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ABSTRACT 30 

Understanding which foodwebs thrive or collapse is a major challenge that has been mostly 31 

studied in terms of topology and interaction strength. Yet the relative importance of these 32 

properties is hotly debated due to limited research on how they interact and which forces 33 

generate them. Here, we construct a foodweb model that incorporates mass-based constraints on 34 

density dependence, maximum consumption rate, and the likelihood and strength of interactions, 35 

which in turn control overall topologies and interaction strength distributions. Our model 36 

predicts both stability and connectivity that closely match real foodwebs ranging widely in size 37 

(29-163 species) and connectivity (113-1086 interactions). Despite their absence in most 38 

research, density dependence and maximum consumption rate are not only required to accurately 39 

predict stability but have stronger impacts than the more-frequently-studied interaction strength. 40 

Our results demonstrate that predicting foodweb stability requires simultaneously considering 41 

multiple foodweb properties—all of which naturally emerge from species masses. 42 

 43 

INTRODUCTION 44 

 45 

From vast grasslands in northern Europe to lush tropical forests in southeast Asia, nature has 46 

created foodwebs of different sizes, structures, and complexity. Scientists have long worked to 47 

gain a better understanding of which properties of foodwebs determine their persistence and 48 

stability (Elton 1927; May 1973; Emmerson & Raffaelli 2004; Stouffer & Bascompte 2011; 49 

Tang & Allesina 2014). Traditionally, ecologists argued that complex foodwebs are more stable 50 

than simple foodwebs because of redundancy and robustness (Odum 1953; MacArthur 1955; 51 

Paine 1966). Then Robert May showed that larger and more complex systems are less stable for 52 



the simplest scenario of random species interactions (May 1972). Such conflicting views have 53 

given rise to the stability-complexity debate for foodwebs (Landi et al. 2018). 54 

 55 

Theorists frequently explore how trophic interaction strengths and foodweb topology—56 

connectance, modularity, nestedness—individually affect foodweb stability. The consensus is 57 

that both play crucial roles (Brose et al. 2006; Grilli et al. 2016). Specifically, several studies 58 

showed that modularity is positively correlated with foodweb stability (Stouffer & Bascompte 59 

2011; Grilli et al. 2016), which is based on the reasoning that a disturbance within a subgroup is 60 

less likely to propagate to the rest of the foodweb when modularity is high. In contrast, trophic 61 

interaction strength has been shown to negatively correlate with foodweb stability (Emmerson & 62 

Raffaelli 2004) because weaker interactions reduce oscillations in consumer-resource 63 

abundances (McCann et al. 1998). 64 

 65 

So far, most researchers have studied foodweb topology and interaction strength independently. 66 

For instance, when studying the effect of foodweb topology on stability, researchers often 67 

sample consumer-resource interaction strengths randomly from a distribution with zero mean 68 

and a variance of one (May 1972; Grilli et al. 2016). This stands in contrast to real systems for 69 

which it is empirically well-known that trophic interaction strengths are correlated with and 70 

bounded by metabolic rate, attack rate, handling time, etc. (Pawar et al. 2012). In addition, when 71 

studying the effect of interaction strength on stability, trophic links are typically placed randomly 72 

within the foodweb (May 1972; Tang et al. 2014), ignoring the fact that real webs have non-73 

random topology and are structurally anti-symmetric (Chawanya & Tokita 2002). To circumvent 74 

this, foodweb topology is sometimes estimated from empirical data such that there is no topology 75 



generating mechanism in the model (Emmerson & Raffaelli 2004). Other times interaction 76 

strength is studied through small trophic modules that only consist of 3 to 4 species (McCann et 77 

al. 1998), which avoids the large foodweb structure. 78 

 79 

Indeed, isolating individual factors can make them easier to study. However, such an approach 80 

often misses important interactions or correlations among factors that are present in real systems. 81 

Consequently, a model that describes nature—by accurately inferring foodweb stability—most 82 

likely needs to incorporate both ecologically informed topology and trophic interaction strengths. 83 

It has been challenging to link models and theory outputs sensibly with empirical foodwebs, 84 

partly because we lack a natural or parsimonious way to link topological properties and 85 

interaction strength. Here, we argue that species mass is a remedy for this issue. 86 

 87 

Species body mass has been previously used as a constraint on both foodweb topology and 88 

trophic interaction strengths (Cohen et al. 1993; Pawar et al. 2012). Trophic interaction strength 89 

is generally defined as the rate at which a consumer feeds on a resource (Mittelbach & McGill 90 

2019). It thus depends on the densities of consumers and resources as well as consumer-resource 91 

traits such as search rate, attack rate, and handling time of the consumer. Several studies have 92 

shown that these traits scale with the body masses of consumers and resources through allometric 93 

scaling (Brose 2010; Pawar et al. 2012; Brose et al. 2006; Gillooly et al. 2001). 94 

 95 

Mass constraints on topological properties, however, are more subtle. The cascade model was 96 

used in early research on size-structured foodwebs (Cohen et al. 1993). A core assumption of the 97 

cascade model is equiprobability (Neubert et al. 2000)—consumers only interact with smaller 98 



resources and there is an equal probability of any single smaller species being used as a resource. 99 

However, previous empirical studies have shown that consumers prefer resources of certain sizes 100 

and that the trophic interactions are limited by the slow movement of consumers and longer 101 

reactive distances when consumer-resource body size-ratios are large (relatively larger prey or 102 

smaller predator). Conversely, small size-ratios are limited by a consumer’s ability to detect and 103 

catch small prey (Thiebaux & Dickie 1993; Hansen et al. 1994; Brose et al. 2008; Brose 2010). 104 

Thus, it is crucial for a foodweb model to implement an interaction likelihood that is hump-105 

shaped with respect to consumer-resource size-ratios (Pawar et al. 2019). 106 

 107 

Although mass constraints on topology and interaction strength have been investigated, there has 108 

been very little effort in foodweb stability analysis to investigate or include species mass 109 

constraints on two other key foodweb properties: 1) density dependence and 2) maximum 110 

consumption rate. Previous studies often either set all species’ density dependence to -1 (May 111 

1972) or ignore density dependence altogether (Grilli et al. 2016). However, there is substantial 112 

evidence from empirical studies on foodwebs that species commonly experience density 113 

dependence (Brook & Bradshaw 2006; Woiwod & Hanski 1992). And more importantly, density 114 

dependence is highly related to species abundance, which in turn scales with species mass 115 

(Damuth 1981; Yeakel & Redner 2018). Therefore, we can incorporate density dependence into 116 

foodweb models by using species masses to estimate density dependence intensity and empirical 117 

data to approximate the percentage of species that experience density dependence. 118 

 119 

Maximum consumption constraint—an upper limit on each consumer’s total energy intake (total 120 

consumption rate)—arises because an organism cannot consume limitless resources. A 121 



consumer’s diet is affected by factors such as resource abundance, attack probability, capture 122 

success rate (Manly 1974 & Chesson 1978, 1983), predation risk (Ho et al. 2019), and gape-123 

limitation (Hairston & Hairston 1993), all of which can be determined by species body mass and 124 

C-R mass-ratio (Pawar et al. 2012). Because species mass limits maximum consumption rate 125 

(Damuth 1981; Pawar et al. 2012; Ho et al. 2019), the total amount of resource that can be 126 

consumed is constrained. Therefore, this mass-constrained diet places a limit on the number of 127 

resource links (the rate of consumption of each resource) for each consumer species and governs 128 

the connectance of the whole foodweb and ultimately affects their stability (May 1972; Dune & 129 

Williams 2009). 130 

 131 

Most models have ignored the size constraint of density dependence and any effect of maximum 132 

consumption. We argue that these omissions have likely led to misestimation of foodweb 133 

stability and connectance. Here, we construct a comprehensive model based on generalized 134 

Lotka-Volterra framework in which realistic values for key network properties—trophic 135 

topology, interaction strength distributions, foodweb modularity, and connectance—emerge 136 

naturally from species masses and mass-constrained density dependence and maximum 137 

consumption. Thus, our novel framework can be used to realistically predict network properties 138 

and foodweb stability based only on species masses. In so doing, we clarify the origins and 139 

pervasiveness of the foodweb complexity-stability relationship. Furthermore, by changing the 140 

model assumptions to include or omit the size-dependence of the four main factors—interaction 141 

likelihood, interaction strength, density dependence, and maximum consumption—we 142 

disentangle the individual and combined effects of key ecological constraints on foodweb 143 

stability. 144 



 145 

Model Development 146 

 147 

Allometric Regulation Trophic Model (ART Model) 148 

 149 

Here, we describe the steps and procedure of the Allometric Regulation Trophic (ART) model 150 

framework, which constructs foodwebs (similar to interaction matrix derived from generalized 151 

Lotka-Volterra model) from the ground up using realistic mass-based constraints on species 152 

composition and consumer-resource pairing (see Supplementary Information section 1 & Fig. S3 153 

for more details): 154 

Step 0. Species mass: To start building the foodweb, 𝑛 species are chosen with masses 155 

𝑚!, 𝑚", … ,𝑚# sampled from a lognormal distribution with mean 𝜇$ and variance 𝜎$"  156 

(Supporting Information section 1.1). 157 

Step 1. Interaction likelihood & trophic links: For all pairwise trophic interactions (consumer i 158 

and resource j), the interaction likelihood is ℒ%& = 𝑔($!

$"
|𝜇' , 𝜎'") for all 𝑖 = 1, 2, … , 𝑛, 𝑗 =159 

1, 2, … , 𝑛, and 𝑖 ≠ 𝑗. Note that the function 𝑔 is a lognormal PDF of consumer-resource 160 

mass-ratio and 𝜇' and 𝜎'" are the mean and variance of the C-R mass-ratio distribution 161 

(Supporting Information section 1.2). For all trophic links, pick the 𝑝% (𝑝 ≤ ##(#
"##

) of 162 

consuming links (flow from resource to consumer) with highest interaction likelihood 163 

(Fig. 1a). Then the number of selected links is 𝜅 = 	𝑛" ⋅ )
!**

 (rounded to the nearest 164 

integer if necessary). Moreover, each selected link (𝑆𝐿 = {𝑙!, 𝑙", … , 𝑙+}) is a set of two 165 

numbers, i.e. 𝑙, = (𝑖, 𝑗), that describes a consumer (𝑖) feeding on a resource (𝑗). Note that 166 



for each trophic link selected, the associated resource link (flow from resource out to 167 

consumer) for the pair is also selected. Thus, the total percentage of links selected from 168 

the entire web is actually 2𝑝. 169 

Step 2. Interaction strength: Calculate the interaction strength for all selected trophic links 170 

using metabolic theory and the masses of resources and consumers (Fig. 1b). 171 

Specifically, for consumers and resources with masses 𝑚-  and 𝑚., respectively, the per-172 

capita consumption rate (𝛼.) of resource by consumer can be calculated as a measure of 173 

interaction strength: 174 

 𝛼. = −
𝑠𝐴𝑓
𝑚-

 (1) 

which is comprised of search rate (𝑠) (on a per-capita and per-area basis), attack success 175 

probability (𝐴), consumer biomass (𝑚-), and functional response (𝑓) that can be type I, 176 

II, or III (Holling 1959; Jeschke et al. 2004; Vucic-Pestic et al. 2010). We use type I 177 

functional response that depends on resource abundance (𝑅) because of its simplicity and 178 

the results produced by type I and II functional response are qualitatively the same (Fig. 179 

S5). Thus, we can construct a mass-constrained interaction matrix (𝐼): 180 

 𝐼%& 	(area per mass per time) = 	𝑒 ⋅
𝑠%&𝐴%&𝑓%&
𝑚%

 (2) 

where 𝐼%& is calculated if (𝑖, 𝑗) is a selected link belonging to 𝑆𝐿. The corresponding 𝐼&% =181 

	− /"!0"!1"!
$"

, thus imposing a structural type of anti-symmetry to the foodweb matrix. All 182 

other links are zero. Note that 𝑠%&, 𝐴%&, and 𝑓%& depend on the masses and mass-ratios of 183 

consumer 𝑖 and resource 𝑗. 184 



Step 3. Maximum consumption: Using the interaction matrix, for each species we calculate the 185 

total consumption rate, i.e. 𝑇% = ∑ 𝐼%&#
&2!  for 𝐼%& > 0 (restricting the sum to only terms that 186 

involve consumption for species 𝑖). If the total consumption rate of a species exceeds its 187 

metabolic rate, i.e. 𝑇% > 𝑧*𝑚%
*.45 (Supporting Information section 1.3; Fig. S2; Kleiber 188 

1947), the model “prunes” excessive trophic interactions by randomly setting one of the 189 

consumption rates to zero (Fig. 1c). We repeat this process until 𝑇% ≤ 𝑧*𝑚%
*.45 for all 𝑖. 190 

Note that the selection process is chosen to be random because the interaction likelihoods 191 

of each consumer-resource pair are already similar after the first weighted sampling of 192 

interactions in step 2. In addition, because species diet choice is affected by a complex set 193 

of factors, random selection is the least biased method. 194 

Step 4. Density dependence: Certain species with dense populations may experience density 195 

dependence (intraspecific competition) (Brook & Bradshaw 2006), which has a strong 196 

stabilizing effect on foodweb dynamics (Barabás et al. 2017). The density dependence 197 

intensity for each species is calculated as the ratio between species growth rate (𝑟) and 198 

carrying capacity (𝐾), i.e. 𝑟/𝐾. This term results from a standard logistic growth function 199 

that leads to sigmoidal growth with an asymptotic upper limit set by the carrying capacity 200 

and directly related to intraspecific competition within species (Yodzis & Innes 1992; 201 

Weitz & Levin 2006). In addition, since both growth rate and carrying capacity scale with 202 

mass (Pawar et al. 2012), the mass-scaling for density dependence intensity combines to 203 

be (𝑟*/𝐾*)𝑚(*.5, where 𝑟* and 𝐾* are the respective scaling constants for growth rate 204 

and carrying capacity (Pawar et al. 2012). After calculating density dependence for all 205 

species, select q% (Supporting Information section 1.4) of species with the highest 206 



density dependence values and assign these as the diagonal terms in the interaction 207 

matrix. Density dependence for the remaining species is set to zero (Fig 1d).  208 

The final interaction matrix formed from all of these steps is referred to as 𝐼L. Consequently, our 209 

ART foodweb model creates networks where the directed edges/links between nodes (species) 210 

represent mass-based feeding behavior, i.e. diet. The weight (thickness) of the edge represents 211 

the trophic interaction strength (Fig 1).  212 

 213 

In short, the ART Model incorporates mass-based effects on interaction likelihood, interaction 214 

strength, maximum consumption, and density dependence as four core components. Note that 215 

even though all these components are determined by mass, they can be analyzed independently. 216 

Hence, a big advantage of the ART Model is that it can easily disentangle effects and 217 

interactions among these four potentially important factors. By including or omitting one or more 218 

core components, we create five different mass-based foodweb models (Fig. 2) that represent a 219 

range of model classes. In so doing, we can understand the individual or combined effects of 220 

each component on foodweb stability: 221 

(1) Random Model (RM): For this model, the trophic interactions are placed randomly. Each 222 

interaction strength is randomly sampled from a uniform distribution with mean and range 223 

constrained by the mean and range of species mass (Supporting. Information section 2). The 224 

diagonal terms of the interaction matrix are all -1, corresponding to strong density 225 

dependence for all species. Note that the RM omits all four core components and is 226 

analogous to the “Random” Foodweb created and analyzed in May’s original paper on the 227 

complexity-stability debate (May 1972).  228 



(2) Base Mass Model (BMM): This model only includes steps 0-2 of the ART model and 229 

excludes steps 3 and 4, which means no maximum consumption or density dependence, i.e. 230 

all entries are -1 on diagonal and no positive row-sum constraint for the interaction matrix. 231 

(3) Base + Density Dependence Model (BDDM): This model includes steps 0-2, and density 232 

dependence (step 4) of the ART model but excludes the maximum consumption constraint 233 

(step 3). 234 

(4) Base + Maximum Consumption Model (BMCM): This model includes steps 0-3 of the 235 

ART model but excludes density dependence (step 4). 236 

(5) ART Model:  Includes all steps 0-4 and all core components. 237 

 238 

MATERIALS AND METHODS 239 

 240 

Stability analysis 241 

 242 

For each model foodweb, stability is defined by whether a foodweb eventually returns to its 243 

original state of species abundances after perturbation (a change in one or more abundances for 244 

any reason). This is mathematically determined by calculating the eigenvalues of the interaction 245 

matrix (Jacobian), i.e. 246 

 𝐽(𝑋∗) = 𝐼L (3) 

to determine whether the eigenvalues are all negative, meaning the perturbed abundances will all 247 

exponentially decay back to their original state, or whether at least one eigenvalue is positive, 248 

meaning at least one perturbed abundance will exponentially grow, never return to its original 249 

state, and the system is defined as unstable (May 1972; Otto & Day 2011; Allesina & Tang 250 



2015). Note that the Jacobian matrix is equivalent to the interaction matrix in our case because 251 

the foodweb dynamics is based on the generalized Lotka-Volterra model; and in addition, we are 252 

assuming and only interested in non-trivial solutions (abundance is non-zero for all species). 253 

Thus, taking the derivative of our model gets rid of the dependence on the species abundance 254 

column vector (Supporting Information section 1.2). 255 

 256 

For all models and for each choice of parameters, we compute the proportion of resulting 257 

networks that are stable—termed the frequency of stability—by simulating 1000 replicate 258 

networks for each parameter set, counting the number of cases where the real part of the leading 259 

eigenvalue is negative, and dividing this by the total number of repetitions (1000). In order to 260 

investigate how foodweb connectance, modularity, and interaction strength (Fig. 3) affect the 261 

frequency of stability, we vary the community mean consumer-resource mass-ratio (𝜇'). That is, 262 

we vary the average resource mass preferred by consumers—higher 𝜇' indicates that consumers 263 

prefer larger resources. This allows us to compare and contrast our empirical consumer-resource 264 

mass-ratio distribution with model frequency of stability distributions across a range of possible 265 

average mass-ratios (𝜇') for all models. A high frequency of stability value implies that a given 266 

mean consumer-resource mass-ratio (𝜇') is favored in real foodwebs. Therefore, we expect the 267 

shape of the frequency of stability distribution to match empirical consumer-resource mass-ratio 268 

distributions (Supporting Information section 5). 269 

 270 

Network properties of model foodwebs 271 

 272 



To compare and contrast models with different assumptions, we also measure the connectance, 273 

modularity, and interaction strength for all models while varying mean consumer-resource mass-274 

ratios (𝜇'). Connectance is defined as the ratio between the number of observed trophic links and 275 

total possible trophic links (𝑛") (Delmas et al. 2019). For modularity, we use a fast algorithm 276 

developed by Newman, which measures the degree of nodes connecting to nodes within the 277 

same group/cluster compare to other group (Newman 2004). The mean and variance of 278 

interaction strength distributions are calculated from all the positive entries of the interaction 279 

matrix. The connectance of the ART model is also calculated for different foodweb sizes. 280 

 281 

Empirical data and parameters used for model comparison 282 

 283 

For all model configurations and simulations, we initialize foodwebs with 93 species, 284 

corresponding to the average size of the eight empirical foodwebs for which we have 285 

comprehensive data for consumer-resource pairs and species masses (Table 1). Moreover, the 286 

initial connectance ( )
78#

) of all model foodwebs (size = 93) is approximated from 189 empirical 287 

foodwebs, i.e. 8 foodwebs with species mass (Table 1) and 181 binary foodwebs (Cohen 2010). 288 

Note that the binary foodwebs only contain information on whether a consumer interacts with a 289 

resource (1 for interaction and 0 for no interaction). Therefore, these binary webs can be only 290 

used for estimating connectance. 291 

 292 

Because each species in the 8 foodwebs with species mass information is identified and 293 

distinguished by its body mass and both the species mass and C-R mass-ratio distributions are 294 

typically unimodal (Fig. 2&S1), we obtain the mean and variance, i.e.  𝜇$ and 𝜎$" , used for 295 



sampling species masses from the log-transformed species mass distributions of those 8 296 

foodwebs. Similarly, we obtain the mean and variance—𝜇' and 𝜎'"—from the log-transformed 297 

consumer-resource mass-ratio distributions of these empirical foodwebs to determine interaction 298 

likelihood. These empirical foodwebs include Eastern Weddell Sea, Grand Cariçaie Marsh, 299 

Scotch Broom, Skipwith Pond, Broadstone Stream, UK Grassland, Gearagh Woodland, and 300 

Estero de Punta Banda (Pawar et al. 2019). 301 

 302 

For conversion efficiency (𝑒), Lindeman (1942) indicated that the efficiencies ranges from 0.001 303 

to 0.375 based on the observation on energy transfer from one trophic level to the next. But later 304 

research showed that 𝑒 also differs across metabolic groups—herbivore, endotherms, ectotherms, 305 

etc. (Peters 1986) and have higher values that range from 0.50 to 0.85 (Pawar et al. 2019). 306 

Therefore, we simulate the ART model using efficiency ranges from 0.10-0.85 to test the impact 307 

of efficiency on foodweb stability (Supporting Information section 6.2). 308 

 309 

RESULTS 310 

 311 

Because foodwebs that are stable and feasible should persist longer, the consumer-resource 312 

mass-ratios associated with these webs should occur with higher frequency in nature (Borrelli et 313 

al. 2015). From this perspective peak stability should occur at a mean interaction likelihood (𝜇') 314 

that is close to the mean of empirical consumer-resource mass-ratio distributions. Indeed, the 315 

ART model—which incorporates mass-based constraints on both maximum consumption and 316 

density dependence—produces a frequency of stability distribution that peaks precisely at the 317 

mean (around -1) of the empirical consumer-resource biomass-ratio distribution (Fig. 2).  318 



 319 

More importantly, the frequency of stability decreases faster at higher consumer-resource mass-320 

ratios and more gradually for lower ratios, matching these subtler features of the empirical 321 

consumer-resource biomass-ratio distribution. This is in strong contrast to other models that 322 

predict equal stability for those consumer-resource mass-ratio values (RM & BMM), and others 323 

that do not fully capture the shape of the empirical distribution (BDDM & BMCM). Intriguingly, 324 

this demonstrates that the mass-ratio lognormal distribution used for interaction likelihood 325 

sampling is not the only factor that determines the shape of the frequency of stability 326 

distribution. 327 

 328 

Additionally, although weak interactions and strong correlations among the consumer-resource  329 

interactions (𝐼%& and 𝐼&%) are known to improve stability (Emmerson & Raffaelli 2004; Tang et al. 330 

2014) and correspond to real foodweb data (table 1), the ART model exhibits a peak in the 331 

frequency of stability at consumer-resource mass-ratios close to -1 (Fig. 2), which does not 332 

correspond with the weakest mean interaction strengths (Fig. 3b). Furthermore, the ART model 333 

correctly predicts poor stability for both small and large consumer-resource biomass-ratios, while 334 

mean interaction strength declines across the range (Fig. 3b).  Taken together, these results 335 

suggest that interaction strength is not the strongest contributor to foodweb stability. 336 

 337 

Conversely, we find that maximum consumption and density dependence constraints do play 338 

important roles in modulating the stability of foodwebs, as evidenced by the observation that the 339 

frequency of stability curves produced by the Random Model (RM) and Base Mass Model 340 

(BMM) do not match the empirical mass-ratio distribution. Both RM and BMM generates 341 



uniform stability across mass-ratio, whereas the empirical distribution is lognormal (Fig. 2). Note 342 

that the stability values produced by BMM are all 1 due to stabilizing effect of correlation 343 

between trophic interaction pairs (Tang et al. 2014). 344 

 345 

Moreover, maximum consumption and density dependence have divergent effects on foodweb 346 

stability (Fig. 2). Most notably, the frequency of stability curve produced without maximum 347 

consumption shifts the peak towards smaller C-R mass-ratios compared with the ART model. 348 

For the model with no density dependence, the peak for maximum stability matches the peak of 349 

the empirical C-R mass-ratio distribution (Fig. 2). This result indicates that the mass-based 350 

maximum consumption constraint is essential for correctly predicting the location of the peak of 351 

foodweb stability within the consumer-resource mass-ratio space. 352 

 353 

Apart from stability, we discover that, as a mechanistic mass-based model, the ART model also 354 

more accurately captures the trends for how connectance (𝐶) changes with foodweb size (𝑛) 355 

empirically (Fig. 4), compared to other phenomenological models. Previously, Schmid-Araya et 356 

al. (2002) found that disagreeing with link-species “law”, i.e. 𝐶~𝑛(! (Hall & Raffaelli 1993), 357 

and constant connectance hypothesis, i.e. 𝐶~𝑛* (Martinez 1992), the exponent for log	(𝐶) and 358 

log	(𝑛) should be close to -0.7, i.e. 𝐶~𝑛(*.4, by fitting a phenomenological model through 359 

extensive empirical data. The ART model produces exponent for log	(𝐶) and log	(𝑛) close to -360 

0.7, i.e. 𝐶~𝑛(*.9:, and outperforms link-species “law” and connectance hypothesis, which 361 

strengthens the ART model validity because foodwebs of different sizes (especially smaller 362 

foodwebs) often have drastically different connectances (Fig. 4) that play crucial roles in 363 

foodweb function and stability (May 1972; Landi et al. 2018).  364 



 365 

In addition to connectance, modularity was also measured for each simulation as a metric of 366 

topology. Previous papers (Stouffer & Bascompte 2011; Grilli et al. 2016) suggested that 367 

modularity promotes stability by limiting the likelihood of collapse. Indeed, we find a high 368 

correlation between modularity and stability (Fig. 2&3c). 369 

 370 

DISCUSSION 371 

 372 

Understanding and separating how different foodweb properties—such as connectance, 373 

modularity, and interaction strengths—relate to the stability of foodwebs is a central challenge 374 

that has puzzled ecologists for decades (Elton 1958; Paine 1966; May 1972; Emmerson & 375 

Raffaelli 2004). We argue this has been puzzling largely due to the lack of models that include 376 

mechanistic processes that influence foodweb topology, interaction strength, density dependence, 377 

and maximum consumption simultaneously.  378 

 379 

Therefore, by using species mass as a common currency that connects multiple aspects of 380 

foodweb properties, we create the ART Model that predicts foodweb stability—in terms of 381 

matching stability and connectance of empirical webs—better than all other model 382 

configurations that we consider. We show that foodweb topology is crucial for determining 383 

overall system stability (Fig. 3a), while interaction strength plays a relatively minor role (Fig. 384 

3b). More precisely, we demonstrate that maximum consumption and density dependence are 385 

fundamental building blocks of foodweb topology that in turn lead to a more mechanistic and 386 

systematic understanding of how foodweb structure affects stability (Fig. 2&3). 387 



 388 

Maximum consumption affects foodweb stability by limiting connectance and optimizing size-389 

ratio based foraging strategies. More concretely, even though the allometrically scaled function 390 

(Eq. 1&2) can produce realistic interaction strengths for pairwise consumer-resource 391 

interactions, consumers normally feed on multiple resources to maximize their energy intake 392 

(Stephens & Krebs 1986). However, according to metabolic theory there is a mass-dependent 393 

upper bound for the total energy and rate of intake for each consumer. The ART model achieves 394 

the upper bound by omitting excessive trophic links. Fewer links leads to higher stability (Fig. 395 

2&3a). The effect of maximum consumption on stability is distinguished by examining the 396 

BMCM. And interestingly, we found that the BMCM exhibits a peak around consumer-resource 397 

mass-ratio close to 0, which indicates that a foodweb can be stable without any density 398 

dependence (Fig. 2). This type of stability and the corresponding peak are achieved mainly by 399 

reduced connectance. 400 

 401 

Although the ART model correctly predicts the trend for foodweb connectance, the absolute 402 

values of connectance are a little lower than empirical values (Fig. 4). A possible reason for 403 

systematically lower connectance is that the trophic links are collected accumulatively. Meaning 404 

that the empirical foodweb is not a “snapshot” but an overlay of “snapshots”. Another reason is 405 

due to the fact that our maximum consumption constraint eliminates excessive trophic links 406 

instead of reducing their strengths. However, a recent study (Ho et al. 2019) suggests that 407 

predation risk constrains diet choice by weakening the existing trophic links instead of omitting 408 

links. Therefore, combining this “weakening” procedure with our “pruning” procedure in future 409 

models might further improve estimation of absolute values for connectance. 410 



 411 

Density dependence can also strongly influence foodweb stability, yet studies often ignore the 412 

size-dependence of density dependence. When constructing an interaction matrix, researchers 413 

often set the diagonal terms (density dependence terms) to either all zeros or all negative ones. 414 

The former case can be useful if only interested in how trophic interaction strengths or 415 

correlations affect stability because setting diagonal terms to zero eliminates additional effects 416 

from density dependence (Tang et al. 2014). However, this ignores the stabilizing effect of 417 

density dependence and underestimates foodweb stability. The other common choice—setting 418 

diagonal terms to all negative ones—imposes strong homogeneous regulation and artificially 419 

inflates baseline stability in the system (May 1972). 420 

 421 

From an ecological standpoint, it is unrealistic to assume that none of the species experience 422 

density dependence in a foodweb. In nature, species often experience some form of density 423 

dependence through intraspecific competition (Brook & Bradshaw 2006). By excluding 424 

maximum consumption constraint, the BDDM produces two peaks around consumer-resource 425 

mass-ratios close to -5 and 4. Although those stability peaks do not match the peak for empirical 426 

mass-ratio distribution, the fact that stability moves away from preferred consumer-resource 427 

mass-ratio indicates that when facing density dependence, species may choose resources with 428 

unfavored biomass in order to survive and persist. 429 

 430 

Besides maximum consumption and density dependence, an unexpected factor that also affects 431 

foodweb stability in a rather complex way is conversion efficiency (Gibert & Yeakel 2019). 432 

High conversion efficiency increases consumption rate but lowers connectance due to the 433 



maximum consumption constraint. Low conversion efficiency reduces consumption rate but 434 

increases connectance. Interestingly, both cases behave similarly to the BDDM and exhibit 435 

stability peaks at mass-ratio close to -5 and 5 (Fig. S6). For ecological intuition, we speculate 436 

species may avoid competing for resources with preferred biomass and go for “unfavored” 437 

resources with high conversion efficiency. As for low efficiency, resources with preferred 438 

biomass would quickly die out and leave consumer with “unfavored” resources (Supporting 439 

Information section 6.2). 440 

 441 

Based on our results, we argue that Random Matrix Theory (RMT) may not apply to empirical 442 

foodwebs. RMT assumes that networks are large and highly connected with random values 443 

occupying non-zero entries, producing an eigenvalue spectrum that is bounded by a circle (May 444 

1972&1973; Allesina & Tang 2015) and with a well-defined boundary set by foodweb size and 445 

interaction strength. Nonetheless, the empirical foodwebs are normally small and sparsely 446 

connected (compare to unrealistic large values set by RMT) with trophic interactions that exhibit 447 

directional (energy/mass flow from resource to consumer) and non-random (constrained by 448 

species mass) patterns (Landi et al. 2018). Intriguingly, we find that a more realistic interaction 449 

matrix that is small, sparse, and non-random produces an eigenvalue spectrum with a shape 450 

closer to a diamond (boundary not well defined). We have not seen this diamond-shaped 451 

spectrum be previously reported (Fig. S7&8). The potential effects of this diamond-shaped 452 

eigenvalue spectrum on stability should be investigated in future research. 453 

 454 

When looking at the predicted eigenvalue spectra for empirical foodwebs, the real parts of 455 

leading eigenvalues are close to or even exceed zero (Fig. S9), meaning that these empirical 456 



foodwebs are not stable in the strict sense or may oscillate between stable and unstable states. 457 

Such observations further suggest that we should shift from looking for absolute stability to 458 

studying the frequency of stability and comparing other alternative metrics of stability 459 

(Pettersson et al. 2019). 460 

 461 

Throughout this project we tested our model with real data wherever possible. We argue that this 462 

approach leads to crucial insights about the stability of foodwebs that were previously missed. 463 

We used consumer-resource body mass-ratio distributions from eight well-measured empirical 464 

foodwebs as a basis to predict foodweb stability. These predictions can be improved in the future 465 

by incorporating more and larger foodweb datasets that include information about trophic links 466 

as well as species masses. Future research should utilize more advanced tracking technologies 467 

(Dell et al. 2014) and collect more comprehensive foodweb population abundance time-series 468 

data to test model predictions. 469 

 470 

In conclusion, we created a novel foodweb model termed ART that is solely driven by species 471 

masses and that links all core foodweb characteristics—topology, interaction strength, maximum 472 

consumption, and density dependence. Because of its flexibility and simple parameterization, the 473 

ART model allows us to create sub-models and analyze how multiple ecological constraints 474 

impact stability either alone or in combination. In doing so, we found that trophic interaction 475 

strength distributions have a relatively weak impact on foodweb stability compared with the 476 

energetic constraints of consumer maximum consumption and species density dependence. 477 

Finally, our ART model correctly matches empirical patterns such as the frequency of stability 478 



and connectance, a feat that to our knowledge has not been accomplished by other models 479 

(Landi. et al. 2018).  480 
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FIGURE CAPTIONS 612 

 613 

Figure 1. Foodweb constructed by the ART Model. Generally, foodwebs consist of resource and 614 

consumer species as nodes. (a) Each trophic link/edge in the foodweb is assigned an interaction 615 

likelihood value (link color), which is a Gaussian function of log consumer-resource mass-ratios. 616 

(b) For each selected trophic link, the interaction strength (link width), i.e. consumption rate, is 617 

calculated using metabolic theory. (c) Maximum consumption rate constraint is imposed if the 618 

sum of all resource consumption rates (sum of all weighted trophic links) exceeds the maximum 619 

consumption rate for a given consumer. (d) Some species experience density dependence, the 620 

probability and strength of which both depend on mass. Note that topology is determined by 621 

interaction likelihood and diet while consumption rates and density dependence together shape 622 

the interaction strength distribution. 623 

 624 

Figure 2. Stability results produced by our foodweb models compared with the empirical 625 

frequency of consumer-resource body mass-ratios. The empirical mass-ratio distribution was 626 

obtained from eight well documented foodweb datasets (Pawar et al. 2012). The frequency of 627 

stable foodwebs is shown for a variety of models. For the Random Model (RM), a fixed number 628 

of trophic links were selected randomly from a species pool with lognormally distributed masses. 629 

The Base Mass Model (BMM) is similar to RM except a fixed number of links were selected 630 

based on consumer-resource mass-ratio. Models with maximum consumption (BMCM) are built 631 

upon BMM by limiting the number of trophic links for each consumer species according to a 632 

mass-dependent maximum consumption rate. Models with density dependence (BDDM) are 633 

based on BMM as well by imposing a mass-based negative intraspecific density dependence on a 634 

subset of species (70%). Note that 70% is an average percentage of species experiencing density 635 



dependence based on empirical data (Supporting Information section 1.4). The ART model 636 

includes all features (steps 0-4 in main text). Note that the ART model produces a frequency of 637 

stability that closely matches the empirical mass-ratio frequency. 638 

 639 

Figure 3. Key network properties—(a) mean connectance (unitless, ranges 0-1), (b) log10(mean 640 

interaction strength (kg s-1)), and (c) modularity (unitless, ranges 0-1)—shown across a range of 641 

consumer-resource mass-ratios for the ART foodweb model. All foodweb metrics represent 642 

averages across 1000 replicate model simulations. And the error bars represent the standard 643 

deviation for each data point. For interaction strength, the negative values are omitted since all 644 

trophic pairs are perfectly correlated and the positive value equals the positive value times the 645 

conversion efficiency constant. 646 

 647 

Figure 4. Log-log plot for model and empirical foodweb connectance versus foodweb sizes. The 648 

light orange points are connectance data of 181 foodwebs from ECOWeB1.1 compiled by Cohen 649 

(2010). The grey points are connectance data of 8 foodwebs used in our paper. The orange line 650 

represents the best fitted line for all empirical data (189 foodwebs) with slope 𝑎 = 	−0.69 ±651 

0.08. The light purple error bars represent the standard deviation of log(connectance) produced 652 

by our ART model (over 200 run/foodweb size) over 15 different foodweb sizes. The dark purple 653 

line represents the best fitted line for model connectance with slope 𝑎 = 	−0.86 ± 0.004. This 654 

demonstrates that the ART model correctly predicts both stability properties and that the 655 

connectance scales log-linearly with foodweb sizes. To our knowledge, the ART model is the 656 

only size-based model to achieve this. Notably, the model predicts connectance values that are 657 

always lower than the empirical data. This is possibly because empirical trophic links accumulate 658 

and the maximum consumption constraint eliminates links instead of weakening them.  659 



Table 1. Topological and allometric measurements for eight empirical foodwebs. The Size 660 

column shows the number of trophic species in corresponding foodwebs. The Connectance 661 

column measures the density of consumer-resource interactions (links) within foodwebs, i.e. 662 

number of observed links over total possible number of links (Size2). log10(mass) columns show 663 

the observed mean (𝜇) and variance (𝜎") for log10 transformed species masses (kg). The 664 

log10(mR/mC) columns show the observed mean (𝜇) and variance (𝜎") for log10 transformed 665 

consumer-resource mass-ratios. The Interaction Strength columns measure the mean (𝜇) and 666 

variance (𝜎") of the distributions of consumers’ consumption rates (kg s-1). 667 

 668 

 Topology  log10(mass)  log10($!
$"

)  Interaction Strength 

Foodwebs Size Connectance  μ 𝜎2  μ 𝜎2  μ 𝜎2 

Eastern Weddell Sea 153 0.0261  -2.85 5.13  -2.08 7.48  5.35E-05 3.24E-08 

Grand Cariçaie Marsh 90 0.1133  -5.42 2.74  -0.68 2.61  6.51E-07 8.17E-11 

Scotch Broom 147 0.0322  -5.49 1.46  -0.14 3.23  1.22E-08 1.28E-15 

Skipwith Pond 33 0.4848  -5.01 1.32  -0.81 0.89  2.69E-08 1.22E-15 

Broadstone Stream 29 0.3200  -6.85 1.04  -1.07 1.35  5.75E-10 9.73E-19 

UK Grasslands 61 0.0608  -5.00 2.10  0.56 2.31  2.11E-09 8.04E-18 

Gearagh Woodland 113 0.0580  -5.31 4.46  -0.17 5.05  2.79E-09 5.88E-17 

Estero de Punta Banda 119 0.1534  -2.58 6.67  -2.28 6.63  9.44E-06 4.72E-10 

 669 


