises some new critical
difficulties compared with the pure NS system.

Here we take advantage of the following crux estimates to resolve these issues:

[ V)bl p < lull=[[ VDl < loollpl|0]]2p VDl s

and
1(B-V)ullp < IVull||bll , < VO, [[ Vel 2, 5] o
Therefore, in order to use the Banach fixed point Theorem, we now need to estimate ||Vb||,,
Vo[, and [b]].
At first, in order to deal with ||Vb||,, we introduce the equation of Vb:
Vb —MAVH+V((u-V)b—(b-V)u) =0,
which enables us to establish the estimate of ||Vb||,.
Then, the estimate on || V||, can be obtained via the following high order equations:
VO —VAVO+V((u-V)o— (0 V)u—(b-V)j+(j-V)b) =0,
O, Vji—MAVi+V((u-V)j+Vu' x by, —(b-V)0— Vb xu,) =0.
At the end, we use the equation of b
ob—MAb+V x (bxu)=0,

to estimate ||b|| .

The rest of the paper is organized as follows. In Section 2, we will give some important
definitions, properties and inequalities in Morrey spaces and state the main results of this paper.
Section 3 is devoted to proving our main result Theorem 2.4, which will be achieved by three
steps:

(1) Step (i): in Subsection 3.1, we introduce the equation of Vb;

(2) Step (i1): in Subsection 3.2, we make full use of the standard successive approximation
scheme to establish the iteration estimates;

(3) Step (ii1): in Subsection 3.3, we apply Banach’s fixed point Theorem to obtain the results.

2. PRELIMINARIES AND MAIN RESULTS

2.1. Preliminary definitions

We start with the definition of Morrey space.
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Definition 2.1. For 1 < p < o, we define the Morrey space ﬂp(ﬂ@) be the space of random
measures u such that

_3
lulggr sy = sup 7 ul (Bx,r) < oo
xER3 >0

Here B(x, r) is the open ball in R? with radius r centered at x and |u|(B(x, r)) is the total variation
of u.

Let us denote MP(R3?) = MP(R3) NL},.(R?) be the closed subspace of MP(R3). Here and
after, for convenience, we adopt the notation || - ||, to represent the norm of the Morrey space
MP(R3). It can be proved that MP(IR3) endowed with the norm || - ||, is a Banach space. We
also denote by C(x,y) the beta function

1
Clxy) = / (1— ' dr,
0

withx >0,y > 0.
Next we give the definition of the mild solution to (1.2).

Definition 2.2. (Mild Solution). Let S(x,t) = (4m)~ 3 exp(— ‘x‘ ) be the heat kernel and i €
{1,2,3}. We say that (o, j) is the mild solution to (1.2) if for all 0 <t <ooand x € R, i

satisfies ®(x,1) weak”, wo(x), j(x,t) weak”, Jo(x) ast — 0 and

©(x,7) = S(-,1) * 0p(x) // (x —y,t — )9y, (!0 — uw’ — b’ j+ b ") (y,s)dyds,
2.1) R?

Jlx,2) = S8(-1) * jo(x //]12{3 x—=y,t =8)Vyx ((u-V)b—(b-V)u)(y,s)dyds.

2.2. Important Propositions

In this part, we introduce some propositions which play an important role in the proof of the
main results. The details of the proof of these propositions are given by [8]. Here we begin with
the basic properties of Morrey space.

Proposition 2.1. (Basic properties of Morrey space).

—1
() M (R3) is the Banach space of finite measures and ||ul|1 = |ul.
(i) LP(R3) C MP(R3) for 1 < p < oo,
(iii) When p = oo, the Morrey space M>(R?) is equivalent to L™ (R?).
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(iv) (Interpolation) Let k € (0,1), if 1 < p,p1,p2 < o and % = lp—’lk + %, then for all u €
MPHRY) N MP2(R3) we have
1-k k
el p < [leallpy ™ el -
Next, we discuss about the estimates of Biot-Savart kernel in Morrey space.
Proposition 2.2. (Estimates of the Biot-Savart kernel)
(i) Denote K(-) be the Biot-Savart kernel, if% = Cl]—l—% and u € MP(R?), then K xu €
M4(R3) and we have the following estimate
1K+ ullg < Cllu|p,

with C independent of .
(i) If u € MP(R3) N MI(R?) for some p,q satisfy 1 < p <3 < q, then K*u € L”(R>) and

)/ G3) (D Gd)

[[K oo < Clluel[ p lullg
In particular, if p € (%,3), we have

-1
|

¥ -3
K plloo < lullplully, -

Finally, we give the estimates of the heat kernel in Morrey space.

Proposition 2.3. Ler S(x,t) be the heat kernel defined as in Definition 2.2. Assume that 1 < p; <
p2 < oo. Foranyt >0 and u € MP'(R3), we define the operators Ay, Ay and Az as following

Au=S(-,t)xu(x), Aou=VS(-t)xu(x), Aogu=09S(-1)*u(x).

Then, the operator A;(i = 1,2,3) is a bounded operator from MP'(R?) to MP2(R?) which
continuously depends on t. Furthermore, we have
1

3011
Al < € 20022

1

72|l
131 _ 1

1Asl]p, < € 7200702 .

2.3. Main results
We now state our main results about the local-in-time well-posedness of (1.1) as follows.

Theorem 2.4. (Local-in-time well-posedness). Let p € (2,3) and
W, by, Vbg € MP(R3).
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(i) There exists a time T > 0 and a unique local mild solution (®,j) in [0,T] x R? to the
problem (1.2) such that

fmet, 1e ¢ € L2((0,T); MP(R3)),
%o, 1'% ) € L7((0,T); M2 (RY)),
12Vw, 12Vje L2((0,T); MP(R3)),
11+ ®BVe, 1278V e L2((0,T); M2P(R3)),
e 2p—9€<4 2) and 0<8<min<1—l§—%>
3’ 02 0/

3
(ii) (Regularity) The solution (®, j) solves (1.2) in the classical sense fort € (0,T].

3. PROOF OF THEOREM 2.4

3.1. Auxiliary equations
This section is devoted to proving Theorem 2.4. To deal with the difficult terms V x (u- V)b
and V x (b- V)u, we introduce the equation of Vb:

Vb —nAVh+V((u-V)b— (b-V)u) =0,

with corresponding integral equations:

G.)  Vb(x,t) = S(-1) * Vho(x //R3 X =yt —$)V, (- V)b — (b~ V)u) (3 5)dlyds.

3.2. Iteration scheme and estimates

Here and after, for convenience we denote

1 1
Wk(?p: sup 1179 SH(’)(k)('at)H[)a Wk92p: sup ! 29H(’3(k)('7t)”2p7
te] t€[0,T]
1
Wl = sup i2[Vo (), Wy, = sup 12%3]|Va®) ()|,
1€[0,T] 1€[0,T]
By, = sup [6®(1)]p, BY,, = sup 1360 (-1)[|p,
t€[0,T] t€[0,7]
1 1
B/Lp: sup 1176 8||Vb(k)(-,t)\|p, Bll.zp: sup 1! 29||Vb(k)(-,t)]|2p,
1€[0,T] t€[0.T]
1 e 1
Rp= sup 7O, = sup 173002y,
1€[0,T] t€[0,T]
lio 1yd ..
J]:7p: sup IZHVJ(k)('7t)’|P7 J]izp: sup t2+29HV](k)('at>H2pa

t€[0,T] t€[0,T]
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with 8 € (3,2) and € > 0.
Now let us consider the following standard iterative scheme:

(
co(k+1)(xt xt // (x—=y,t—ys)
]R3

xay,-<u”< ot W70 4 b j ) (v, 5)dyds,
VbU‘“)(xt)—Vb()( )

/ / (=3t =)V (@O - V)p®) — (5 . 9)u®) (y,5)dyds,
]R3

with j(©), m<0> b and Vb6 given by
JO 1) = S(-,1) 5 (V x bo) (x), @ (x,1) = S(-,1) * wo(x),
b (x,t) = 8(-,1)xbo(x), Vb (x,1) =S(-,1)% Vby(x).

We shall establish the following results, which are the main ingredients of proving Theorem
24.

(3.2)

Lemma3.1. Ler 2 =0 € (%,2) and 0 < e < min{1 — 1,3 — 2}. Then for k > 0, it holds that
1
33 W2y, SC(T 5 %ol
’ _ 0 2—0 0 2—6
+C(3.5— 5 +6e)TO7 Ve <(Wk0,p) (Weap)™ ~ + (Bip) (Biap) )>’
_1
3.4) Wk0+1,2p < C(T" 5 ||l
FC( g0t § = DT (W0, )°00%,) 0 +(8L,)°(8L5,)79)).
1 _ 0—1 2—6
s By, <C(T'" 078 V||, + C (5,5 —3+6e)TOVEW )" (We,,)" "By,
: 3_2_ 0—1 2—6
+C(%’ - %)Tz 0 S(Wkl,p) (Wkl,Zp) Bg,p)7
0—1 2—06
a6 Bl ,, <C(T'~ 8 |[Vboll,+C(L — &, g -1 +es)T9€(W,§p) (W) B,

3

3_2 — -0.50
+C(5— 2501 —9)7? e(Wk,p (Wk,2p) Bk,p)'

Proof. By Proposition 2.3, it holds that
3.7 1S(-52) o]l < Crlfool[,

_ 1
(3.8) 1S(-,2) x 00 ||2p < C1t™ 28 ||axo][ p,
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(3.9) ISC,2) % Vbol[p < Cil|Vbollp,

1
(3.10) ||S(-,l‘)*Vb()H2pSC]I_N“VboHp.
What’s more, it follows from Proposition 2.2 that

[(u'® —uo —b'j+bj')(-,5)|l
< 2([JuC-s ) eol |0 8) |+ [[BC ) ool 5 (5 9) )

1D < G (|0, 8)1816C,5) 135+ 17C ) 1811 )12 )
< G0 )0 5) |20+ Vb, )81 Vb(-,s)12,),
(- V)b = (b-V))(-,5)],
< [luC,8) e VB ) p + Vit 5) 1B, 5)1]
(3.12)

<Gl )5 o915, Vo (,5)ll,
HIVa(, )3 Va3, 160 s)ll,)-

Then, by (3.2), (3.7), (3.11) and Proposition 2.3, we can get

1
W1, < sup (' 5 (S(.0) <o),
’ 1€[0,T]

t
e /0 (= 5) | (0 o®) — 0 (0 _ i) j6) 4 p(8) .00 (. gy de5>

—_

t
< CT 8|, + CoCy sup 17 / (s
t€[0,T] 0

% ([[0® (-, 5)[Dl® (-, 9)[15,° + IVEX () [IVEE (-, 5)]13,%)ds
N _ _
<G Tl 0 SHO‘)O”P + C2C3((Wk(?p)e(Wk(32p)2 0 + (Bli,p)e(Bllc,Zp)z 9)

t

1 1 1 3

X sup tl_e_S/ (t—s) 2s%T62ds
t€[0,T] 0

1-{—¢
<G T 5 |eol]
+C2C3C (3,08 + 5 — 1) TO V(WL )P(WL,, )20 + (B ) (Bl ,,)* ),

which proves (3.3).
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By (3.2), (3.8), (3.11) and Proposition 2.3, one has

1— L
W1 2p < sup 175 (|ISC,1) + 0l
t€[0,T]

+Cy /0 (1 — )23 || (W ) — 3y ®) i ®) _ pis0) j06) 4 p(0) jz,<k>)(.,s>des>

L1 Y 11
<CiT 78|, +CoCs sup t° 720 [ (t—s) 2720
t€[0,T] 0

x([lo® (-, 5) [ lo®(-,5)]

30 IVBOC ) IRIVER, ) 3, %)ds
1 B _
< CIT' ool + CaCal(Wey)® (W)™ + (B ) (Br2p) ™)

t
X sup t1219/ (t—s)*%*ﬁse‘%%*%ds
1€[0,T] 0
1
<CiT' ool

FOCAC(3 = 5508+ § = ) TO(WE,) W, 20+ (B, (Bizy)0):

And that gives (3.4).
By (3.2), (3.9), (3.12) and Proposition 2.3, it holds that

1
Bl < sup 878 (|IS()« Vol
T relo,T]

+Cs /Ot(t =) (V)b — (1 V)ul) (-5)]] s )

D=

t
(3.13) < CiT'"878||Vho|, +CoCs sup rlés/ (t—s)~
t€[0,T] 0

([l )15 o 5)13, °[1V5C9)]l,

H[Vo(,s)I5 Vol )3, °lb(,s)],)ds.
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Note that
;
/O(I—S)E(HOJ(',S)Hg1HOJ(',S)H%;GHW?(';S)Hp
+[Vo(, )8 IVe(,s)3,°15(,s)],)ds
" S R

t
1 0—1 2—0 0 1 1
W) Wl ) /0 (1—s) b5 bds
1_ 1 1 0—-1 2—-6
<iferso(d ee+ § - Hwe ) we, ) 0B)
1 1 0—1 2—0
+12 GC(%’I—%)(Wk{p) (Wkl,Zp) Bg,p’

which together with (3.13) yields (3.5).
It remains to show (3.6). By (3.2), (3.10), (3.12) and Proposition 2.3, one may get that

_1
Bliizp < sup ' 73 (S0« Volzy
t€[0,T]

+Cs /Ol<r =) (@ V)BO — (B V)uD) (-, s )

t
(.15) <O T8 Vbg||, +CaCe sup zl—zle/ (t—s5) 2"
t€[0,T] 0
([l )15 o, $)13,°1IVA(,5)l,
+IVa ()5 IV, )3, Ib(-,s)ll,)ds.

We can write
! 11 _ 2-0
/O(;_s) 2 29(||0)(-,s)||?, 1||03('7S)||2p IVB(-,8)]lp

+[Va( )| [Vl s)|3, °l1b(,9)],)ds

t
< 2,)" )" UL, [ -t e as
’ 0
t
0—1 2-06.0 « [, _1_1 _1
+(We,) (Wiiap) ng)/o(t—s) 27205 0ds

Loy 1 11 -1 20
<1005 — 55,08+ 5 — )WY, (We,)™ By,

13 0—1 2—6
+E B C(S = gy 1= WL W) OB,
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which combining (3.15) leads to (3.6). ]

In order to estimate Bk 1 B,g +12p2 J,? H1p and J,? 410p0 W shall use the following standard

successive approx1mat10ns

(3.16) b(kH)(x,t) 1) xbo(x // (x—y,t (()b(k))(y,s)dyds,
R3

JETD (1) = S(-,1) % (V x bo) (x)

3.17 !
©-17) + S(x—y,t—s5)V, x (- V)0 — (5% . v)uK)) (y, 5)dyds.
0 JR3
Lemma 3.2. Let %” =0¢c (%,2) and 0 <& <min{l—§,3 —2}. Then, for all k > 0, it holds that
11 _ 01 2-6
G18) By, < Cllbolly+ Clpon + O DT O, 00, Y, ).

1 1

- 6—-1 2-6

_ 0—1 2—-6
(320 I, <0 67¢(|Vbol|, + C(4, 4 — 1 +0e)T® Dewe ) (W) By,
’ 3_2_ 0—1 2—6
+C(%71_6)T2 0 S(Wk,p) (Wkl,Zp) Bg,ﬁ»
_1 2—0
o) P12y SCTI78(|Vbollp+ C(% — 255 — 5 +0e) T W2 )~ (W2,,)* "B,
’ 3_2 0—-1
+C(%_%71_%)T2 9(M/klp) (Wk172p) BO )

Proof. By Proposition 2.2, it holds that

(3.22) 1(ub) (- 5)llp < luC,s)lll60,5) 15 < Callo(,s) 15 o, 5)I15, 15 )]l -
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(3.22) together with (3.7), (3.16) and Proposition 2.3 implies that

t
By <Cillollp+ G sup [ =) @60 s) s
' 1€[0,7]/0

! 1
< Cillbollp +C3C s[l(l)pT]/O (t =) 2[|o® Cs) 5 0® ()13, 16® ()| pds
te|l,

< Cillbollp+C3C2 (W) (W) 0

X sup /t(t_s)—is(l—é—e)(l—e)s(l_zle)(e_z)ds
t€[0,7]/0

1 1 _ _ _
< Cillboll, + G5, (0= De+ )T VWL, (W, )2,

which proves (3.18).
Concerning (3.19), by (3.8), (3.16), (3.22) and Proposition 2.3, it holds that

t
BY. 12y <Cillboll,+Cs sup 1 / (t—5)727 | @®b®) (-, 5)] | pds
' t€[0,T] 0

1! 1 _ _
< Cillbo|lp +C3C2 S[l(l)%]tze/o (t=9)"2 [, s)[p  lo(, )3, 15(-,5) ,ds
t€(0,

< Cillbollp +C3C2(WR,) 0 (W) > °

t
X sup 1219/ (t—s)_%_%es(e_])e_%ds
t€[0,T] 0
1

1 1
>~ 20 (8 e+ ) TEOTVEW,)P (W, )20,

< Cilbollp + GG C( :

Thus we obtain (3.19).
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For the estimate of J,? 1 according to (3.14), (3.17) and (3.22), one has

1

t

11 _

Borp = sup e (Clvmol, € [ -9
1€[0,T] 0

< 9)bE) — (B V)b (-, 5)] s )

<CiIT27 578y,

[ 1 _
+0s sup e [ z(|rco<k><.,s>u2 o () 2 IVB9 )
1€[0,T] 0

+H[Vol ()5 Vb (-,5)[3,°l6®(- S)Hp)ds
< C(T'~ 5| V|| +C(1 1—1+98)T("*1>8(W0 Y wp, ) OB
< 0llp 5 k,p k2p k,p
3.2 —1 2-6
+C(%,1—§)Tz 5 8(Wk’p) (W) BY)-
Finally, for J,? +1.2p2 following the analogue analysis of (3.15), we can get

1
Rerap= sup 1 (ISC.0) 5 Vol

t€[0,7]

1 1 1 1 0¢ 0 01 0 2-0_1
<c(T! 9|Wb0||p+c(§—%,§—§+9 )TEWe )" Wea,)™ B,
32 -1
+C(3 =55 1= §) T8 (WL)" (WL, 8D )

In order to estimate Wk1 » Wk1 2 J!' and ']/1,2[7’ we will need the following successive approxi-

mation scheme:

Vol (x,1) = S(-.1) % Vo (x) / / (k= v, — )V, (u® . V) o
R3
(k) (k) (k) (k)
o\ -V + -V)b dyd
3.23) ( Ju'®) V)%™ +(j )b*) (v, s)dyds,
V) (6,1) = S(1) + V jolx / / (x =yt = 5)V, (u®) . v) )
+ V0 5 ph) — (plk — Vb8 % uf) (3, 5)dyds.
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Lemma 3.3. Let %p =0¢c (%,2) and 0 < € <min{l — %, 3 %} Then, for all k > 0, we have
Wity p < Cllowll, + C(5.(6 — 1)) T4~

(3.24) X (W) (W, )W+ (B )% (Biop)* %1 )

+C(%’ 8)T€<(Wk1,p)e_l (Wk{ZP)Z_eW]gp + (J]ép)e_l (‘]]in)z_eB]i’p))a

W15, < Cllooll, + C(3 — 25.6(8 — 1) T8~
(3.25) X (W) (W0, )WL+ (BL )81 (BL,,)2 0L )

FC(5 = 5 BT (W) Wy, )2 OWE, o+ (U2, (L5, P °BL ),
p P 14 p P p

Ii1p S CIVbollp + C(5,e(8 = 1) T~
(3.26) X «Wkovp)eil (WISZP)%GJAP T (Jlg,p>eil (Jlg,Zp)zieWkl,p)

+C(%»8)TS((Wk{p)e_l (Wkl,zp)z_efﬁp),

‘]]14-]721] < C(|IVbo|p + C(% - %,g(e - 1))T8(971)
_ 2-6 _ 2-8
(3.27) X ((W/gp)e I(Wk(?Zp) Jli,p + (Bliyp)e I(Bllc,Zp) Wk{p)
11 -1yl \2-670
Proof. By Proposition 2.3, it holds that
_1

(3.28) 1SCo1) % Vaoll, = [VS(.t) % gl < Crt % ol
and

1
(3.29) 1SC52) * Vao|ap = [[VS(-,2) ¥ @oll2p < Cre™2720 [ [ -
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Using (3.12), (3.22), (3.28) and Proposition 2.3, we obtain

(3.30)
t
Wi, < sup té(l\S(',t)*VOJOHerC4/ (t—5)"2 ][ (@® - V)o® — (0®) . ¥)u
t€[0,T] 0
(B0 -9) [0+ (7)), 5) s )
<Gl
1 ! 1
+Cs sup ﬁ(/ (t=5)2(Jo® ()8 o® (53, VoD ()],
t€[0,T] 0
+[Vol®) ()5 IVa® (-, 913,  lo®(-,5)[|,)ds
t
1 _ _ .
+/O (t=5) "2 (VO (,5) |8 [VER (-,5)]13, IV - 9)]l,
+||Vj(k)(-,S)||2*1||Vj(k)(-,S)||§;e||Vb(k)(',S)||p)dS>-
Note that

—_

t
/0(t—S)_Z(IICO(")(-,S)II?,_lIIOJ(")(-,S)||§;GIIVOJ(k)(-,S)IIp

HIVOR () [ Vol (- 5)[3, 8 l0® (-5 ,)ds

t
_1 — — .
+/O(I—S) 21BN ) 157 IVED ()13, 1V 79 o)l

HIVSO I IV 813, IVED () ) ds

t
< (Wk?p)e_l(WI?Zp)z_eWklp/ (t_s)_%sg(e_l)_lds
) ) O
t

1 161 2-011,0 —L e
) 0, oW, [ =) as

t
8L By P00l [ (=) EsE O s
0

t
)0 U0 0BL /0 (1 —5) 45t ds

1

ot L1 _ _ _ _
ng(e 2 26(578(9_1))((W/gp)6 1(Wk(?2p>2 GWkl,p+(Bllc.,p)9 I(Bllc,Zp)z eJli,p)

1] 0— -0 60— -0
+t£ 2C(§78)((Wk17p) 1<Wk172p)2 Wk(fp—i_(‘ll%,p) l(‘,l%,Zp)z Blip)'
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This together with (3.30) yields (3.24). Then (3.25) follows from (3.23), (3.29), (3.12), Proposi-
tion 2.3 and the arguments similar to those in getting (3.24).
Considering the estimate of J ,g e by (3.23) and Proposition 2.3, we get

(3.31)

t
J11+1 p < sup 2 (HS('J) *V(OoHp—i—C4/ (t—S)_%H((u-V)j—i—Vu’ X by,
' t€[0,T] 0

—(b-V)o— Vb x ux,.)(-,s)n,,ds)
t
<cillool, +Cs sup ¢ [ (=574 (u,5) |V 51
1€[0,T] 0
+H[ Vi (-, 9)[|ea [ VOO (-, )| + IIb(")(»S)HooHVO)(")(-,S)Hp)dS

1 ! _1 _ — .
< Cillonl s sup [ =9 Ul ) 19 ) s
te|0,

t
_1 — —0y
+/0(t—S) 2| Vol (- 5) |5 IVe® (- s)I13,°1/% ()1l ,)ds

1

t
#9179 C,0) B IV ) ).
0
Also note that

t
. . o
/o<r—s>—2<||w<’<><-,s>||2 oW 0I5, V59 ¢5)lpds

t
_1 — —0y
+/0(t—S) 2[Vol (- ) |5 Ve® (- s)I13, 1174 ()1l ds

t
+/0 (=) 2O Gl 179 915, VOB (s)llpds

t
< (W20 (W2, )00, / (1 —5) 352O-D-14;
(3.32) - Jo

t
W) (W, )20 /0 (1—s5) b5 1ds
t

) Uy oW, [ =)

-t 1 _ _ _ _
<072 (5,20 D) (W) Wiy, )L, (0,7 ()W)

1
HT2 O (W) (W) )L,
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Combine (3.31) and (3.32) together, we arrive at (3.26).
Finally, for the estimate of J,} +12p7 by (3.23), Proposition 2.3 and the similar arguments used
to derive (3.26), we can get (3.27). The details are omitted. [

3.3. The proof for Theorem 2.4

Proof of Theorem 2.4. For the convenience of notations, we set

1 3 2

a:min{l—é—e,l—%,()}, Bzmin{(e_l)e’eg>§_§}’

_ 0 0 1 1 0 0 1 1 1 1
Ly = max {W,, Wi We ps Wic 2 Bl s B 2ps B pr Bi 2o i p Ji2p

and

Applying the above notations, invoking Lemma 3.1-3.3, it holds that
(3.33) L < max{[[ o]l Boll . | Vboll,} 7%+ TPMLE.

Assuming that the time T satisfies

1 —4max{||oo p, [|boll p, ||Vb0||p}Ta+BM >0,

and noting that

1= /1= 4max{||oolly, [boll, | Vooll,}Te+EM

Lo < ,
0= 2TBM

one can get from (3.33) that for all £ > 0,

1= /1= 4max{ ool [boll [ Voll,} 7B

2TBM
< 2max{||oo| p, |boll p, | Vbol| p } T*.

L <

In fact, if

1= /1= dmax{|[ 0] |boll . [|Vbol| ,} T:+EM

Li i < ,
k=l = 2TBM




18 Z.ZENG
then we have
Ly < max{||ao]|p, |bol|p [|VDollp} T+ TPML?
< max{||oo||p, [|bol| p, ||Vb0||p}Ta7

_ _ Bym 2
B 1—+/1=4max{|| ||y, |boll .| Vbo |} T2+
+T°M 2TBM

1= y1=dmax{fonly [l Vbl } 7 M
2TBM

We also set

1 1
Nes = max{ sup =8¢0l — 0@, sup -3 oks) oWy,

t€[0,7] 1€[0,T]

sup t%||V0)(k+1)—V0)(k)||p, sup 12+38 | Vot — vo®)|,,,
t€[0,T] te[OT]

sup ||pk+1) Hp» sup ”"Hb (k1) k)HZp

t€[0,T] 1€[0,T)

sup II’%’EHVb(k‘H)—Vb(k)Hp, sup tlf%HVb(k—kl)_Vb(k)Hzp?
t€[0,7] te[O T

sup 17671 — jR||, - sup 1 | D — j0|,,

t€[0,T] t€[0,7]

sup A [VED V0], sup VD -0, ),

t€[0,T] t€[0,T]
by a similar approach as above, we can obtain
Nyt < TPM(Licy + Li)Ne,

where

TBM (L +Li) < 1— /1 —4max{|@o . [boll, || Vboll, T8 < 1.

With the above estimate in mind, applying Banach’s fixed point Theorem, we conclude that
IVP (1.2) has a mild solution in [0, 7']. In order to complete the proof of existence, we also require
the weak convergence assumption as in Definition 2.2, which can be ensured by the fact that the
heat semigroup is weak-continuous in M7 (R3) as r — 0. The proof of uniqueness and regularity

can be obtained via the same method as above, we refer to [3, 8, 21] for technical details.
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