CONFLICT OF INTEREST
The authors declare no conflicts of interest.

REFERENCES

Agmon E, Solon J, Bassereau P, Stockwell BR (2018). Modeling the effects of lipid peroxidation during ferroptosis on membrane properties.Sci Rep , 8 (1), 5155.https://doi.org/10.1038/s41598-018-23408-0
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, et al. (2019). Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell , 177 (5), 1262-1279.https://doi.org/10.1016/j.cell.2019.03.032
Angeli JPF, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. (2014). Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nature Cell Biology ,16 (12), 1180-U1120.https://doi.org/10.1038/ncb3064
Angeli JPF, Shah R, Pratt DA, Conrad M (2017). Ferroptosis inhibition: mechanisms and opportunities. Trends in Pharmacological Sciences ,38 (5), 489-498.https://doi.org/10.1016/j.tips.2017.02.005
Ayala A, Munoz MF, Argueelles S (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity ,2014 , 360438.https://doi.org/10.1155/2014/360438
Badgley MA, Kremer DM, Maurer HC, DelGiorno KE, Lee H-J, Purohit V, et al. (2020). Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science , 368 (6486), 85-89.https://doi.org/10.1126/science.aaw9872
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. (2019). Heart disease and stroke statistics-2019 update a report from the American Heart Association. Circulation ,139 (10), E56-E528.https://doi.org/10.1161/cir.0000000000000659
Bentinger M, Brismar K, Dallner G (2007). The antioxidant role of coenzyme q. Mitochondrion , 7 , S41-S50.https://doi.org/10.1016/j.mito.2007.02.006
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. (2019). The COQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature , 575 (7784), 688-+.https://doi.org/10.1038/s41586-019-1705-2
Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016). Regulators of iron homeostasis: new players in metabolism, cell death, and disease.Trends in Biochemical Sciences , 41 (3), 274-286.https://doi.org/10.1016/j.tibs.2015.11.012
Brocardo PS, McGinnis E, Christie BR, Gil-Mohapel J (2016). Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Research ,19 (2), 140-148.https://doi.org/10.1089/rej.2015.1736
Butterfield DA (1997). Beta-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease.Chemical research in toxicology , 10 (5), 495-506.https://doi.org/10.1021/tx960130e
Carbonell T, Rama R (2007). Iron, oxidative stress and early neurological deterioration in ischemic stroke. Current Medicinal Chemistry , 14 (8), 857-874.https://doi.org/10.2174/092986707780363014
Cardoso BR, Bandeira VS, Jacob-Filho W, Franciscato Cozzolino SM (2014). Selenium status in elderly: relation to cognitive decline. Journal of Trace Elements in Medicine and Biology , 28 (4), 422-426.https://doi.org/10.1016/j.jtemb.2014.08.009
Cardoso BR, Hare DJ, Bush AI, Roberts BR (2017). Glutathione peroxidase 4: a new player in neurodegeneration? Molecular Psychiatry ,22 (3), 328-335.https://doi.org/10.1038/mp.2016.196
Cardoso BR, Roberts BR, Malpas CB, Vivash L, Genc S, Saling MM, et al. (2019). Supranutritional sodium selenate supplementation delivers selenium to the central nervous system: results from a randomized controlled pilot trial in Alzheimer’s disease. Neurotherapeutics ,16 (1), 192-202.https://doi.org/10.1007/s13311-018-0662-z
Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R, et al. (2017). NRF2 is a major target of ARF in p53-independent tumor suppression.Mol Cell , 68 (1), 224-232 e224.https://doi.org/10.1016/j.molcel.2017.09.009
Chen J, Marks E, Lai B, Zhang Z, Duce JA, Lam LQ, et al. (2013). Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. Plos One , 8 (10), e77023.https://doi.org/10.1371/journal.pone.0077023
Citron M (2010). Alzheimer’s disease: strategies for disease modification. Nature Reviews Drug Discovery , 9 (5), 387-398.https://doi.org/10.1038/nrd2896
Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. (1991). Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet (London, England) , 337 (8753), 1304-1308.https://doi.org/10.1016/0140-6736(91)92978-b
Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai A-L, et al. (2020). Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Progress in Neurobiology , 184 , 101716.https://doi.org/10.1016/j.pneurobio.2019.101716
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell , 149 (5), 1060-1072.https://doi.org/10.1016/j.cell.2012.03.042
Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, et al. (2016). Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiology of Disease , 94 , 169-178.https://doi.org/10.1016/j.nbd.2016.05.011
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. (2019). FSP1 is a glutathione-independent ferroptosis suppressor. Nature , 575 (7784), 693-698.https://doi.org/10.1038/s41586-019-1707-0
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, IngoId I, et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology ,13 (1), 91-98.https://doi.org/10.1038/nchembio.2239
Dominguez DJF, Ng ACL, Poudel G, Stout JC, Churchyard A, Chua P, et al. (2016). Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J. Neurol. Neurosurg. Psychiatry , 87 (5), 545-549.https://doi.org/10.1136/jnnp-2014-310183
Else PL (2017). Membrane peroxidation in vertebrates: Potential role in metabolism and growth. European Journal of Lipid Science and Technology , 119 (6), 1600319.https://doi.org/10.1002/ejlt.201600319
Fink SL, Cookson BT (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells.Infect. Immun. , 73 (4), 1907-1916.https://doi.org/10.1128/iai.73.4.1907-1916.2005
Friedmann Angeli JP, Conrad M (2018). Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med. , 127 , 153-159.https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2018.03.001
Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016). Ferroptosis is an autophagic cell death process. Cell Research , 26 (9), 1021-1032.https://doi.org/10.1038/cr.2016.95
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular Cell ,59 (2), 298-308.https://doi.org/10.1016/j.molcel.2015.06.011
Gao MH, Yi JM, Zhu JJ, Minikes AM, Monian P, Thompson CB, et al.(2019). Role of mitochondria in ferroptosis. Molecular Cell ,73 (2), 354-+.https://doi.org/10.1016/j.molcel.2018.10.042
Gaschler MM, Stockwell BR (2017). Lipid peroxidation in cell death.Biochemical and Biophysical Research Communications ,482 (3), 419-425.https://doi.org/10.1016/j.bbrc.2016.10.086
Geng N, Shi BJ, Li SL, Zhong ZY, Li YC, Xua WL, et al. (2018). Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. European Review for Medical and Pharmacological Sciences , 22 (12), 3826-3836.https://doi.org/10.26355/eurrev_201806_15267
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, et al. (2019). The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sciences , 235 , 116795.https://doi.org/10.1016/j.lfs.2019.116795
Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S (2017). Ferroptosis and cell death mechanisms in Parkinson’s disease.Neurochemistry International , 104 , 34-48.https://doi.org/10.1016/j.neuint.2017.01.004
Hambright WS, Fonseca RS, Chen L, Na R, Ran Q (2017). Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biology , 12 , 8-17.https://doi.org/10.1016/j.redox.2017.01.021
Harrison PM, Arosio P (1996). The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta , 1275 (3), 161-203.https://doi.org/10.1016/0005-2728(96)00022-9
Hassannia B, Vandenabeele P, Vanden Berghe T (2019). Targeting ferroptosis to iron out cancer. Cancer Cell , 35 (6), 830-849.https://doi.org/10.1016/j.ccell.2019.04.002
Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, et al. (2018). Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest. ,128 (8), 3341-3355.https://doi.org/10.1172/jci99032
Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR (2016). Loss of cysteinyl-tRNA synthetase ( CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death and Differentiation , 23 (2), 270-278.https://doi.org/10.1038/cdd.2015.93
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. (2018). Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell , 172 (3), 409-422.e421.https://doi.org/https://doi.org/10.1016/j.cell.2017.11.048
Islam QT, Sayers DE, Theil EC (1989). Studies of temperature dependence of iron environment in an undecairon(III) oxo-hydroxo aggregate compound compared to horse spleen ferritin. Physica B (Netherlands) ,158 (1-3), 99-100.https://doi.org/10.1016/0921-4526(89)90213-5
Ji C, Kosman DJ (2015). Molecular mechanisms of non-transferrin-bound and transferring-bound iron uptake in primary hippocampal neurons.Journal of Neurochemistry , 133 (5), 668-683.https://doi.org/10.1111/jnc.13040
Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. (2015). Ferroptosis as a p53-mediated activity during tumour suppression.Nature , 520 (7545), 57-62.https://doi.org/10.1038/nature14344
Kagan VE, Mao GW, Qu F, Angeli JPF, Doll S, St Croix C, et al.(2017). Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology , 13 (1), 81-90.https://doi.org/10.1038/nchembio.2238
Kajarabille N, Latunde-Dada GO (2019). Programmed cell-death by ferroptosis: antioxidants as mitigators. International Journal of Molecular Sciences , 20 (19), 4968.https://doi.org/10.3390/ijms20194968
Kamata T (2009). Roles of Nox1 and other Nox isoforms in cancer development. Cancer Science , 100 (8), 1382-1388.https://doi.org/10.1111/j.1349-7006.2009.01207.x
Klepac N, Relja M, Klepac R, Hećimović S, Babić T, Trkulja V (2007). Oxidative stress parameters in plasma of Huntington’s disease patients, asymptomatic Huntington’s disease gene carriers and healthy subjects: a cross-sectional study. Journal of Neurology , 254 (12), 1676-1683.https://doi.org/10.1007/s00415-007-0611-y
Kuhn H, Banthiya S, van Leyen K (2015). Mammalian lipoxygenases and their biological relevance. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids , 1851 (4), 308-330.https://doi.org/10.1016/j.bbalip.2014.10.002
Kumar P, Kalonia H, Kumar A (2010). Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid-induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behavioural pharmacology , 21 (3), 217-230.https://doi.org/10.1097/fbp.0b013e32833a5bf4
Lan B, Ge J-W, Cheng S-W, Zheng X-L, Liao J, He C, et al. (2020). Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats.Journal of Integrative Medicine , 344-350.https://doi.org/10.1016/j.joim.2020.01.008
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, et al. (2017). Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight , 2 (7), e90777.https://doi.org/10.1172/jci.insight.90777
Li Q, Li Q-Q, Jia J-N, Sun Q-Y, Zhou H-H, Jin W-L, et al. (2019). Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. Frontiers in Pharmacology , 10 , 638.https://doi.org/10.3389/fphar.2019.00638
Liu P, Wu D, Duan J, Xiao H, Zhou Y, Zhao L, et al. (2020). NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway.Redox Biology , 37 , 101702.https://doi.org/https://doi.org/10.1016/j.redox.2020.101702
Llabani E, Hicklin RW, Lee HY, Motika SE, Crawford LA, Weerapana E, et al. (2019). Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nature Chemistry , 11 (6), 521-532.https://doi.org/10.1038/s41557-019-0261-6
Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques.Journal of the Neurological Sciences , 158 (1), 47-52.https://doi.org/10.1016/s0022-510x(98)00092-6
Ma D, Li C, Jiang P, Jiang Y, Wang J, Zhang D (2020). Inhibition of ferroptosis attenuates acute kidney injury in rats with severe acute pancreatitis. Digestive Diseases and Sciences .https://doi.org/10.1007/s10620-020-06225-2
Magtanong L, Dixon SJ (2018). Ferroptosis and brain injury.Developmental Neuroscience , 40 (5-6), 382-395.https://doi.org/10.1159/000496922
Mandal PK, Saharan S, Tripathi M, Murari G (2015). Brain glutathione levels - a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol. Psychiatry , 78 (10), 702-710.https://doi.org/10.1016/j.biopsych.2015.04.005
Martin-Bastida A, Ward RJ, Newbould R, Piccini P, Sharp D, Kabba C, et al. (2017). Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Scientific Reports , 7 , 1398.https://doi.org/10.1038/s41598-017-01402-2
Moosmann B, Behl C (2004). Selenoproteins, cholesterol-lowering drugs, and the consequences - revisiting of the mevalonate pathway.Trends in Cardiovascular Medicine , 14 (7), 273-281.https://doi.org/10.1016/j.tcm.2004.08.003
Moreau C, Duce JA, Rascol O, Devedjian J-C, Berg D, Dexter D, et al. (2018). Iron as a therapeutic target for Parkinson’s disease.Movement Disorders , 33 (4), 568-574.https://doi.org/10.1002/mds.27275
Mou YH, Wang J, Wu JC, He D, Zhang CF, Duan CJ, et al. (2019). Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J. Hematol. Oncol. , 12 , 16.https://doi.org/10.1186/s13045-019-0720-y
Nordberg J, Arner ESJ (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. ,31 (11), 1287-1312.https://doi.org/10.1016/s0891-5849(01)00724-9
Obulesu M, Venu R, Somashekhar R (2011). Lipid peroxidation in Alzheimer’s disease: emphasis on metal-mediated neurotoxicity.Acta Neurologica Scandinavica , 124 (5), 295-301.https://doi.org/10.1111/j.1600-0404.2010.01483.x
Okauchi M, Keep RF, Morgenstern LB, Schallert T, Xi G (2010). Deferoxamine treatment for intracerebral hemorrhage in aged rats therapeutic time window and optimal duration. Stroke ,41 (2), 375-382.https://doi.org/10.1161/strokeaha.109.569830
Olmez I, Ozyurt H (2012). Reactive oxygen species and ischemic cerebrovascular disease. Neurochemistry International ,60 (2), 208-212.https://doi.org/10.1016/j.neuint.2011.11.009
Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, et al.(2014). Cystathionine gamma-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature , 509 (7498), 96-100.https://doi.org/10.1038/nature13136
Pinho BR, Duarte AI, Canas PM, Moreira PI, Murphy MP, Oliveira JMA (2020). The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington’s disease mice. Free Radic. Biol. Med. ,146 , 372-382.https://doi.org/10.1016/j.freeradbiomed.2019.11.021
Pratico D, Zhukareva V, Yao YM, Uryu K, Funk CD, Lawson JA, et al. (2004). 12/15-Lipoxygenase is increased in Alzheimer’s disease - possible involvement in brain oxidative stress. Am. J. Pathol. ,164 (5), 1655-1662.https://doi.org/10.1016/s0002-9440(10)63724-8
Rao SS, Portbury SD, Lago L, Bush AI, Adlard PA (2020). The iron chelator deferiprone improves the phenotype in a mouse model of tauopathy. Journal of Alzheimer’s Disease , 77 (2), 753-771.https://doi.org/10.3233/jad-200551
Ribeiro M, Rosenstock TR, Cunha-Oliveira T, Ferreira IL, Oliveira CR, Cristina Rego A (2012). Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells. Free Radic. Biol. Med. , 53 (10), 1857-1867.https://doi.org/10.1016/j.freeradbiomed.2012.09.004
Ross CA, Tabrizi SJ (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurology ,10 (1), 83-98.https://doi.org/10.1016/s1474-4422(10)70245-3
Saito T, Hisahara S, Iwahara N, Emoto MC, Yokokawa K, Suzuki H, et al. (2019). Early administration of galantamine from preplaque phase suppresses oxidative stress and improves cognitive behavior in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Free Radic Biol Med , 145 , 20-32.https://doi.org/10.1016/j.freeradbiomed.2019.09.014
Sato H, Tamba M, Ishii T, Bannai S (1999). Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. Journal of Biological Chemistry ,274 (17), 11455-11458.https://doi.org/10.1074/jbc.274.17.11455
Shi ZZ, Fan ZW, Chen YX, Xie XF, Jiang W, Wang WJ, et al. (2019). Ferroptosis in carcinoma: regulatory mechanisms and new method for cancer therapy. OncoTargets Ther. , 12 , 11291-11304.https://doi.org/10.2147/ott.S232852
Shimada K, Hayano M, Pagano NC, Stockwell BR (2016a). Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity.Cell Chemical Biology , 23 (2), 225-235.https://doi.org/10.1016/j.chembiol.2015.11.016
Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, et al. (2016b). Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nature Chemical Biology , 12 (7), 497-+.https://doi.org/10.1038/nchembio.2079
Shin D, Lee J, You JH, Kim D, Roh J-L (2020). Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis in head and neck cancer. Redox Biology , 30 , 101418.https://doi.org/10.1016/j.redox.2019.101418
Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al.(2014). Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. Journal of the American Chemical Society ,136 (12), 4551-4556.https://doi.org/10.1021/ja411006a
Stack C, Ho D, Wille E, Calingasan NY, Williams C, Liby K, et al.(2010). Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med ,49 (2), 147-158.https://doi.org/10.1016/j.freeradbiomed.2010.03.017
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. (2016). Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology , 63 (1), 173-184.https://doi.org/10.1002/hep.28251
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. (2015). HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene ,34 (45), 5617-5625.https://doi.org/10.1038/onc.2015.32
Sun Y, Zheng Y, Wang C, Liu Y (2018). Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death & Disease , 9 (7), 753.https://doi.org/10.1038/s41419-018-0794-4
Wang L, Cai H, Hu Y, Liu F, Huang S, Zhou Y, et al. (2018). A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death & Disease ,9 (10), 1005.https://doi.org/10.1038/s41419-018-1063-2
Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR (2000). Inhibition of selenoprotein synthesis by selenocysteine tRNA( Ser Sec) lacking isopentenyladenosine. Journal of Biological Chemistry , 275 (36), 28110-28119.https://doi.org/10.1074/jbc.M001280200
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. (2016). Ferroptosis: process and function. Cell Death and Differentiation , 23 (3), 369-379.https://doi.org/10.1038/cdd.2015.158
Xiong XY, Wang J, Qian ZM, Yang QW (2014). Iron and intracerebral hemorrhage: from mechanism to translation. Transl. Stroke Res. ,5 (4), 429-441.https://doi.org/10.1007/s12975-013-0317-7
Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, et al. (2002). Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem , 82 (5), 1137-1147.https://doi.org/10.1046/j.1471-4159.2002.t01-1-01061.x
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell , 156 (1-2), 317-331.https://doi.org/10.1016/j.cell.2013.12.010
Yang WS, Stockwell BR (2016). Ferroptosis: death by lipid peroxidation.Trends Cell Biol. , 26 (3), 165-176.https://doi.org/10.1016/j.tcb.2015.10.014
Yang WS, Stockwell BR (2008). Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chemistry & Biology ,15 (3), 234-245.https://doi.org/10.1016/j.chembiol.2008.02.010
Yin H, Xu L, Porter NA (2011). Free radical lipid peroxidation: mechanisms and analysis. Chemical Reviews , 111 (10), 5944-5972.https://doi.org/10.1021/cr200084z
Zhang P, Chen L, Zhao Q, Du X, Bi M, Li Y, et al. (2020). Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson’s disease. Free Radical Biology & Medicine , 152 , 227-234.https://doi.org/10.1016/j.freeradbiomed.2020.03.015
Zhong H, Yin H (2015). Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria.Redox Biology , 4 , 193-199.https://doi.org/10.1016/j.redox.2014.12.011
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, et al. (2017). Neuronal death after hemorrhagic stroke in vitroand in vivo shares features of ferroptosis and necroptosis.Stroke , 48 (4), 1033-1043.https://doi.org/10.1161/strokeaha.116.015609
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, et al. (2019). A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nature Communications ,10 , 1617.https://doi.org/10.1038/s41467-019-09277-9

FIGURES