References
1. Committee Opinion No. 581: the use of chromosomal microarray
analysis in prenatal diagnosis. Obstet Gynecol, 2013. 122 (6):
p. 1374-7.
2. Practice Bulletin No. 162: Prenatal Diagnostic Testing for
Genetic Disorders. Obstet Gynecol, 2016. 127 (5): p. e108-22.
3. Practice Bulletin No. 163: Screening for Fetal Aneuploidy.Obstet Gynecol, 2016. 127 (5): p. e123-37.
4. Manegold-Brauer, G., S. Hahn, and O. Lapaire, What does
next-generation sequencing mean for prenatal diagnosis? Biomark Med,
2014. 8 (4): p. 499-508.
5. Lovrecic, L., et al., Clinical utility of array comparative
genomic hybridisation in prenatal setting. BMC Med Genet, 2016.17 (1): p. 81.
6. Newman, S., et al., Next-generation sequencing of duplication
CNVs reveals that most are tandem and some create fusion genes at
breakpoints. Am J Hum Genet, 2015. 96 (2): p. 208-20.
7. Talkowski, M.E., et al., Next-generation sequencing strategies
enable routine detection of balanced chromosome rearrangements for
clinical diagnostics and genetic research. Am J Hum Genet, 2011.88 (4): p. 469-81.
8. Johnson, S.H., et al., SVAtools for junction detection of
genome-wide chromosomal rearrangements by mate-pair sequencing (MPseq).Cancer Genet, 2018. 221 : p. 1-18.
9. Smadbeck, J.B., et al., Copy number variant analysis using
genome-wide mate-pair sequencing. Genes Chromosomes Cancer, 2018.57 (9): p. 459-470.
10. Drucker, T.M., et al., BIMA V3: an aligner customized for mate
pair library sequencing. Bioinformatics, 2014. 30 (11): p.
1627-9.
11. Oztunc, F., et al., Diagnosis and outcome of pregnancies with
prenatally diagnosed fetal dextrocardia. J Matern Fetal Neonatal Med,
2015. 28 (9): p. 1104-7.
12. Wang, X., et al., Comparing levocardia and dextrocardia in
fetuses with heterotaxy syndrome: prenatal features, clinical
significance and outcomes. BMC Pregnancy Childbirth, 2017.17 (1): p. 393.
13. Nomura, M. and E. Li, Smad2 role in mesoderm formation,
left-right patterning and craniofacial development. Nature, 1998.393 (6687): p. 786-90.
14. Zaidi, S., et al., De novo mutations in histone-modifying
genes in congenital heart disease. Nature, 2013. 498 (7453): p.
220-3.
15. Micha, D., et al., SMAD2 Mutations Are Associated with
Arterial Aneurysms and Dissections. Hum Mutat, 2015. 36 (12):
p. 1145-9.
16. Stroschein, S.L., et al., Negative feedback regulation of
TGF-beta signaling by the SnoN oncoprotein. Science, 1999.286 (5440): p. 771-4.
17. Lupianez, D.G., et al., Disruptions of topological chromatin
domains cause pathogenic rewiring of gene-enhancer interactions. Cell,
2015. 161 (5): p. 1012-1025.
18. Ordulu, Z., et al., Structural Chromosomal Rearrangements
Require Nucleotide-Level Resolution: Lessons from Next-Generation
Sequencing in Prenatal Diagnosis. Am J Hum Genet, 2016. 99 (5):
p. 1015-1033.
19. Schier, A.F., Nodal signaling in vertebrate development. Annu
Rev Cell Dev Biol, 2003. 19 : p. 589-621.
20. Maldjian, P.D. and M. Saric, Approach to dextrocardia in
adults: review. AJR Am J Roentgenol, 2007. 188 (6 Suppl): p.
S39-49; quiz S35-8.
21. Firth, H.V., et al., DECIPHER: Database of Chromosomal
Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum
Genet, 2009. 84 (4): p. 524-33.
22. Landrum, M.J., et al., ClinVar: public archive of
interpretations of clinically relevant variants. Nucleic Acids Res,
2016. 44 (D1): p. D862-8.