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Abstract: In this paper, the main work is to study the N -soliton solutions for the derivative
nonlinear Schrödinger hierarchy. Then, the matrix Riemann-Hilbert problem is constructed for
this integrable hierarchy by analyzing the spectral problem of the Lax pair. Based on the
scattering relationship, the N -soliton solutions for this system are given explicitly.
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1 Introduction

As is well known, the well-known (1+1) dimensional derivative nonlinear Schrödinger (DNLS)
equation

iut + uxx + iα(|u|2u)x = 0, (1.1)

is a very important integrable equation, it has several applications in many branches of physics
and applied mathematics, particularly in optics, water wave.

The derivative nonlinear Schrödinger hierarchy is meaningful to find their symmetries and
algebraic structure [1]. In fact, the DNLS hierarchy have been studied in many ways, such as:
Hamiltonian structure [2], Darboux transformation [3], Tau-Symmetry [4].

In this paper, we consider the DNLS hierarchy via the matrix Riemann-Hilbert problem,
namely Fokas method [5]. Learning from the method and experience of predecessors, Fokas
method perfectly combined the initial value and boundary value problems. Also, it brings
important advantage to the methodology that yields precise information about the long-time
asymptotic behavior of the solutions in [6].

Moreover, with the help of nonlinearization in the steepest descent method [7], Fokas method
may represent how the solution of large t splits into a collection of solitons traveling at constant
speeds. However, when the solution is away from these solitons the asymptotic displays a
dispersive character [8]. The global relation which imposes a constraint on the given initial and
boundary values provides the perfect solution to this problem at t = 0 or x = 0 [9–20]. And, the
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RHP also was applied to solve the long-time asymptotic behavior of integrable equations [21,22],
the soliton solutions of integrable equations [23–26] and so on.

The present paper is arranged as follows. In Section 2, we firstly recall the Lax pair
for the DNLS hierarchy. Meanwhile, we consider the matrix spectral analysis of the DNLS
hierarchy by introducing the Jost solution, the eigenfunctions and the scattering matrix S(λ).
In Section 3, in order to propose the Riemann-Hilbert problem for the DNLS hierarchy, we
introduce two matrix functions and the jump matrix G(x, t2n;λ). In Section 4, we construct
N -soliton solutions for the DNLS hierarchy by the Riemann-Hilbert method and the scattering
relationship. In Section 5, we give a brief conclusion for this paper.

2 The Lax pair and matrix spectral analysis for the DNLS

hierarchy

In order to derive the DNLS hierarchy, we firstly recall the Lax pair as follows,{
Φx = U(x, t2n;λ)Φ,

Φt2n = V (x, t2n;λ)Φ, n ≥ 2,
(2.1)

where U(x, t2n;λ) = ( i
2
λ2σ + λP ), V (x, t2n;λ) =

2n∑
j=0

V2n−jλ
j and σ =

(
1 0
0 −1

)
, P =(

0 r(x, t2n)
q(x, t2n) 0

)
, this system above can be given by the zero curvature equation Vx =

[U, V ]. In order to facilitate the later batter research work, under the conditions V0 = σ and
V1 = P , the Lax pair (2.1) can be rewritten as{

Φx = i
2
λ2σΦ + P̂Φ,

Φt2n = i
2
λ2nσΦ + Q̂Φ, n ≥ 2,

(2.2)

where P̂ = λP, Q̂ = λ2n−1P +
2n−2∑
j=0

V2n−jλ
j. Then, one can introduce the Jost solution for the

equation (2.2) with asymptotic from read

Φ ∼ e
i
2
λ2σx+ i

2
λ2nσt2n , |x| −→ ∞. (2.3)

Let
µ(x, t2n;λ) = Φe−

i
2
λ2σx− i

2
λ2nσt2n (2.4)

being a new matrix spectral function, it shows that through the above transformation.

µ −→ I, |x| −→ ∞, where I is a 2× 2 identity matrix. (2.5)

Therefore, the Lax equation (2.2) can be rewritten as{
µx − i

2
λ2[σ, µ] = P̂ µ,

µt2n − i
2
λ2n[σ, µ] = Q̂µ,

(2.6)
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where [σ, µ] = σµ− µσ. By introducing the eigenfunctions of the Lax equation (2.2) expressed
as

µ1 = I +

∫ x

−∞
eiλ

2(x−y)σP̂ µ1e
−iλ2(x−y)σdy, (2.7)

µ2 = I −
∫ +∞

x

eiλ
2(x−y)σP̂ µ2e

−iλ2(x−y)σdy. (2.8)

Considering the new spectral problem(2.4), we have two fundamental matrix solutions

Φ1 = µ1e
i
2
λ2σx+ i

2
λ2nσt2n , Φ2 = µ2e

i
2
λ2σx+ i

2
λ2nσt2n . (2.9)

Then, the scattering matrix S(λ) = S2×2(λ), which can be expressed as

µ1 = µ2e
i
2
λ2σx+ i

2
λ2nσt2nS(λ)e−

i
2
λ2σx− i

2
λ2nσt2n . (2.10)

The analyticity and symmetry of the eigenfunctions µ1, µ2 and scattering matrix S(λ) should
be paid more attention. According to the integral equations (2.7), (2.8) and integral region
y < x, we have

e
i
2
λ2(x−y)σP̂ e−

i
2
λ2(x−y)σ =

(
0 λreiλ

2(x−y)

λqe−iλ
2(x−y) 0

)
. (2.11)

Therefore, note ([µ1]1, [µ1]2) = µ1, ([µ2]1, [µ2]2) = µ2, it can be shown that [µ1]1 is analytic in
{Imλ2 < 0}, [µ1]2 is analytic in {Imλ2 > 0}. And [µ2]1 is analytic in {Imλ2 > 0}, [µ2]2 is
analytic in {Imλ2 < 0}. On the basis of the Able’s formula and trP̂ = 0, it can be derived
that |µ1(2)| are independent for all x. Then, we have

det(µ1(2)) = 1 (2.12)

with the asymptotic conditions |µ1(2)| → I, as |x| → ∞. It is obvious to obtain

det(S(λ)) = 1 (2.13)

from the equation (2.12). Furthermore, let

µ−11 =
(

[µ−11 ]1, [µ−11 ]2
)T
, (2.14)

µ−12 =
(

[µ−12 ]1, [µ−12 ]2
)T
. (2.15)

Then, we know that [µ−11 ]1 is analytic in {Imλ2 > 0}, [µ−11 ]2 is analytic in {Imλ2 < 0}, [µ−12 ]1
is analytic in {Imλ2 < 0} and [µ−12 ]2 is analytic in {Imλ2 > 0}. From the equation (2.10), we
obtain

µ1E = µ2ES(λ), E = e
i
2
λ2σx. (2.16)

Thus, the analyticity of S(λ) can be expressed by

ES(λ)E−1 = µ−12 µ1 =

(
a11 a12
a21 a22

)
, (2.17)

where a11 = [µ−12 ]1[µ1]1, a12 = [µ−12 ]1[µ1]2, a21 = [µ−12 ]2[µ1]1 and a22 = [µ−12 ]2[µ1]2, and s11(λ) is
analytic in {Imλ2 < 0}, s22(λ) is analytic in {Imλ2 > 0}.
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3 The construction of the Riemann-Hilbert problem for

the DNLS hierarchy

We introduce two matrix functions for constructing the Riemann-Hilbert problem,

P+(x, t2n;λ) = ([µ1]1, [µ2]2)(x, t2n;λ) = µ1A1 + µ2A2, (3.1)

P−(x, t2n;λ) = ([µ−11 ]1, [µ
−1
2 ]2)

T (x, t2n;λ) = A1µ1 + A2µ2, (3.2)

where A1 =

(
1 0
0 0

)
, A2 =

(
0 0
0 1

)
, it is easy to see that

{
P+(x, t2n;λ)→ I,

P−(x, t2n;λ)→ I,
as λ→∞.

On the basis of the preparatory knowledge above, we can propose the Riemann-Hilbert
problem:

1. P+ is analytic in {Imλ2 < 0}, P− is analytic in {Imλ2 > 0},

2. P−(x, t2n;λ)P+(x, t2n;λ) = G(x, t2n;λ),

3. P±(x, t2n;λ)→ I, as λ→ ∞,

where the jump matrixG(x, t2n;λ) = e
i
2
λ2σx+ i

2
λ2nσt2n

(
1 h12
s21 1

)
e−

i
2
λ2σx− i

2
λ2nσt2n , andH(λ) =(

h11 h12
h21 h22

)
= S−1(λ), h11s11 + h12s21=1. This is the associated matrix RHp, which is built

for the derivative nonlinear Schrödinger hierarchy.

4 N-soliton solutions for the DNLS hierarchy

In this section, we construct N -soliton solutions for the derivative nonlinear Schrödinger
hierarchy by the Riemann-Hilbert method. According to the definition of P± and the scattering
relationship (2.10), we have{

det(P+) = det(µ1A1 + µ2A2) = s11(λ),

det(P−) = det(A1µ
−1
1 + A2µ

−1
2 ) = h11(λ),

(4.1)

which shows that the zeros of det(P+), det(P−) are the same as s11, h11 respectively. Because
of the symmetry of anti-Hermitian matrix U and the relation µH1(2)(λ

∗) = µ−11(2), where the

superscript H represents conjugate transpose. One can obtain (P+)H(λ∗) = P−(λ), SH(λ∗) =
S−1(λ) from the equation (2.12), it implies that

hH11(λ
∗) = s11(λ) (4.2)

and each zero ±λ∗k of h11 corresponds to each zero ±λk of s11.
Assuming there exist n simple zeros {λk}1≤k≤n of det(P+) in {Imλ2 < 0} and n simple

zeros {λk}1≤k≤n of det(P−) in {Imλ2 > 0}, then,

λ∗k = λk, 1 ≤ k ≤ n. (4.3)
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Let φk, φ
∗
k are nonzero column vector, row vector and they satisfy the following liner equations

respectively: {
P+(λk)φk(λk) = 0,

φ∗k(λ
∗
k)P

−(λ∗k) = 0.
(4.4)

Comparing with the formulas above, we may get

φ∗k = φHk , 1 ≤ k ≤ n. (4.5)

From the Lax equation (2.2) and (4.4), φk, φ
∗
k can be expressed as{

φk = e
i
2
λ2kσx+

i
2
λ2nk σt2nφk,0, 1 ≤ k ≤ n,

φ∗k = φHk,0e
− i

2
(λ∗k)

2σx− i
2
(λ∗k)

2nσt2n , 1 ≤ k ≤ n,
(4.6)

where φk,0 is two-dimension constant column vector. In order to present soliton solutions
explicitly, the scatting date must be satisfied the condition s21 = 0. Therefore, the solutions to
the Riemann-Hilbert problem are explicitly given by

P+(λ) = I −
N∑

k,j=1

φkφ
∗
j (M

−1)kj

λ−λ∗j
,

P−(λ) = I +
N∑

k,j=1

φkφ
∗
j (M

−1)kj

λ−λ∗k
,

(4.7)

where the n× n matrix M is defined by

Mkj =
φ∗kφj
λj − λ∗k

, 1 ≤ k, j ≤ n. (4.8)

The asymptotic expansion of P+(λ) can expressed as

P+(λ) = I + λ−1P+
1 + λ−2P+

2 +O(λ−3), λ→∞. (4.9)

And substitute asymptotic expansion (4.9) into the first equation of (2.6), we get

− i
2

[σ, P+
1 ] = P, (4.10)

then, q(x, t2n), r(x, t2n) can be expressed as{
q(x, t2n) = −i(P+

1 )12,

r(x, t2n) = −i(P+
1 )21,

(4.11)

where (P+
1 )12 is the (1, 2)−element of the matrix P+

1 , (P+
1 )21 is the (2, 1)−element of the matrix

P+
1 . From the equation (4.7), thus, we obtain

P+
1 = −

N∑
k=1

N∑
j=1

φkφ
∗
j(M

−1)kj. (4.12)
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As a result, the N−soliton solutions to the derivative nonlinear Schrödinger hierarchy (2.2) are
read by

q(x, t2n) = −i
N∑
k=1

N∑
j=1

αkβ
∗
j e
ξ∗j−ξk(M−1)kj, (4.13)

where mkj =
αkα

∗
ke

−ξj−ξ
∗
k+βkβ

∗
ke
ξj+ξ

∗
k

λj−λ∗k
and ξk = i

2
λ2kx + i

2
λ2nk t2n, φk,0 = (αk, βk)

T , 1 ≤ k ≤ N . In

particular, assuming λ1 = 1 + i
2
, α1 = β1 = 1, then,

q(x, t2n) = 2β∗1e
ξ∗1−ξ1sech(ξ∗1 + ξ1). (4.14)

5 Conclusion and Discussion

In this paper, the method of constructing N -soliton solutions to the derivative nonlinear
Schrödinger hierarchy is Riemann-Hilbert method. In fact, scholars have done a lot of research
on the DNLS equation via other approaches to the soliton solutions, such as the Hirota direct
method, the Wronskian technique, the Darboux transformation. But we focus on the soliton
solutions for the DNLS hierarchy in this paper, and provide a new way to solve the integrable
hierarchy in integrable systems. At the same time, the mathematical structure and physical
properties of the DNLS hierarchy are also need to study.

References

[1] Fordy, A. P., Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces.
Journal of Physics A: Mathematical and General, (1984), 17:1235-1245.

[2] Fan, E. G., Integrable systems of derivative nonlinear Schrdinger type and their multi-
Hamiltonian structure. Journal of Physics A: Mathematical and General, (2001), 34:513-
519.

[3] Wen, L. L., Zhang, H. Q., Darboux transformation and soliton solutions of the (2+1)-
dimensional derivative nonlinear Schrdinger hierarchy. Nonlinear Dynamics, (2016),
84:863-873.

[4] Zhang, J. B., Gongye, Y. and Ma, W. X., A τ−symmetry algebra of the generalized
derivative nonlinear Schrödinger soliton hierarchy with an arbitrary parameter. Symmetry,
(2018), 10:535.

[5] Fokas, A. S., On a class of physically important integrable equations. Physica D, (1995),
87:145-150.

[6] Fokas, A. S., A unified transform method for solving linear and certain nonlinear PDEs.
Proceedings of the Royal Society A Mathematical Physical, (1997), 453:1411-1443.

[7] Deift, P., Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems.
The Annals of Mathematics, (1993), 137:245-338.

6



[8] Fokas, A. S., Its, A. R. and Sung, L. Y., The nonlinear Schrödinger equation on the
Half-Line. Nonlinearity, (2005), 18:1771-1822.

[9] Its, A., Shepelsky, D., Initial boundary value problem for the focusing NLS equation
with Robin boundary condition: half-line approach. Proceedings of the Royal Society A
Mathematical Physical, (2012), 469:2149.

[10] Fokas, A. S., Himonas, A. A. and Mantzavinos, D., The Korteweg-de Vries equation on
the half-line. Nonlinearity, (2016), 29:489-527.

[11] Monvel, A. B., Kotlyarov, V., Characteristic properties of the scattering data for the
mKdV equation on the half-line. Communications in Mathematical Physics, (2005),
253:51-79.

[12] Lenells, J., An integrable generalization of the sine-Gordon equation on the half-line. Ima
Journal of Applied Mathematics, (2011), 4:554-572.

[13] Lenells, J., The nonlinear steepest descent method: asymptotics for initial-boundary value
problems. Siam Journal on Mathematical Analysis, (2016), 48:2076-2188.

[14] Xu, J., Fan, E. G., Long-time asymptotics for the Fokas-Lenells equation with decay-
ing initial value problem: Without solitons. Journal of Differential Equations, (2015),
259:1098-1148.

[15] Xu, J., Fan, E. G., The three-wave equation on the half-line. Physics Letters A, (2014),
378:26-33.

[16] Xu, J., Fan, E. G., Initial-Boundary value problem for integrable nonlinear evolution
equation with 3×3 lax pairs on the interval. Studies in Applied Mathematics, (2016),
136:321-354.

[17] Hu, B. B., Xia, T. C. and Ma, W. X., The Riemann-Hilbert approach to Initial-Boundary
value problems for integrable coherently coupled nonlinear Schrödinger systems on the
half-line. East Asian Journal on Applied Mathematics, (2018), 8:531-548.

[18] Hu, B. B., Xia, T. C. and Zhang, N., Initial-Boundary value problems for the coupled
higher-order nonlinear Schrodinger equations on the half-line. International Journal of
Nonlinear Sciences and Numerical Simulation, (2018), 19:83-92.

[19] Hu, B. B., Xia, T. C. and Ma, W. X., Riemann-Hilbert approach for an initial-boundary
value problem of the two-component modified Korteweg-de Vries equation on the half-line.
Applied Mathematics and Computation, (2018), 332:148-159.

[20] Zhang, N., Xia, T. C. and Fan, E. G., A Riemann-Hilbert approach to the Chen-Lee-Liu
equation on the half-line. Acta Mathematicae Applicatae Sinica, (2018), 34:493-515.

[21] Wang, D. S., Wang, X. L., Long-time asymptotics and the bright N-soliton solutions of
the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Analysis-Real
World Applications, (2018), 41:334-361.

7



[22] Wang, D. S., Yin, S. J., Tian, Y. and Liu, Y. F., Integrability and bright soliton solu-
tions to the coupled nonlinear Schrodinger equation with higher-order effects. Applied
Mathematics and Computation, (2014), 229:296-309.

[23] Zhang, N., Xia, T. C. and Jin, Q. Y., N-Fold Darboux transformation of the discrete
Ragnisco-Tu system. Advances in Difference Equations, (2018), 2018:302.

[24] Zhang, Q. Y., Zhang, Y., Ye, R., Exact solutions of nonlocal Fokas-Lenells equation.
Applied Mathematics Letters, (2019), 98:336-343.

[25] Kang, Z. Z., Xia, T. C., Construction of Multi-soliton Solutions of the N-Coupled Hirota
Equations in an Optical Fiber. Chinese Physics Letters, (2019), 36:110201.

[26] Ma, W. X., Application of the Riemann-Hilbert approach to the multicomponent AKNS
integrable hierarchies. Nonlinear Analysis Real World Applications, (2019), 47:1-17.

8


