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Abstract. Massless field equations are fundamental in particle physics. In Clifford analysis, the

Euclidean version of these equations has been dealt with but it is not clear, even in dimension 4,

what should be the right analogue of massless field equations for fields with values in a general
irreducible Spin(4)-module. The main aim of the paper is to explain that a good possibility is to

take the so-called generalized Cauchy-Riemann equations proposed a long time ago by E. Stein

and G. Weiss. For this choice of the equations, we show that their polynomial solutions form
different irreducible Spin(4)-modules. This is an important step in developing the corrresponding

function theory.

1. Introduction

In particle physics, the field equations in the Minkowski space R1,3 for massless particles of lower
spins are fundamental, namely, the wave equation for spin 0, the Dirac equation for spin 1

2 , the

Maxwell equations for spin 1, the Rarita-Schwinger equation for spin 3
2 and the equation of the

linearized gravity for spin 2. For any spin, R. Penrose initiated a systematic study of solutions of
massless field equations in his twistor program, see [13, 17, 18].

In the framework of Clifford analysis, the Euclidean version of massless field equations has been
studied first in dimension 4 and then in a general dimension, see [19, 20]. The first difficulty lies
in the fact that it is not clear, even in dimension 4, what should be the set of equations defining
the massless fields with values in a general irreducible Spin(4)-module.

Classical Clifford analysis is a function theory for spinor valued solutions of the Dirac equation in
the Euclidean space RN . Let e1, . . . , eN be the standard basis of RN and CN be the complex Clifford
algebra generated by the vectors e1, . . . , eN satisfying the relations eiej + ejei = −2δij . Then the
spinor space SN is a unique irreducible CN -module. As Spin(N)-module, in even dimensions N ,
the spinor space SN decomposes as SN = S+

N ⊕ S−N into two different basic spinor representations

S±N but, in odd dimensions N , SN remains irreducible and we shall write SN = S+
N = S−N . For a

smooth function f : RN → S±N , we define the Dirac operator as

∂f(x) =

N∑
j=1

ej
∂f

∂xj
(x)

where x = x1e1 + · · ·+ xNeN ∈ RN .
The spinor spaces S±N are the simplest representations of the group Spin(N). So a natural

question arises what the best analogue of Clifford analysis is for higher spin representations. In
other words, for a general irreducible Spin(N)-module V , we want to find the best analogue of
the Dirac equation for V -valued functions defined in RN . There are more possibilities. First let
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us remark that the Dirac operator ∂ is elliptic and it is not only rotationally invariant but even
conformally invariant. For many such V , there is a unique (up to a multiple) conformally invariant
elliptic first order differential operator ∂V which is called a higher spin Dirac operator, see [5]. So
the first possibility is to develop function theory for higher spin Dirac operators, see e.g. [14]. The
second possibility is to take the generalized Cauchy-Riemann equations (GCR) suggested by E.
Stein and G. Weiss in [21]. In this paper, we consider the second possibility.

Now we recall (GCR) for a given irreducible Spin(N)-module V . First consider an irreducible
decomposition of Spin(N)-module

V ⊗ CN = F0 ⊕ F1 ⊕ · · · ⊕ Fr
where F0 = V � CN is the Cartan product of V and the defining representation CN . Let πj be
the projection of V ⊗ CN onto Fj . For each j = 0, . . . , r, define Stein-Weiss gradient

Dj(f) = πj(∇(f)), f ∈ C∞(RN , V )

where ∇(f) is the gradient of f . Then it is well-known that each Stein-Weiss gradient

Dj : C∞(RN , V )→ C∞(RN , Fj)

is rotationally invariant, even conformally invariant for a unique conformal weight wj . For the given
irreducible Spin(N)-module V , the generalized Cauchy-Riemann equations (GCR) are defined as

(1) D1(f) = 0, . . . , Dr(f) = 0 for f ∈ C∞(RN , V ).

Example 1. For V = S±N , we have S±N ⊗ CN = (S±N � CN ) ⊕ S∓N , D1 = ∂ is the Dirac operator
and (GCR) is the Dirac equation ∂f = 0.

In general, higher spin Dirac operators are special examples of Stein-Weiss gradients.

Example 2. Let Λs := Λs(CN ) denote the s-th antisymmetric power of CN . For V = Λs with
s < N/2, we have

Λs ⊗ CN = (Λs � CN )⊕ Λs+1 ⊕ Λs−1,

D1 = d and D2 = d∗ is the de-Rham differential and codifferential, respectively, and (GCR) is the
Hodge-de Rham system df = 0, d∗f = 0.

Example 3. In dimension 4, we give an explicit description of all Stein-Weiss gradients for a
general irreducible Spin(4)-module V in (15) below. We suggest that (GCR) is the best analogue
of massless field equations in R4 for V -valued fields, see (16).

In [21], it is shown that each f ∈ C∞(RN , V ) satisfying (GCR) have the following properties: (i)
f is harmonic and (ii) |f |p is subharmonic for p ≥ N−2

N−1 . The property (ii) enables to develop a

theory of Hardy spaces for solutions of (GCR). By (i), in particular, each such a function f can be
uniquely decomposed into homogeneous polynomial solutions of (GCR). Indeed, let us denote by
Mm(V ) the space of polynomials P : RN → V of degree m satisfying (GCR). Then we have

(2) f =

∞∑
m=0

fm

for some uniquely determined fm ∈ Mm(V ) where the sum converges locally uniformly on RN .
For V = S±N or V = Λs(CN ), it is well-known that the spaces Mm(V ) form different irreducible
Spin(N)-modules. Therefore, in these cases, the decomposition (2) is the best possible with respect
to the underlying symmetry given by Spin(N). For a general irreducible Spin(N)-module V , we
prove this result in dimension N = 4, see Theorem 2 below, and we believe that this is true in
any dimension N . Actually, an analogous result does not hold for homogeneous solutions of higher
spin Dirac operators, see [14].
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To show irreducibility of the modules Mm(V ) is a first step in developing the corresponding
function theory. Next steps are, for example, to describe the Howe duality, the Fischer decom-
position and to construct Gelfand-Tsetlin bases of homogeneous solutions. This is well-known,
in any dimension N , for the Dirac operator (see [1, 7, 16]) and the Hodge-de-Rham systems (see
[10, 11, 12]). In dimension 4, the Fischer decomposition for massless fields of spin 1 is given in
[2, 3]. In other cases, these results are unknown and should be investigated.

The content of the paper is the following. In Section 2, we recall, in dimension 4, the decompo-
sition of scalar valued polynomials into spherical harmonics. In Theorem 1, we give explicit bases
for homogeneous spherical harmonics. In Section 3, for a general irreducible Spin(4)-module V , we
derive the generalized Cauchy-Riemann equations (GCR). In Section 4, we find explicit formulæ of
highest weight vectors for homogeneous V -valued spherical harmonics. Using these highest weight
vectors, we prove in Section 5 the main result of the paper. Namely, we show in Theorem 2 that
homogeneous solutions of (GCR) form different irreducible Spin(4)-modules. Finally, in Theorem
3, we give explicit bases for the spaces of homogeneous solutions.

2. Harmonic case

First we consider the space P(R4) of polynomials F : R4 → C. On P(R4), we have a natural
action of Spin(4) ' SU(2)⊗SU(2) and also its complexification Spin(4,C) ' SL(2,C)×SL(2,C).
As usual, we identify the Euclidean space R4 first with the algebra H of quaternions and then with
a real subspace of complex 2× 2 matrices C2×2 ' C4 in the following way

(3) x = x0 + x1i + x2j + x3k ∈ H 7→ z =

(
z00′ z01′

z10′ z11′

)
=

(
x0 + ix3 x1 + ix2

−x1 + ix2 x0 − ix3

)
Thus we can view each polynomial F ∈ P(R4) as a polynomial in the variables zAA′ and extend it
uniquely to z = (zAA′) ∈ C4. Then, on P(R4) we consider the action of G := SL(2,C)× SL(2,C)
given by

[ρ(g, g′)P ](z) = P (gtzg′), P ∈ P(R4), z ∈ C4 and g, g′ ∈ SL(2,C).

The derived action of g := sl(2,C)× sl(2,C) on the polynomials P(R4) is then given by

(4) X = z0A′∇1A′ , Y = z1A′∇0A′ , H = z0A′∇0A′ − z1A′∇1A′ ,

(5) X ′ = zA0′∇A1′ , Y ′ = zA1′∇A0′ , H ′ = zA0′∇A0′ − zA1′∇A1′ .

Here A ∈ {0, 1} and A′ ∈ {0′, 1′}, we denote ∇AA′ = ∂
∂zAA′

and use the Einstein summation

convention. Then we have

[X,Y ] = 2H, [H,X] = 2X, [H,Y ] = −2Y

and the same commutation relations are satisfied for X ′, Y ′, H ′. It is easy to see that the Laplace
operator

(6) ∆ := det

(
∇00′ ∇01′

∇10′ ∇11′

)
= ∇00′∇11′ −∇10′∇01′

and the multiplication with

r2 := det

(
z00′ z01′

z10′ z11′

)
= z00′z11′ − z10′z01′

are invariant operators acting on the polynomials P(R4). By (3), in the real coordinates, we have

r2 = x2
0 + x2

1 + x2
2 + x2

3, ∆ =
1

4
(∂2
x0

+ ∂2
x1

+ ∂2
x2

+ ∂2
x3

).
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It is well-known that, under the action of G, the module P(R4) has an irreducible decomposition

P(R4) =

+∞⊕
m,j=0

r2jHm

where Hm = Ker(∆)∩Pm(R4) is the space of m-homogeneous spherical harmonics. In particular,
the space Hm forms an irreducible G-modul. Actually, it is easy to find an explicit basis of Hm.

Theorem 1. (i) The G-module Hm has the highest weight vector zm00′/m! and it has a basis
consisting of the polynomials

fr,sm (z) =
1

r!s!
Y r(Y ′)s

(
zm00′

m!

)
, r, s = 0, . . . ,m.

Here Y and Y ′ are the lowering operators given as in (4) and (5).

(ii) Moreover, we have

(7) fr,sm (z) =
zm−s−r00′

(m− s− r)!
zr10′

r!

zs01′

s!
2F1(−s,−r,m− s− r + 1;α)

with α = z11′z00′
z01′z10′

.

(iii) We can express the basis in another form. Indeed, Hm has a basis consisting of (m + 1)2

functions

(8) z(A1A′1
zA2A′2

· . . . · zAmA′m),

where A1, . . . , Am is a non-decreasing sequence of {0, 1}, A′1, . . . , A′m is a non-decreasing sequence
of {0′, 1′} and (· · · ) denotes symmetrization of unprimed indices. The basis (8) is the same as the
basis (7) up to a normalization.

Remark 1. Obviously, by permuting the primed indices and the unprimed ones in (8), we get the
same basis element.

Proof. (i) Obvious. (ii) Of course, we easily get

fr,0m (z) =
zm−r00′

(m− r)!
zr10′

r!
and fr,sm =

1

s!
(Y ′)sfr,0m .

Moreover, we have

1

s!
(Y ′)s =

s∑
v=0

zv11′

v!

z
(s−v)
01′

(s− v)!
(∇00′)s−v(∇10′)v

and hence we obtain

fr,sm (z) =

min(s,r)∑
v=0

zv11′

v!

z
(s−v)
01′

(s− v)!

z
(r−v)
10′

(r − v)!

z
(m+v−r−s)
00′

(m+ v − r − s)!

=
zm−s−r00′

(m− s− r)!
zr10′

r!

zs01′

s!

+∞∑
v=0

αv(−s)v(−r)v
v!(m− s− r + 1)v

with α = z11′z00′
z01′z10′

and (a)v being the Pochhammer symbol.

(iii) By (i), we know that Y r(Y ′)szm00′ , r, s = 0, . . . ,m, constitute a basis of Hm. Note that

(9) Y ′zA0′ = zA1′ , Y ′zA1′ = 0, Y z0A′ = z1A′ , Y z1A′ = 0,
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by expressions of Y and Y ′ in (4) and (5), and so (Y ′)szm00′ is zm−s00′ zs01′ up to a constant. Then
Y r(Y ′)szm00′ is equal to

(10)
∑

A1+...+Am=r

zA10′ · · · zAm−s0′ · zAm−s+11′ · · · zAm1′

up to a constant. This can be proved by induction. Indeed, by (9), we see that Y acting on (10)
gives us the similar summation over A1 + . . .+Am = r+1 multiplied by m−r, which is the number
of 0 appearing in A1, . . . , Am in (10). Now (8) is just another form of (10) up to a constant. �

3. Higher spin case

Now we study polynomials in dimension 4 which take values in a given (complex and finite
dimensional) irreducible G-representation V . So we are interested in the G-module P(R4, V ) :=
P(R4)⊗ V .

Spinorial notation. Before working with G-representations recall some simple facts on repre-
sentations of SL(2,C). Denote by S := C2 the defining representation of SL(2,C). Then an
irreducible SL(2,C)-representation with the highest weight k ∈ N0 is equivalent to the symmetric

power
⊙k S. The dual (contragradient) module S∗ = C2 is isomorphic to S. The isomorphism

φ : S→ S∗ is given by φ((s0, s1)) := (s0, s1) with s0 = −s1 and s1 = s0, which can be written as

(11) sA = εABsB , sB = sAεAB with εAB = εAB =

(
0 1
−1 0

)
In what follows, using ε, we shall raise and lower indices in general.

We realize
⊙k S as the module Pk(S∗) ⊂ C[s0, s1] of k-homogeneous polynomials with the action

of sl(2,C) given by

(12) X = s0∂
1, Y = s1∂

0, H = s0∂
0 − s1∂

1.

Here we denote ∂A = ∂
∂sA

.

In more details, an element of
⊙k C2 is given by a 2k-tuple (FA1...Ak) ∈

⊗k C2 such that
A1, . . . , Ak ∈ {0, 1}, and FA1...Ak is invariant under the permutations of superscripts, i.e.

FA1...Ak = FAσ(1)...Aσ(k) ,

for any σ ∈ Sk, the group of permutations of k letters. The corresponding k-homogeneous poly-
nomial is given by

F = FA1...AksA1
. . . sAk = k!

k∑
a=0

F 0a1k−a
sa0
a!

sk−a1

(k − a)!
,

where 0a = 0 . . . 0︸ ︷︷ ︸
a

. In particular, we have S ' {F (s) = aAsA|a0, a1 ∈ C}.

It is easy to see and well-known that S⊗
⊙k S '

⊙k+1 S⊕
⊙k−1 S. To describe the projections π±

of S⊗
⊙k S onto

⊙k±1 S in our polynomial language, note that both the operator of multiplication
by s = aAsA and the differential operator aA∂A are G-equivariant, hence the projections π± are
given by

(13) π+(s⊗ F ) := sF, π−(s⊗ F ) := aA∂A(F ).

with ∂A = ∂BεBA.
Now it is easy to describe irreducible representations of G = SL(2,C) × SL(2,C). Indeed, any

irreducible G-representation is of the form

Sk,l :=

k⊙
S⊗

l⊙
S′
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for a unique label (k, l) ∈ N2
0 where S and S′ are the defining representations of the first and second

copy of SL(2,C) in G, respectively. For S′ we get the formulas analogous to (11), (12) and (13) if
we replace all unprimed indices A,B, 0, 1 with the corresponding primed ones A′, B′, 0′, 1′.

Remark 2. Of course, we identify the spinor spaces S+
4 and S−4 with S and S′, respectively.

Finally, we realize the G-module P(R4,Sk,l) as the module of scalar-valued polynomials in the
variables zAA′ , sB , sB′ which are k-homogeneous in the variables sB and l-homogeneous in the
variables sB′ .

Stein-Weiss construction. Next we construct four G-invariant first order differential operators
on C∞(R4,Sk,l) following E. Stein and G. Weiss [21]. To do this, let us first decompose the tensor
product C4 ⊗ Sk,l under the action of the group G. Using the fact that C4 ' S⊗ S′, we get

C4 ⊗ Sk,l ' (S⊗
k⊙

S)⊗ (S′ ⊗
l⊙

S′) ' Sk+1,l+1 ⊕ Sk+1,l−1 ⊕ Sk−1,l+1 ⊕ Sk−1,l−1

where Sc,d = 0 unless c, d ∈ N0. We denote by π±± (4 possibilities) the projections of C4 ⊗ Sk,l
onto Sk±1,l±1. For F ∈ C∞(R4,Sk,l), we have that

∇F :=

(
∇00′F ∇01′F

∇10′F ∇11′F

)
∈ C∞(R4,C4 ⊗ Sk,l),

and we define

(14) D±±F := π±±(∇F ).

It is well-known that D±± are G-invariant first order differential operators on C∞(R4,Sk,l) and,
using (13) and the corresponding primed analogue, we have that

D++ = sAsA′∇AA
′
,

D+− = sA∂A′∇AA
′

= sA det

(
∂0′ ∇A0′

∂1′ ∇A1′

)
,

D−+ = sA′∂A∇AA
′

= sA′ det

(
∂0 ∇0A′

∂1 ∇1A′

)
,

D−− = ∂A∂A′∇AA
′
.

(15)

Standard notation. It is possible to translate the Stein-Weiss gradients D±± into the standard
spinorial notation (see [18]) as follows. Let F ∈ P(R4,Sk,l) and

F = FA1...AkB
′
1...B

′
lsA1

. . . sAksB′1 . . . sB′l .

Then we have (up to a non-zero multiple)

(D+−F )A1...Ak+1B
′
1...B

′
l−1 = ∇(A1

B′l
FA2...Ak+1)B′1...B

′
l

where (· · · ) denotes the symmetrization in the unprimed indices. Indeed, it is easy to see that

(D+−F ) = −sA1∂
A′∇A1

A′

(
FA2...Ak+1B

′
1...B

′
lsA2 . . . sAk+1

sB′1 . . . sB′l

)
=

= −(k + 1)

l∑
i=1

δA
′

B′i
∇(A1

A′ F
A2...Ak+1)B′1...B

′
lsA1

. . . sAk+1
sB′1 . . . ŝB′i . . . sB′l

= −(k + 1)l ∇(A1

B′l
FA2...Ak+1)B′1...B

′
lsA1

. . . sAk+1
sB′1 . . . sB′l−1

.

where ŝB′i denotes the omission of the factor sB′i . Similarly, we have (up to non-zero multiples)

(D−+F )A1...Ak−1B
′
1...B

′
l+1 = ∇(B′1

Ak
FB

′
2...B

′
l+1)A1...Ak
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where (· · · ) denotes the symmetrization in the primed indices, and

(D−−F )A1...Ak−1B
′
1...B

′
l−1 = ∇AkB′lF

A1...AkB
′
1...B

′
l .

Generalized C-R equations. For Sk,l, the generalized Cauchy-Riemann equations (GCR) are
defined as

(16) D+−(f) = 0, D−+(f) = 0, D−−(f) = 0 for f ∈ C∞(R4,Sk,l).

Denote byMm(Sk,l) the space of polynomials F ∈ Pm(R4,Sk,l) satisfying (GCR). The main result
of the paper is that Mm(Sk,l) forms an irreducible G-module with the label (m + k,m + l), see
Theorem 2 below.

Remark 3. For l = 0 in (16), we get (GCR) D−+(f) = 0. This is the usual form of massless field
equation for spin k/2 particles, see [19]. Moreover, by the identification (3), the spin k/2 massless
field operator

D−+ : C∞(R4,Sk)→ C∞(R4,Sk−1 ⊗ S′)
can be viewed as the k-Cauchy-Fueter operator studied in [15, 22, 23], since the spin 1/2 massless
field operator is exactly Cauchy-Fueter operator. The k-Cauchy-Fueter operator can be defined over
the quaternionic space Hn and a function annihilated by it is called k-regular. See also [4, 6, 8, 9]
and references therein for Cauchy-Fueter operator of several quaternionic variables. By using
twistor method, all k-regular polynomials are found in [15]. But formulae of these polynomials are
complicated. Let us remark that Theorem 3 below gives us general form of all k-regular polynomials
on H.

4. Highest weight vectors

In this section, we find explicit formulæ of highest weight vectors for homogeneous Sk,l-valued
spherical harmonics. By (4), (5) and (12), the action of g = sl(2,C)× sl(2,C) on the polynomials
P(R4,Sk,l) is obviously given by

(17) X = z0A′∇1A′ + s0∂
1, Y = z1A′∇0A′ + s1∂

0, H = z0A′∇0A′ − z1A′∇1A′ + s0∂
0 − s1∂

1,

(18) X ′ = zA0′∇A1′+s0′∂
1′ , Y ′ = zA1′∇A0′+s1′∂

0′ , H ′ = zA0′∇A0′−zA1′∇A1′+s0′∂
0′−s1′∂

1′ .

Of course, the module P(R4,Sk,l) has a decomposition

P(R4,Sk,l) =

+∞⊕
m,j=0

r2jHm ⊗ Sk,l.

Because Mm(Sk,l) ⊂ Hm ⊗ Sk,l we are interested in the G-module Hm ⊗ Sk,l, which has an
irreducible decomposition:

Hm ⊗ Sk,l ∼= (m+ k,m+ l)⊕ (m+ k − 2,m+ l)⊕ . . .⊕ (|m− k|,m+ l)

⊕ (m+ k,m+ l − 2)⊕ (m+ k − 2,m+ l − 2)⊕ . . .⊕ (|m− k|,m+ l − 2)

...

⊕ (m+ k, |m− l|)⊕ (m+ k − 2, |m− l|)⊕ . . .⊕ (|m− k|, |m− l|).

(19)

Here we write its label instead of an irreducible G-module. Denote

D := det

(
z00′ s0

z10′ s1

)
, D′ := det

(
z00′ s0′

z01′ s1′

)
,

and

D := zBB
′
sBsB′ = z00′s1s1′ + z11′s0s0′ − z01′s1s0′ − z10′s0s1′ .
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Proposition 1. The highest weight vector of (m+k−2j,m+ l−2i) for j ≥ i in the decomposition
(19) can be written as

(20) ϕ =

min{i,m−j}∑
a=0

Caz
m−j−a
00′ (D′)aDj−i+aDi−ask−j0 sl−i0′

for some positive constants Ca > 0. The case j < i is similar by interchanging primed and
unprimed indices.

Proof. First let us remark that, by (iii) of Theorem 1, Hm ⊗ Sk,l is spanned by polynomials of the
form

(21) z(A1A′1
zA2A′2

· . . . · zAmA′m)sB1
· . . . · sBksB′1 · . . . · sB′l .

Note that i ≤ min{m, l}, j ≤ min{m, k}, and

ϕ =z(00′ · . . . · z00′ · zAm−j+10′ · · · zAm−i0′zAm−i+1A′m−i+1
· · · zAmA′m)

· sk−j0

j∏
t=1

sBk−j+ts
l−i
0′

i∏
t=1

sB′l−i+t ·
j∏
t=1

εBk−j+tAm−j+t
i∏
t=1

εB
′
l−i+tA

′
m−i+t

(22)

is an element of Hm⊗Sk,l, since it is a linear combination of terms in (21) with A1 = · · · = Am−j =
0, A′1 = · · · = A′m−i = 0′. By raising indices and then taking symmetrization, we see that it can
be written as

ϕ =z(11′ · . . . · zBk−j+11′ · · · zBk−i1
′
zBk−i+1B

′
l−i+1 . . . zBkB

′
l)sk−j0

j∏
t=1

sBk−j+ts
l−i
0′

i∏
t=1

sB′l−i+t .(23)

up to a constant (−1)i+j .
Denote Et = Bk−t+1 for t = 1, . . . , j, and Et = 1 for t = j + 1, . . . ,m. Then ϕ can be written as

ϕ =z(Em1′ · · · zEj1
′
· · · zEi+11′zEiB

′
l−i+1 . . . zE1B

′
l)sk−j0

j∏
t=1

sEts
l−i
0′

i∏
t=1

sB′l−i+t

=
1

m!

∑
σ∈Sm

zEσ(m)1
′
sEσ(m)

· · · zEσ(j)1
′
sEσ(j) · · · z

Eσ(i)B
′
l−i+1sEσ(i) . . . z

Eσ(1)B
′
lsEσ(1)s

l−i
0′

i∏
t=1

sB′l−t+1
,

(24)

since

sk−j0

j∏
t=1

sEt =

m∏
t=1

sEσ(t) .

For a fixed σ ∈ Sm, if we denote by a the number of t ∈ {1, . . . , i} such that σ(t) > j, then there
are exactly a indices in Eσ(i), . . . , Eσ(1) fixed to be 1, a = 0, . . . ,min{i,m − j}. So there remains
m− j − a indices in Eσ(m), . . . , Eσ(i+1) fixed to be 1. If Eσ(t) for t ∈ {1, . . . , i} is fixed to be 1, i.e.
σ(t) ∈ {m, . . . , i+ 1}, then

zEσ(t)B
′
l−t+1sB′l−t+1

= z1B′l−t+1sB′l−t+1
= D′,

by D′ = z1B′sB′ = z00′s1′ − z01′s0′ , whose number is a. If Eσ(t) for t ∈ {1, . . . , i} is not fixed to
be 1, then

zEσ(t)B
′
l−t+1sEσ(t)sB′l−t+1

= D,
whose number is i− a.

If Eσ(t) for t ∈ {m, . . . , i+ 1} is not fixed to be 1, i.e. σ(t) ∈ {1, . . . , j}, then

zEσ(t)1
′
sEσ(t) = D,
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by D = zB1′sB = z00′s1 − z10′s0, whose number is m − i − (m − j − a) = j − i + a. If Eσ(t) for

t ∈ {m, . . . , i + 1} is fixed to be 1, then zEσ(t)1
′

= z11′ , whose number is m − j − a. So the term
for fixed σ in the summation (24) is the product

(25) zm−j−a00′ (D′)aDj−i+aDi−ask−j0 sl−i0′ .

Thus ϕ can be written in the form (20) with Ca to be the number of this term (25) appearing in
the sum (24) divided by m!.

To check that the vector ϕ in (20) is a highest weight vector of a correct weight, note that the
weight of z00′ is (1, 1), the weight of z10′ is (−1, 1), the weight of z01′ is (1,−1), the weight of z11′ is
(−1,−1), the weight of s0 is (1, 0), the weight of s1 is (−1, 0) the weight of s0′ is (0, 1), the weight
of s1′ is (0,−1), the weight of D is (0, 1), the weight of D′ is (1, 0) and the weight of D is (0, 0). It
shows that the weight of the vector (25) is indeed (m+ k − 2j,m+ l − 2i).

It is immediately visible that z00′ , D,D
′,D, s0, s

′
0 are killed both by X and X ′ given in (17) and

(18), hence it is true also for any product of such factors. So is for ϕ and the result follows. �

5. Homogeneous solutions

Now we are ready to prove the main result of the paper.

Theorem 2. LetMm(Sk,l) denote the space of polynomials F ∈ Pm(R4,Sk,l) satisfying (GCR), see
(16). ThenMm(Sk,l) forms an irreducible SL(2,C)×SL(2,C)-module with the label (m+k,m+l),

Proof. The tensor product of the space Hm of harmonic polynomials of order m and the space
Sk,l decomposes into irreducible components as described in (19). We are going to prove that
the highest weight vector of any component in the decomposition is killed by all three operators
D+−,D−+,D−− if and only if it is the Cartan component (m+ k,m+ l).

We want to show that if either i or j is positive, then the highest weight vector of the summand
(m + k − 2j,m + l − 2i) is not in Mm(Sk,l). In the following, we suppose that j ≥ i . The case
j < i follows simply by interchanging primed and unprimed indices.

It follows from the expression (24) that ϕ, the highest weight vector of the summand (m+ k −
2j,m + l − 2i), is homogeneous of degree k in variables s0, s1, and homogeneous of degree l in
variables s0′ , s1′ .

Case i: Let min{i,m− j} ≥ 1. Recall that

D′ = z1B′sB′ = z00′s1′ − z01′s0′ , D = zB1′sB = z00′s1 − z10′s0.

Now consider terms containing the factor sk0s
l
0′ of ϕ in (20) of Proposition 20. Such a term must

come from products of −z01′s0′ in D′, −z10′s0 in D and z11′s0s0′ in D, while a term containing
the factor sk0s

l−1
0′ s1′ in (20) must come from such a product with only one −z01′s0′ in D′ replaced

by z00′s1′ , or z11′s0s0′ in D replaced by −z10′s0s1′ . So we have

ϕ =

min{i,m−j}∑
a=0

Caz
m−j−a
00′ (−z01′)

a(−z10′)
j−i+azi−a11′ s

k
0s
l
0′

+


min{i,m−j}∑

a=0

Caz
m−j−a+1
00′ a(−z01′)

a−1(−z10′)
j−i+azi−a11′

+

min{i−1,m−j}∑
a=0

Caz
m−j−a
00′ (−z01′)

a(−z10′)
j−i+a+1(i− a)zi−a−1

11′

 sk0s
l−1
0′ s1′ + · · ·

where · · · is the summation of terms involving

(26) sA0 s
B
1 s

C
0′s

D
1′ (A+B = k,C +D = l) with A < k or D ≥ 2 if A = k,
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and the term involving (z11′)
i−2 does not appear if i = 1. By mod z2

01′ , it can be simplified to be

ϕ =
{
C0(z00′)

m−j(−z10′)
j−i(z11′)

i + C1(z00′)
m−j−1(−z01′)(−z10′)

j−i+1(z11′)
i−1
}
sk0s

l
0′

+
{

(C1 + iC0)(z00′)
m−j(−z10′)

j−i+1(z11′)
i−1

+[2C2 + (i− 1)C1](z00′)
m−j−1(−z01′)(−z10′)

j−i+2(z11′)
i−2
}
sk0s

l−1
0′ s1′ + · · · , mod z2

01′ .

It is obvious that sk+1
0 sl−1

0′ does not appear after the action of

(27) −D+− = s0∇00′∂1′ + s1∇10′∂1′ − s0∇01′∂0′ − s1∇11′∂0′

on terms in (26). Moreover, only the derivative −s0∇01′∇0′ in D+− acting on the sk0s
l
0′ term of ϕ

produces a sk+1
0 sl−1

0′ term, and only the derivative s0∇00′∇1′ in D+− acting on the sk0s
l−1
0′ s1′ term

produces a sk+1
0 sl−1

0′ term. So we get

−D+−ϕ = [lC1+(C1+iC0)(m−j)](z00′)
m−j−1(−z10′)

j−i+1(z11′)
i−1sk+1

0 sl−1
0′ +· · · 6= 0, mod z01′

Thus (m+ k − 2j,m+ l − 2i) ∩Mm(Sk,l) = {0} in this case.

Case ii1: Let m − j = 0 and m − i > 0. In this case we must have j 6= 0 and k ≥ m. Then
ϕ = Dm−iDisk−m0 sl−i0′ , and

ϕ =(−z10′)
m−i(z11′)

isk0s
l
0′

+
[
(m− i)z00′(−z10′)

m−i−1(z11′)
i + i(−z10′)

m−i(−z10′)(z11′)
i−1
]
sk−1

0 s1s
l
0′ + · · · ,

where · · · is the summation of terms as in (26) with C < l or B ≥ 2 if C = l. Then apply

(28) −D−+ = s0′∇00′∂1 + s1′∇01′∂1 − s0′∇10′∂0 − s1′∇11′∂0.

to ϕ to get
−D−+ϕ = (k + 1)(m− i)(−z10′)

m−i−1(z11′)
i−1sk−1

0 sl+1
0′ + · · · 6= 0.

Thus (m+ k − 2j,m+ l − 2i) ∩Mm(Sk,l) = {0} in this case.

Case ii2: Let m−j = 0 and m−i = 0. In this case we must have k, l ≥ m. Then ϕ = Dmsk−m0′ sl−m0 ,
and

ϕ =(z11′)
msk0s

l
0′ +m(−z10′)(z11′)

m−1sk0s
l−1
0′ s1′ +m(−z01′)(z11′)

m−1sk−1
0 s1s

l
0′

+mz00′(z11′)
m−1sk−1

0 s1s
l−1
0′ s1′ + · · · ,

where · · · is the summation of terms involving sA0 s
B
1 s

C
0′s

D
1′ (A+B = k,C +D = l) with A ≤ k− 2

or C ≤ l − 2. Then apply

(29) D−− = ∇00′∂1∂1′ −∇01′∂1∂0′ −∇10′∂0∂1′ +∇11′∂0∂0′

to ϕ to get
D−−ϕ = [kl + k + l + 1]m(z11′)

m−1sk−1
0 sl−1

0′ + · · · 6= 0.

Thus (m+ k − 2j,m+ l − 2i) ∩Mm(Sk,l) = {0} in this case.

Case iii: Let m − j = i = 0. In this case, the module is (k −m,m + l) with the highest weight

vector ϕ = Dmsk−m0 sl0′ , and

ϕ =(−z10′)
msk0s

l
0′ +mz00′(−z10′)

m−1sk−1
0 s1s

l
0′ + · · ·

where · · · is the summation of terms involving sA0 s
B
1 s

l
0′ (A + B = k) with A ≤ k − 2. Then we

have
−D−+ϕ = m(k + 1)(−z10′)

m−1sk−1
0 sl+1

0′ + · · · 6= 0.

Thus (m+ k − 2j,m+ l − 2i) ∩Mm(Sk,l) = {0} in this case.
(m + k,m + l) has the highest weight vector zm00′s

k
0s
l
0′ , which is obviously killed by all three

operators D+−,D−+,D−− in (27)-(29). Theorem is proved. �
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Now we give explicit bases for homogeneous solutions of general massless field equations.

Theorem 3. (i) The irreducible G-module Mm(Sk,l) has a basis consisting of the polynomials

F r,sm (z) =
1

r!s!
Y r(Y ′)s

(
zm00′

m!

sk0
k!

sl0′

l!

)
where r = 0, . . . ,m+ k, s = 0, . . . ,m+ l and Y = z1A′∇0A′ + s1∂

0, Y ′ = zA1′∇A0′ + s1′∂
0′ are the

lowering operators given in (17) and (18).

(ii) Moreover, we have

F r,sm (z) =

min(r,k)∑
u=0

min(s,l)∑
v=0

fr−u,s−vm (z)
sk−u0

(k − u)!

su1
u!

sl−v0′

(l − v)!

sv1′

v!

Here fr,sm are the harmonic polynomials given in Theorem 1.

Proof. (i) This is obvious. In particular,

zm00′

m!

sk0
k!

sl0′

l!

is the highest weight vector of Mm(Sk,l).
(ii) Denote Ỹ = z1A′∇0A′ and Ỹ ′ = zA1′∇A0′ . Recall that Ỹ and Ỹ ′ are the lowering operators
from the harmonic case given in (4) and (5). Obviously, we have that

1

r!
Y r =

r∑
u=0

1

u!(r − u)!
Ỹ r−u(s1∂

0)u =

r∑
u=0

Ỹ r−u

(r − u)!

su1
u!

(∂0)u,

1

s!
(Y ′)s =

s∑
v=0

(Ỹ ′)s−v

(s− v)!

sv1′

v!
(∂0′)v.

Applying these expressions, we get easily

F r,sm (z) =

min(r,k)∑
u=0

min(s,l)∑
v=0

Ỹ r−u

(r − u)!

(Ỹ ′)s−v

(s− v)!

(
zm00′

m!

)
sk−u0

(k − u)!

su1
u!

sl−v0′

(l − v)!

sv1′

v!
.

To complete the proof we use (i) of Theorem 1. �
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