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Abstract

In this paper, an avian in
uenza model with saturation and psychological e�ect on heterogeneous

complex networks is proposed. Firstly, the basic reproduction number R0 is given through mathe-

matical analysis, which is a threshold to determine whether or not the disease spreads. Secondly,

the locally and globally asymptotical stability of the disease-free equilibrium point and the endemic

equilibrium point are investigated by using Lyapunov functions and Kirchho�'s matrix tree theo-

rem. If R0 < 1, the disease-free equilibrium is globally asymptotically stable and the disease will

die out. If R0 > 1, the endemic equilibrium is globally asymptotically stable. Thirdly, an optimal

control problem is established by taking slaughter rate and cure rate as control variables. Finally,

numerical simulations are given to demonstrate the main results.
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1. Introduction

In recent decades, avian in
uenza viruses have become widespread all over the world, threaten-

ing public safety and causing huge enormous economic losses. For example, since the �rst outbreak

of avian in
uenza H5N1 in Hong Kong in 1997, the virus has infected more than 400 people world-

wide, with a mortality rate close to 60% [1]. In 2013, the avian in
uenza H7N9 crossed the species

barrier for the �rst outbreak in mainland China. More than 400 people have been infected, and the

mortality rate is close to 40% [1]. To provide e�ective control and prevention strategies, mathe-

matical models and methods have been widely adopted to study the epidemiological characteristics

of infectious diseases.

Among these important mathematical models, the most famous one is the compartmental model

proposed by Kermack and Mckendrick [2{4] in 1927. Since then, there are a large number of di�erent
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mathematical models have been developed and used to analyze the spread mechanism of diseases

[5, 6]. In 2007, Iwami et al. [7] proposed an ordinary di�erential equation model to characterize the

dynamical behavior of avian in
uenza between human and avian populations. Hu [8] constructed

an avian in
uenza model with nonlinear incidence and analyzed the stability of the model. Ma and

Wang [9] established a discrete-time model to evaluate the impact of avian in
uenza transmission in

poultry population. Bourouiba et al. [10] established a delayed avian in
uenza model to investigate

the role of migrating birds in the spread of avian in
uenza. In 2014, Chong et al. [11] proposed a

bird-human coupling dynamic model with half-saturated incidence and mutation of virus strains.

However, all the above models are obtained under the assumption that all individuals are

uniformly mixed, which means they have the same contact rate with other individuals in the

region. That is, the mixture between individuals is homogeneous, but, the contact between poultry-

to-poultry, and poultry-to-human are obviously heterogeneous [12] in reality. In order to re
ect

the heterogeneity of contacting between individuals, some scholars have used complex networks

to analyze the epidemic model. For example, Liu et al. [13] considered the spread of epidemic

diseases with birth and death on networks, and obtained the epidemic threshold. Fu et al. [14]

proposed a network model for di�erential infectivity and calculated the basic reproduction number.

However, these two papers only studied single population. Unfortunately, there are little literatures

about avian in
uenza model on complex networks because of the spread of avian in
uenza involves

two populations, and individual infection rates and contact patterns may be di�erent in di�erent

populations. So, it is of great signi�cance to explore the spread of avian in
uenza on coupled

networks.

As we all known, avian in
uenza viruses that infect usually only birds, sometimes infects humans

[15]. The spread of avian in
uenza in the population seriously threatens the safety of human life.

How to formulate optimal control problems to study optimal control strategies is an important

issue. Therefore, we introduce the slaughtering for poultry and treatment for humans as control

variables, and establish an optimal control problem to decrease the number infected poultry and

humans. Inspired by references [8] and [16{18], we propose the avian in
uenza model on one-way-

coupled networks with two subnetworks and prove the locally and globally asymptotical stability of

equilibrium points, further prove the uniqueness and existence of optimal control pairs. The main

contributions of this paper are as follows:

� One-way-coupled network is applied to the avian in
uenza model.

� The asymptotically stability of the disease-free and endemic equilibrium points are proved

for this model.

� We establish an optimal control problem by introducing slaughtering for poultry and treat-

ment for humans.
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The rest of this paper is organized as follows. In section 2, an avian in
uenza model is con-

structed, and the positivity and boundedness of its solution is discussed. In section 3, the locally

and globally asymptotical stability of the equilibrium points are proved for the avian-only subsys-

tem. The locally and globally asymptotical stability of the equilibrium points are presented for the

avian in
uenza model in section 4. In section 5, the optimal control problem is proposed, and the

existence and uniqueness of optimal control is proven. In section 6, several numerical simulations

are given to demonstrate the theory results. Finally, we give a brief conclusion and future work in

section 7.

2. Model Formulation and the Positivity of Solution

In this section, we formulate an avian in
uenza model on one-way-coupled network and discuss

some simple properties of solution. In [8], the authors proposed the following avian in
uenza model

with nonlinear incidence rate
8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

dSa

dt
= �a �

�aSaIa

1 + �1Ia
� �aSa;

dIa

dt
=

�aSaIa

1 + �1Ia
� �aIa � �aIa;

dSh

dt
= �h �

�hShIa

1 + �2I
2
h

� �hSh;

dIh

dt
=

�hShIa

1 + �2I
2
h

� 
hIh � �hIh � �hIh;

dRh

dt
= 
hIh � �hRh:

(1)

In model (1), 1
1+�1Ia

denotes the saturation e�ect in the poultry population and �hShIa
1+�2I2h

describes

the psychological e�ects in the human population. All parameters are assumed non-negative and

their meanings are described as follows: �a and �h denotes the recruitment rate of poultry and

human population, respectively; �a and �h represents the infected rate of poultry and human

populations, respectively; �a and �h represents the natural mortality rate of poultry and human

populations, respectively; �a and �h represents the mortality due to disease in poultry and human

populations, respectively; 
h denotes recovery rate.

Considering the heterogeneity of the contact between poultry-to-poultry and poultry-to-human,

we introduce one-way-coupled networks into avian in
uenza model. There are two separate net-

works, A and H . Network H consists of humanity, where each node represents an individual,

and each connection between two individuals represents direct contact between them. Network

A is composed of avian. And there is a connection from subnetwork A to subnetwork H . We

express in degrees (i; j) that there are i edges connected to subnetwork A and j edges connected

to subnetwork H . And it is expressed in degrees (i; �) that i edges are connected to subnetwork

A , and any edges are connected to subnetwork H . The same degree (�; j) indicates that any edge
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is connected to the subnetwork A and j edges are connected to the sub-network H .

Then, model (1) can be written as

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

dSai;j(t)

dt
= �a � �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t);

dIai;j(t)

dt
= �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t);

dShi;j(t)

dt
= �h � �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� �hS

h
i;j(t);

dIhi;j(t)

dt
= �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� 
hI

h
i;j(t)� �hI

h
i;j(t)� �hI

h
i;j(t);

dRh
i;j(t)

dt
= 
hI

h
i;j(t)� �hR

h
i;j(t):

(2)

The parameters of the coupling network are described in Tab. 1.

Table 1: The parameters of the coupling network are described in model (2)

Parameter (X = A orH )

NX
i;j The number of nodes with degree (i; j) on subnet X

SXi;j The number of susceptible nodes with degree (i; j) on subnet X

IXi;j The number of infected nodes nodes with degree (i; j) on subnet X

Rh
i;j The number of recovered nodes nodes with degree (i; j) on subnet X

pX(i; j) =
Na
i;j

Na Probability of any node degree (i; j) on subnet X

pa(i; �) =
Pn

j=1 pa(i; j) The boundary degree distribution of subnet A

pa(�; j) =
Pn

i=1 pa(i; j) The boundary degree distribution of subnet A

hkia =
Pn

i=1 ipa(i; �) The average of nodes in subject A connected to subnet A

hkiah =
Pn

j=1 jpa(�; j) The average of nodes in subject A connected to subnet H

�a(i) = �ai Poultry to poultry transmission rate of degree i

�ah(j) = �ahj Poultry to human transmission rate of degree j

�a denotes the infection probability of susceptible poultry nodes with the degree i in contact

with the infected poultry nodes. �ah denotes the infection probability of susceptible human nodes

with the degree j in contact with the infected poultry nodes. In the uncorrelated networks, �a,

�ah can be written as

�a(t) =
1

hkia

nX
i=1

ipa(i; �)I
a
i;j(t);
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�ah(t) =
1

hkiah

nX
j=1

jpa(�; j)I
a
i;j(t):

Because the 5th equation does not a�ect the dynamic behavior of the other four equations in model

(2) , thus model (2) can be decoupled to the following equations

8>>>>>>>>>>>><
>>>>>>>>>>>>:

dSai;j(t)

dt
= �a � �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t);

dIai;j(t)

dt
= �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t);

dShi;j(t)

dt
= �h � �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� �hS

h
i;j(t);

dIhi;j(t)

dt
= �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� 
hI

h
i;j(t)� �hI

h
i;j(t)� �hI

h
i;j(t):

(3)

The initial conditions of model (3) are given as follows

Sai;j(0) � 0; Iai;j(0) � 0; Shi;j(0) � 0; Ihi;j(0) � 0:

The stability of equilibrium points is often governed by a threshold called the basic reproduction

number R0. The basic reproduction number R0 of model (3) is obtained by using the method in

the reference [19].

R0 =
�a

�a(�a + �a)

1

hkia

nX
i=1

�a(i)ipa(i; �)

=
�a�a

�a(�a + �a)

hi2i

hii
:

Meanwhile, we can de�ne the epidemic transmission threshold as follows

�c =
�a(�a + �a)hii

�ahi2i
;

where hi2i =
Pn

i=1 i
2pa(i; �). Model (3) has two equilibrium points, which are the disease-free

equilibrium point E0 and the endemic equilibrium point E�;

E0 = (Sa01;j ; S
a0
2;j ; � � � ; S

a0
n;j ; I

a0
1;j ; I

a0
2;j ; � � � ; I

a0
n;j ; S

h0
i;1; S

h0
i;2; � � � ; S

h0
i;n; I

h0
i;1 ; I

h0
i;2 ; � � � ; I

h0
i;n)

= (
�a

�a
;
�a

�a
; � � � ;

�a

�a
; 0; 0; � � � ; 0;

�h

�h
;
�h

�h
; � � � ;

�h

�h
; 0; 0; � � � ; 0);

E� = (Sa�1;j ; S
a�
2;j ; � � � ; S

a�
n;j ; I

a�
1;j ; I

a�
2;j ; � � � ; I

a�
n;j ; S

h�
i;1; S

h�
i;2; � � � ; S

h�
i;n; I

h�
i;1 ; I

h�
i;2 ; � � � ; I

h�
i;n):

Obviously, the disease-free equilibrium point E0 of model (3) always exists. It is easy to know that
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the endemic equilibrium point E� of model (3) satis�es

8>>>>>>>>>>><
>>>>>>>>>>>:

Sa�i;j =
�a(1 + �1�

�
a(t))

�a(i)��
a(t) + �a(1 + �1��

a)
;

Ia�i;j =
�a(i)�a�

�
a(t)

[�a(i)��
a(t) + �a(1 + �1��

a)](�a + �a)
;

Sh�i;j =
�h(1 + �2�

�
ah(t))

�h(j)�
�
ah(t) + �h(1 + �2��

ah)
;

Ih�i;j =
�h(j)�h�

�
ah(t)

[�h(j)�
�
ah(t) + �h(1 + �2��

ah)](�h + 
h + �h)
:

(4)

Substitute the second equation of (4) into �a, we obtain

1 =
1

hkia

nX
i=1

ipa(i; �)
�a(i)�a

[�a(i)��
a(t) + �a(1 + �1��

a(t))](�a + �a)
:

In order to prove the existence and uniqueness of the endemic equilibrium point E�, we de�ne a

function

F (�a) := 1�
1

hkia

nX
i=1

ipa(i; �)
�a(i)�a

(�a(i)�a + �a(1 + �1�a))(�a + �a)
:

It is easy to see that, F (0) = 1�R0, lim�a!1 F (�a) = 1;

dF (�a)

d�a
=

�a

(�a + �a)

1

hkia

nX
i=1

�a(i)ipa(i; �)(�a(i) + �a�1)

[�a(i)��
a(t) + �a(1 + �1��

a(t))]
2
> 0:

Obviously, F (�a) has a unique positive solution when R0 > 1, and consequently model (3) has a

unique endemic equilibrium point E�:

Based on model (3), we get

8>><
>>:

dNa
i;j(t)

dt
= �a � �aN

a
i;j(t)� �aI

a
i;j(t) � �a � �aN

a
i;j(t);

dNh
i;j(t)

dt
= �h � �hN

h
i;j(t)� �hI

h
i;j(t) � �h � �hN

h
i;j(t);

furthermore, we get 8>><
>>:
0 < Na

i;j(t) �
�a

�a
;t!1;

0 < Nh
i;j(t) �

�h

�h
;t!1:

Thus, the closed set 
 = f(Sai;j ; I
a
i;j ; S

h
i;j ; I

h
i;j) 2 R4n

+ : 0 < Na
i;j �

�a

�a
; 0 < Nh

i;j �
�h

�h
g is a bounded

and positively invariant.
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3. Stability Analysis of Avian-only Subsystem

In this section, we will study the locally and globally asymptotical stability of equilibrium points

for the avian-only subsystem. The avian-only subsystem is

8>>><
>>>:

dSai;j(t)

dt
= �a � �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t);

dIai;j(t)

dt
= �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t):

(5)

Model (5) has two equilibrium points, one is the disease-free equilibrium point

E0
1 = (

�a

�a
;
�a

�a
; � � � ;

�a

�a
; 0; 0; � � � ; 0); (6)

which always exists. Another one is the endemic equilibrium point E�
1 , which satis�es

8>><
>>:
Sa�i;j =

�a(1 + �1�
�
a(t))

�a(i)��
a(t) + �a(1 + �1��

a)
;

Ia�i;j =
�a(i)�a�

�
a(t)

[�a(i)��
a(t) + �a(1 + �1��

a)](�a + �a)
:

(7)

3.1. Locally asymptotical stability of avian-only subsystem

Theorem 3.1. (i) If R0 < 1, then the disease-free equilibrium point E0
1 of model (5) is locally

asymptotically stable; (ii) If R0 > 1, then the endemic equilibrium point E�
1 of model (5) is locally

asymptotically stable.

In order to analyze locally asymptotical stability of the disease-free equilibrium point and the

endemic equilibrium point of model (5).

Proof. (i) The Jacobian matrix J(E0
1) of disease-free equilibrium point can be calculated as follows

J(E0
1) =

2
66666666666664

��a � � � 0 ��a(1)S
a0
1;jf(1) � � � ��a(1)S

a0
1;jf(n)

...
. . .

...
...

. . .
...

0 : : : ��a ��a(n)S
a0
n;jf(1) � � � ��a(n)S

a0
n;jf(n)

0 � � � 0 �(�a + �a) + �a(1)S
a0
1;jf(1) � � � �a(1)S

a0
1;jf(n)

...
. . .

...
...

. . .
...

0 � � � 0 �a(n)S
a0
n;j � � � �(�a + �a) + �a(n)S

a0
n;jf(n)

3
77777777777775

;

where f(i) = ipa(i;�)
hkia

. The characteristic polynomial of linear model (5) is

(z + �a)
n j zE � F j= 0;
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where

F =

2
6666664

!a + �a(1)S
a0
1;jf(1) �a(1)S

a0
1;jf(2) � � � �a(1)S

a0
1;jf(n)

�a(2)S
a0
2;jf(1) !a + �a(2)S

a0
2;jf(2) � � � �a(2)S

a0
2;jf(n)

...
...

. . .
...

�a(n)S
a0
n;jf(1) �a(n)S

a0
n;jf(2) � � � !a + �a(n)S

a0
n;jf(n)

3
7777775
;

where !a = �(�a+ �a). It is easy to see that the Jacobian matrix J(E
0
1) has n eigenvalues equal to

��a, and the rest n eigenvalues of matrix J(E
0
1) are the eigenvalues of matrix F . The characteristic

polynomial of matrix F is given by

j zE � F j=

������������

z � !a 0 � � � ��a(1)S
a0
1;jf(n)

0 z � !a � � � ��a(2)S
a0
2;jf(n)

...
...

. . .
...

0 0 � � � z � !a �
Pn

i=1 �a(i)S
a0
i;jf(i)

������������
=(z � !a)

n�1(z � !a �
nX
i=1

�a(i)S
a0
i;jf(i)); i = 1; 2; � � � ; n:

By performing similar transformation to the n-dimensional matrix, the n� 1 eigenvalues equal to

!a < 0, and the nth eigenvalue is

� = !a +
nX
i=1

�a(i)S
a0
i;jf(i)

= !a +
�a

�a

1

hkia

nX
i=1

�a(i)ipa(i; �)

= �!a

�
�a

�a(�!a)

1

hkia

nX
i=1

�a(i)ipa(i; �)� 1

�

= �!a(R0 � 1) < 0:

Hence, the disease-free equilibrium point E0
1 is locally asymptotically stable if R0 < 1.

(ii) The Jacobian matrix J(E�
1) of endemic equilibrium point can be calculated as follows

J(E�
1) =

2
66666666666664

��a � p1 � � � 0 �m1f(1) � � � �m1f(n)
...

. . .
...

...
. . .

...

0 � � � ��a � pn �mnf(1) � � � �mnf(n)

p1 � � � 0 !a +m1f(1) � � � m1f(n)
...

. . .
...

...
. . .

...

0 � � � pn mnf(1) � � � !a +mnf(n)

3
77777777777775

;
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where pi = �a(i)
��

a(t)
1+�1��

a(t)
, mi = �a(i)

Sa�
i;j

[1+�1��

a(t)]
2 . Based on the principle of matrix similar trans-

form, regard invertible matrix M , N as similarity transformation matrix. By using similarity

transformation to the matrix J(E�
1), we get MJ(E�

1)N = B, where E is a n-dimensional unit

normal matrix.

M =

2
4 E E

0 E

3
5 ; N =

2
4 E ��a+�a

�a

0 E

3
5 ;

and

B =

2
66666666666664

��a � � � 0 0 � � � 0
...

. . .
...

...
. . .

...

0 � � � ��a 0 � � � 0

p1 � � � 0 !a +m1f(1)�
�a+�a
�a

p1 � � � m1f(n)
...

. . .
...

...
. . .

...

0 � � � pn mnf(1) � � � !a +m1f(1)�
�a+�a
�a

p1

3
77777777777775

:

The characteristic equation of Jacobian matrix J(E�
1) is

(z + �a)
n j zE �H j= 0;

where

H =

2
6666664

!a � f1 +m1f(1) m1f(2) � � � m1f(n)

m2f(1) !a � f2 +m2f(2) : : : m2f(n)
...

...
. . .

...

mnf(1) mnf(2) � � � !a � fn +mnf(n)

3
7777775
;

fi =
�a+�a
�a

pi =
�a+�a
�a

�a(i)
��

a(t)
1+�1��

a(t)
: Clearly, matrix J(E�

1) has n negative eigenvalues. In the

following, we calculate the rest n eigenvalues of matrix J(E�
1). For j zE �H j= 0, we consider the

following two cases:

Case I: If z � !a + fi = 0, namely, z = !a � fi(i = 1; 2; : : : ; n), then

j zE �H j=

������������

�m1f(1) �m1f(2) � � � �m1f(n)

�m2f(1) �m2f(2) : : : �m2f(n)
...

...
. . .

...

�mnf(1) �mnf(2) � � � �mnf(n)

������������
� 0:

Therefore, we obtain n eigenvalues zi = !a � fi < 0 (i = 1; 2; : : : ; n).
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Case II: If z � !a + fi 6= 0, then

j zE �H j= �n
i=1(z � !a + fi)(1�

nX
i=1

mif(i)

z � !a + fi
):

Let

 (x) = �n
i=1(x� !a + fi)(1�

nX
i=1

mif(i)

x� !a + fi
)

= (x� !a + f1)(x� !a + f2) � � � (x� !a + fn)

�m1f(1)(x� !a + f2)(x� !a + f3) � � � (x� !a + fn)

�m2f(2)(x� !a + f1)(x� !a + f3) � � � (x� !a + fn)

� � � � �mnf(n)(x� !a + f1)(x� !a + f2) � � � (x� !a + fn�1):

Since  (x) is continuous, fk is increasing and note that

 [�(�!a + fn)] [�(�!a + fn+1)] < 0; i = 1; 2; : : : ; n:

Thus, there exists at least one root in [�(�!a+fi);�(�!a+fi+1)]: In other words, there are n�1

negative roots in [�(�!a + fn);�(�!a + f1)]: On the other hand,  [�(�!a + f1)] < 0, and

 (0) = �n
i=1(�!a + fi)(1�

nX
i=1

mif(i)

�!a + fi
)

= �n
i=1(�a + �a + fi)[1�

nX
i=1

�a(i)
Sa�
i;j

[1+�1��

a(t)]
2 ipa(i; �)

hkia(�a + �a +
�a+�a
�a

�a(i)
��

a(t)
1+�1��

a(t)
)
]

= �n
i=1(�a + �a + fi)[1�

1

hkia

nX
i=1

ipa(i; �)

�a(i)�a(1+�1��

a(t))
[�a(i)��

a(t)+�a(1+�1�
�

a(t))](1+�1�
�

a(t))
2

�a + �a +
�a+�a
�a

�a(i)
��

a(t)
1+�1��

a(t)

]

= �n
i=1(�a + �a + fi)[1�

1

hkia

nX
i=1

ipa(i; �)
�a�a(i)�a

(�a + �a)[�a(i)��
a(t) + �a(1 + �1��

a(t))]
2
] > 0:

Therefore, we get

1

hkia

nX
i=1

ipa(i; �)
�a�a(i)�a

(�a + �a)[�a(i)��
a(t) + �a(1 + �1��

a(t))]
2

=
1

hkia

nX
i=1

ipa(i; �)
�a(i)�a�

�
a(t)

(�a + �a)[�a(i)��
a(t) + �a(1 + �1��

a(t))]

�a

��
a(t)[�a(i)�

�
a(t) + �a(1 + �1��

a(t))]

<
1

hkia

nX
i=1

ipa(i; �)
�a(i)�a�

�
a(t)

(�a + �a)[�a(i)��
a(t) + �a(1 + �1��

a(t))]

�a

��
a(t)[�a(1 + �1��

a(t))]

=��
a(t)

1

��
a(t)(1 + �1��

a(t))
< 1:

10



Hence, the matrix N has n negative roots in [�(�!a + fn); 0]. It is proven that all the eigenvalues

of the Jacobian matrix J(E�
1) are negative. That is to say, the endemic equilibrium point E�

1 is

locally asymptotically stable.

3.2. Globally asymptotical stability of avian-only subsystem

The aim of this subsection is to investigate the globally asymptotical stability of avian-only

subsystem (5). We have the following results:

Theorem 3.2. (i) If R0 < 1, the disease-free equilibrium point E0
1 of model (5) is globally asymptot-

ically stable; (ii) If R0 > 1, the endemic equilibrium point E�
1 of model (5) is globally asymptotically

stable.

Proof. (i) In order to show the disease-free equilibrium point E0
1 is globally asymptotically stable,

we �rst consider the following Lyapunov function

V (t) =
nX
i=1

f(i)(Sai;j � Sa0i;j � Sa0i;j ln
Sai;j

Sa0i;j
) +

nX
i=1

f(i)Iai;j(t): (8)

The derivative of V (t) is

dV (t)

dt
=

nX
i=1

f(i)(1�
Sa0i;j

Sai;j
)
dSai;j(t)

dt
+

nX
i=1

f(i)
dIai;j

dt

=
nX
i=1

f(i)(1�
Sa0i;j

Sai;j
)(�a � �a(i)S

a
i;j

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t))

+
nX
i=1

f(i)(�a(i)S
a
i;j

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t))

=� �a

nX
i=1

f(i)
(Sai;j � Sa0i;j)

2

Sai;j
�

nX
i=1

f(i)�a(i)�a(t)
Sai;j � Sa0i;j

1 + �1�a(t)

+
nX
i=1

f(i)�a(i)S
a
i;j

�a(t)

1 + �1�a(t)
�

nX
i=1

f(i)(�a + �a)I
a
i;j(t)

=� �a

nX
i=1

f(i)
(Sai;j � Sa0i;j)

2

Sai;j
+

nX
i=1

f(i)�a(i)S
a0
i;j

�a(t)

1 + �1�a(t)
�

nX
i=1

f(i)(�a + �a)I
a
i;j(t)

<� �a

nX
i=1

f(i)
(Sai;j � Sa0i;j)

2

Sai;j
+

nX
i=1

f(i)�a(i)S
a0
i;j�a(t)�

nX
i=1

f(i)(�a + �a)I
a
i;j(t)

=� �a

nX
i=1

f(i)
(Sai;j � Sa0i;j)

2

Sai;j
+ (�a + �a)(R0 � 1)�a(t);

thus, dV (t)
dt

< 0 when R0 < 1, and dV (t)
dt

= 0 if and only if Iai;j(t) = 0. Moreover, limt!1 Sai;j(t) = 1,

the largest invariant set of dV (t)
dt

= 0 is a singleton E0
1 . Hence the disease-free equilibrium point E0

1

is globally asymptotically stable when R0 < 1 by the LaSalle invariance principle.
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(ii) In order to show the endemic equilibrium point E�
1 is globally asymptotically stable, we

de�ne the following Lyapunov function:

V (t) =
nX
i=1

ci(S
a
i;j � Sa�i;j � Sa�i;j ln

Sai;j

Sa�i;j
) +

nX
i=1

ci(I
a
i;j � Ia�i;j � Ia�i;j ln

Iai;j

Ia�i;j
): (9)

The derivative of V (t) is

dV (t)

dt
=

nX
i=1

ci(1�
Sa�i;j

Sai;j
)
dSai;j(t)

dt
+

nX
i=1

ci(1�
Ia�i;j

Iai;j
)
dIai;j(t)

dt

=
nX
i=1

ci(1�
Sa�i;j

Sai;j
)[�a � �a(i)S

a
i;j

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t)]

+
nX
i=1

ci(1�
Ia�i;j

Iai;j
)[�a(i)S

a
i;j

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t)]

=
nX
i=1

ci(1�
Sa�i;j

Sai;j
)[�a(i)S

a�
i;j

��
a(t)

1 + �1��
a(t)

+ �aS
a�
i;j(t)� �a(i)S

a
i;j

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t)]

+
nX
i=1

ci(1�
Ia�i;j

Iai;j
)[�a(i)S

a
i;j

�a(t)

1 + �1�a(t)
� �a(i)S

a�
i;j

��
a(t)

1 + �1��
a(t)

Iai;j

Ia�i;j
]

=� �a

nX
i=1

ci
(Sai;j � Sa�i;j)

2

Sai;j
+

nX
i=1

ci�a(i)S
a�
i;j

��
a

1 + �1��
a

(2�
Sa�i;j(t)

Sai;j(t)
�
Iai;j(t)

Ia�i;j (t)
)

+
nX
i=1

ci�a(i)S
a�
i;j

�a

1 + �1�a
(1�

Sai;j

Sa�i;j

Ia�i;j

Iai;j
)

<� �a

nX
i=1

ci
(Sai;j � Sa�i;j)

2

Sai;j
+

nX
i=1

ci�a(i)S
a�
i;j�

�
a(2�

Sa�i;j(t)

Sai;j(t)
�
Iai;j(t)

Ia�i;j (t)
)

+
nX
i=1

ci�a(i)S
a�
i;j�a(1�

Sai;j(t)

Sa�i;j(t)

Ia�i;j (t)

Iai;j(t)
)

=� �a

nX
i=1

ci
(Sai;j � Sa�i;j)

2

Sai;j

+
nX
i=1

ci
�a(i)

hkia
Sa�i;j

nX
l=1

lp(l; �)Ia�l;j (2�
Sa�i;j(t)

Sai;j(t)
�
Iai;j(t)

Ia�i;j (t)
+
Ial;j(t)

Ia�l;j (t)
�
Sai;j(t)

Sa�i;j(t)

Ia�i;j (t)

Iai;j(t)

Ial;j(t)

Ia�l;j (t)
):

Because the function g(x) = 1 � x + lnx < 0 when x > 0, and g(x) = 0 if and only if x = 1.

Utilizing the property of function g(x) yields

2�
Sa�i;j(t)

Sai;j(t)
�
Iai;j(t)

Ia�i;j (t)
+
Ial;j(t)

Ia�l;j (t)
�
Sai;j(t)

Sa�i;j(t)

Ia�i;j (t)

Iai;j(t)

Ial;j(t)

Ia�l;j (t)

= g(
Sa�i;j(t)

Sai;j(t)
) + g(

Sai;j(t)

Sa�i;j(t)

Ia�i;j (t)

Iai;j(t)

Ial;j(t)

Ia�l;j (t)
)� ln

Ia�i;j (t)

Iai;j(t)

Ial;j(t)

Ia�l;j (t)
+
Ial;j(t)

Ia�l;j (t)
�
Ia�i;j (t)

Iai;j(t)

�
Ial;j(t)

Ia�l;j (t)
� ln

Ial;j(t)

Ia�l;j (t)
�
Iai;j(t)

Ia�i;j (t)
+ ln

Iai;j(t)

Ia�i;j (t)
:
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De�ne a non-negative weight matrix M = (mil)n�n, where mil =
�a(i)
hkia

Sa�i;j(t)lp(l)I
a�
l;j , we have

dV (t)

dt
�

nX
i=1

nX
l=1

cimil(
Ial;j(t)

Ia�l;j (t)
� ln

Ial;j(t)

Ia�l;j (t)
�
Iai;j(t)

Ia�i;j (t)
+ ln

Iai;j(t)

Ia�i;j (t)
);

where ci are constants (i = 1; 2; � � � ; n). According to Kirchho�s matrix tree theorem [20], choosing

ci =
P

T2Ti
M(T ) and using the tree cycle identity [21], we obtain the following identity

nX
i=1

nX
l=1

cimil(
Ial;j(t)

Ia�l;j (t)
� ln

Ial;j(t)

Ia�l;j (t)
�
Iai;j(t)

Ia�i;j (t)
+ ln

Iai;j(t)

Ia�i;j (t)
) = 0;

which ensures that dV (t)
dt

� 0 for all 2 
, and the strict equality V 0(t) = 0 holds only Sai;j =

Sa�i;j ; I
a
i;j = Ia�i;j , the positive endemic equilibrium point E�

1 is globally asymptotically stable on


.

4. Stability analysis of the avian-human in
uenza model (3)

The aim of this section is to investigate the locally and globally asymptotical stability of equi-

librium points for model (3).

4.1. Locally asymptotical stability of model (3)

Theorem 4.1. (i) If R0 < 1, then the disease-free equilibrium point E0 of model (3) is locally

asymptotically stable; (ii) If R0 > 1, then the endemic equilibrium point E� of model (3) is locally

asymptotically stable.

Proof. (i) The Jacobian matrix J(E0) of disease-free equilibrium point can be calculated as follows

J(E0) =

2
4 J(E0

1) 0

C0 D0

3
5 ;

where

C0 =

2
66666666666664

0 � � � 0 ��h(1)S
h0
i;1h(1) � � � ��h(1)S

h0
i;1h(n)

...
. . .

...
...

. . .
...

0 � � � 0 ��h(n)S
h0
i;nh(1) � � � ��h(n)S

h0
i;nh(n)

0 � � � 0 �h(1)S
h0
i;1h(1) � � � �h(1)S

h0
i;1h(n)

...
. . .

...
...

. . .
...

0 � � � 0 �h(n)S
h0
i;nh(1) � � � �h(n)S

h0
i;nh(n)

3
77777777777775

;
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D0 =

2
66666666666664

��h � � � 0 0 � � � 0
...

. . .
...

...
. . .

...

0 � � � ��h 0 � � � 0

0 � � � 0 !h � � � 0
...

. . .
...

...
. . .

...

0 � � � 0 0 � � � !h

3
77777777777775

:

The characteristic equation of Jacobian matrix J(E0) is

(z + �a)
n(z + �h)

n(z + !h)
n j zE � F j= 0; (10)

obviously, the equation (10) has 3n negative roots, ��a, ��h, �!h, respectively. In addition,

j zE � F j=(z + �a + �a)
n�1(z + �a + �a �

nX
i=1

�a(i)S
a0
i;jf(i))

=(z + �a + �a)
n�1[z � (�a + �a)(

�a

�a(�a + �a)

1

hkia

nX
i=1

�a(i)ipa(i; �)� 1)]

=(z + �a + �a)
n�1[z � (�a + �a)(R0 � 1)]; i = 1; 2; � � � ; n;

we can easily see that the disease-free equilibrium point E0 is locally asymptotically stable ifR0 < 1.

(ii) The Jacobian matrix J(E�) of endemic equilibrium point can be calculated as follows

J(E�) =

2
4 J(E�

1) 0

C� D�

3
5 ;

where

C� =

2
66666666666664

0 � � � 0 �mo
1h(1) � � � �mo

1h(n)
...

. . .
...

...
. . .

...

0 � � � 0 �mo
nh(1) � � � �mo

nh(n)

0 � � � 0 mo
1h(1) � � � �mo

1h(n)
...

. . .
...

...
. . .

...

0 � � � 0 mo
nh(1) � � � �mo

nh(n)

3
77777777777775

;

D� =

2
66666666666664

��h � po1 � � � 0 0 � � � 0
...

. . .
...

...
. . .

...

0 � � � ��h � pon 0 � � � 0

po1 � � � 0 !h � � � 0
...

. . .
...

...
. . .

...

0 � � � pon 0 � � � !h

3
77777777777775

;
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where poj = �h(j)
��

ah
(t)

1+�2��

ah
(t) ; m

o
j = �h(j)

Sh�
i;j

[1+�2��

ah
(t)]2

; !h = �(�h + 
h + �h); h(j) =
jpa(�;j)
hkiah

: The

characteristic equation of Jacobian matrix J(E�) is

(z + �a)
n(z + !a)

n j zE �H j �n
j=1(z + �h + poj) = 0; (11)

we can easily get that all the eigenvalues of equation (11) are negative according to Theorem 3.1.

Therefore, the endemic equilibrium point E� is locally asymptotically stable.

4.2. Globally asymptotical stability of model (3)

Theorem 4.2. (i) If R0 < 1, then the disease-free equilibrium point E0 of model (3) is globally

asymptotically stable; (ii) If R0 > 1, then the endemic equilibrium point E� of model (3) is globally

asymptotically stable.

Proof. (i) To prove the globally asymptotically stability of the disease-free equilibrium point E0,

we only need to discuss the following system8>><
>>:

dShi;j(t)

dt
= �h � �hS

h
i;j(t);

dIhi;j(t)

dt
= �
hI

h
i;j(t)� �hI

hi; j(t)� �hI
h
i;j(t):

(12)

Consider the following Lyapunov function

V (t) =
nX

j=1

h(j)(Shi;j � Sh0i;j � Sh0i;j ln
Shi;j

Sh0i;j
) +

nX
j=1

h(j)Ihi;j(t): (13)

The derivative of V (t) can be witten as

dV (t)

dt
=

nX
j=1

h(j)(1�
Sh0i;j

Shi;j
)
dShi;j(t)

dt
+

nX
j=1

h(j)
dIhi;j

dt

=
nX

j=1

h(j)(1�
Sh0i;j

Shi;j
)(�h � �hS

h
i;j(t))�

nX
j=1

h(j)(
h + �h + �h)I
h
i;j(t)

= ��a
(Shi;j � Sh0i;j )

2

Shi;j
�

nX
j=1

h(j)(
h + �h + �h)I
h
i;j(t) < 0;

we have Shi;j(t)! Sh0i;j (t); I
h
i;j(t)! 0 (t!1): So, model (3) is globally asymptotically stable when

R0 < 1.

(ii) To prove the globally asymptotically stability of the endemic equilibrium point E�, we only

need to discuss the following system.8>>><
>>>:

dShi;j(t)

dt
= �h � �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �hS
h
i;j(t);

dIhi;j(t)

dt
= �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� 
hI
h
i;j(t)� �aI

h
i;j(t)� �hI

h
i;j(t):

(14)
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Consider the following Lyapunov function

V (t) =
nX

j=1

cjS
h�
i;j (

Shi;j

Sh�i;j
� ln

Shi;j

Sh�i;j
) +

nX
j=1

cjI
h�
i;j (

Ihi;j

Ih�i;j
� ln

Ihi;j

Ih�i;j
): (15)

The derivative of V (t) is as follows

dV

dt
=

nX
j=1

cj(1�
Sh�i;j

Shi;j
)
dShi;j(t)

dt
+

nX
j=1

cj(1�
Ih�i;j

Ihi;j
)
dIhi;j(t)

dt

=
nX

j=1

cj(1�
Sh�i;j

Shi;j
)[�h � �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �hS
h
i;j(t)]

+
nX

j=1

cj(1�
Ih�i;j

Ihi;j
)[�h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� 
hI
h
i;j(t)� �aI

h
i;j(t)� �hI

h
i;j(t)]

=
nX

j=1

cj(1�
Sh�i;j

Shi;j
)[�h(j)S

h�
i;j

��
ah(t)

1 + �2��
ah(t)

+ �hS
h�
i;j (t)� �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �hS
h
i;j(t)]

+
nX

j=1

cj(1�
Ih�i;j

Ihi;j
)[�h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �h(j)S
h�
i;j

��
ah(t)

1 + �2��
ah(t)

Ihi;j

Ih�i;j
]

=
nX

j=1

cj [�h(j)S
h�
i;j

��
ah(t)

1 + �2��
ah(t)

+ �hS
h�
i;j (t)� �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �hS
h
i;j(t)]

+
nX

j=1

cj [�h(j)S
h
i;j

��
ah(t)

1 + �2��
ah(t)

� �h(j)S
h�
i;j

��
ah(t)

1 + �2��
ah(t)

Ihi;j

Ih�i;j
]

�
nX

j=1

cj
Sh�i;j

Shi;j
[�h(j)S

h�
i;j

��
ah(t)

1 + �2��
ah(t)

+ �hS
h�
i;j (t)� �h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �hS
h
i;j(t)]

�
nX

j=1

cj
Ih�i;j

Ihi;j
[�h(j)S

h
i;j

��
ah(t)

1 + �2��
ah(t)

� �h(j)S
h�
i;j

��
ah(t)

1 + �2��
ah(t)

Ihi;j

Ih�i;j
]

=
nX

j=1

cj�h(j)S
h�
i;j

��
ah(t)

1 + �2��
ah(t)

(3�
Sh�i;j

Shi;j
�
Ihi;j

Ih�i;j
�
Shi;jI

h�
i;j

Sh�i;j I
h
i;j

) +
nX

j=1

cj�hS
h�
i;j (2�

Sh�i;j

Shi;j
�
Shi;j

Sh�i;j
);

because 3 �
Sh�
i;j

Sh
i;j

�
Ihi;j

Ih�i;j
�

Sh
i;jI

h�
i;j

Sh�
i;j I

h
i;j

� 0; 2 �
Sh�
i;j

Sh
i;j

�
Sh
i;j

Sh�
i;j

� 0. we have dV (t)
dt

� 0 if R0 > 1, then model

(3) is globally asymptotically stable.

5. Optimal Control Strategies

In this section, we will establish an optimal control problem of system (3) and get an optimal con-

trol strategy in theory. We introduce control variables (ui(t); vj(t)) 2 U = fui(t); vj(t)measurable :

0 � ui(t) � 1; 0 � vj(t) � 1; i; j = 1; 2; � � � ; ng. ui(t) denotes the proportion of slaughtered suscep-

tible poultry and infected poultry, vj(t) denotes the proportion of treatment for infected humans.
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Now, we obtain an optimal control system as follows
8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

dSai;j(t)

dt
= �a � �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t)� ui(t)S

a
i;j(t);

dIai;j(t)

dt
= �a(i)S

a
i;j(t)

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t)� ui(t)I

a
i;j(t);

dShi;j(t)

dt
= �h � �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� �hS

h
i;j(t);

dIhi;j(t)

dt
= �ah(j)S

h
i;j(t)

�ah(t)

1 + �2�ah(t)
� 
hI

h
i;j(t)� �hI

h
i;j(t)� �hI

h
i;j(t)�

cvj(t)I
h
i;j(t)

1 + �3I
h
i;j(t)

:

(16)

Here, we take saturated treatment rate
cvj(t)I

h
i;j(t)

1+�3Ihi;j(t)
(�3 denotes saturation constant) because of

the medical resources are limited. We intend to get an optimal pair of slaughter and treatment,

which seeks to minimize the number of infected poultry, the number of infected humans, and the

cost during the implementing these two control strategies. Therefore, we establish the following

objective function

J(ui(t); vj(t)) =

Z T

0

nX
i=1

[AiS
a
i;j(t) +BiI

a
i;j(t) + Ciui(t)(S

a
i;j(t) + Iai;j(t)) +

1

2
Diu

2
i (t)]dt

+

Z T

0

nX
j=1

[GjI
h
i;j(t) +Kjvj(t)I

h
i;j(t) +

1

2
Ljv

2
j (t)]dt;

where Ai, Bi, Gj , Ci, Kj , Di, Lj are regarded as positive weight constants to make the terms of

integrand keep balance in objective functional J .

Theorem 5.1. There exists an optimal control pair (u�i (t); v
�
j (t)) 2 U such that

J(u�i (t); v
�
j (t)) = minf J(ui(t); vj(t))jui(t); vj(t) 2 U ; i; j = 1; � � � ; ng:

Proof. Because the control variables ui(t), vj(t) and the state variables Sai;j(t),I
a
i;j(t),S

h
i;j(t),I

h
i;j(t)

are both non-negative, the objective function satisfy the convex condition with respect to the control

variables, so the allowable control set U is a closed convex set. We get the existence of optimal

control. In addition, the integrand function
Pn

i=1[AiS
a
i;j(t) + BiI

a
i;j(t) + Ciui(t)(S

a
i;j(t) + Iai;j(t)) +

1
2Diu

2
i (t)] +

Pn
j=1[GjI

h
i;j(t) +Kjvj(t)I

h
i;j(t) +

1
2Ljv

2
j (t)] is convex on the control set, there exists a

constant � and positive numbers $1, $2 such that

J(ui(t); vj(t)) � $2 +$1(jui(t)j
2 + jvj(t)j

2)
�
2

Next, we characterize this optimal control by de�nitioning a Hamiltonian function.
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Theorem 5.2. Let ui(t) and vj(t) be optimal control variables, Sai;j(t),I
a
i;j(t),S

h
i;j(t),I

h
i;j(t) be cor-

responding optimal state variables of the control model . Then there exists adjoint variable �(t) =

(�1i(t); �2i(t); �1j(t); �2j(t)) 2 R
4n that satis�es the following adjoint equations:

d�1i(t)

dt
=�Ai � Ciu

�
i (t)� �1i(t)[��a(i)

�a(I
a�
1;j(t); I

a�
2;j(t); � � � ; I

a�
n;j(t))

1 + �1�a(Ia�1;j(t); I
a�
2;j(t); � � � ; I

a�
n;j(t))

� �a � u�i (t)]

� �2i(t)�a(i)
�a(I

a�
1;j(t); I

a�
2;j(t); � � � ; I

a�
n;j(t))

1 + �1�a(Ia�1;j(t); I
a�
2;j(t); � � � ; I

a�
n;j(t))

;

d�2i(t)

dt
=�Bi � Ciu

�
i (t)� �1i(t)[��a(i)f(i)

Sa�i;j(t)

[1 + �1�a(Ia�1;j(t); I
a�
2;j(t); � � � ; I

a�
n;j(t))]

2
]

� �2i(t)[�a(i)f(i)
Sa�i;j(t)

[1 + �1�a(Ia�1;j(t); I
a�
2;j(t); � � � ; I

a�
n;j(t))]

2
� �a � �a � u�i (t)];

d�1j(t)

dt
=� �1j(t)[��ah(j)

�ah(I
a�
i;1(t); I

a�
i;2(t); � � � ; I

a�
i;n(t))

1 + �1�ah(I
a�
i;1(t); I

a�
i;2(t); � � � ; I

a�
i;n(t))

� �h]

� �2j(t)�ah(j)
�ah(I

a�
i;1(t); I

a�
i;2(t); � � � ; I

a�
i;n(t))

1 + �1�ah(I
a�
i;1(t); I

a�
i;2(t); � � � ; I

a�
i;n(t))

;

d�2j(t)

dt
=�Gj �Kjv

�
j (t) + �2j(t)[�h + �h + 
h +

cv�j (t)

(1 + �3I
h
i;j)

2
];

(17)

with transversality conditions

�1i(T ) = �2i(T ) = �1j(T ) = �2j(T ) = 0; i; j = 1; 2; � � � ; n:

Furthermore, the corresponding optimal controls are give as follows

8>>><
>>>:

u�i (t) = minfmaxf
(�1i(t)� Ci)S

a�
i;j(t) + (�2i(t)� Ci)I

a�
i;j (t)

Di
; 0g; 1g; i = 1; 2; � � � ; n;

v�j (t) = minfmaxf
c�2j(t)I

h�
i;j (t)�KjI

h�
i;j (t)(1 + �3I

h�
i;j (t))

(1 + �3I
h�
i;j (t))Lj

; 0g; 1g; j = 1; 2; � � � ; n:

(18)

Proof. De�ne the Hamiltonian function of the control system as follows

H =
nX
i=1

[AiS
a
i;j(t) +BiI

a
i;j(t) + Ciui(t)(S

a
i;j(t) + Iai;j(t)) +

1

2
Diu

2
i (t)]

+
nX

j=1

[GjI
h
i;j(t) +Kjvj(t)I

h
i;j(t) +

1

2
Ljv

2
j (t)]

+
nX
i=1

�1i(t)[�a � �a(i)S
a
i;j(t)

�a(t)

1 + �1�a(t)
� �aS

a
i;j(t)� ui(t)S

a
i;j(t)]

+
nX
i=1

�2i(t)[�a(i)S
a
i;j(t)

�a(t)

1 + �1�a(t)
� �aI

a
i;j(t)� �aI

a
i;j(t)� ui(t)I

a
i;j(t)]
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+
nX

j=1

�1j(t)[�h � �ah(j)S
h
i;j(t)

�ah(t)

1 + �2�ah(t)
� �hS

h
i;j(t)]

+
nX

j=1

�2j(t)[�ah(j)S
h
i;j(t)

�ah(t)

1 + �2�ah(t)
� 
hI

h
i;j(t)� �hI

h
i;j(t)� �hI

h
i;j(t)�

cvj(t)I
h
i;j(t)

1 + �3I
h
i;j(t)

]:

By the Pontryagin's maximum principle, there exists �(t) = (�1i(t); �2i(t); �1j(t); �2j(t)) 2 R4n

such that the �rst order necessary conditions for the existence of optimal control are given by the

following four equations,

d�1i(t)

dt
=�

@H

@Sai;j(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t);ui(t)=u

�

i (t);vj(t)=v
�

j (t)
;

d�2i(t)

dt
=�

@H

@Iai;j(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t);ui(t)=u

�

i (t);vj(t)=v
�

j (t)
;

d�1j(t)

dt
=�

@H

@Shi;j(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t)ui(t)=u

�

i (t);vj(t)=v
�

j (t)
;

d�2j(t)

dt
=�

@H

@Ihi;j(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t);ui(t)=u

�

i (t);vj(t)=v
�

j (t)
:

By the optimal conditions, we have

8>><
>>:

@H

@ui(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t);ui(t)=u

�

i (t);vj(t)=v
�

j (t)
= 0;

@H

@vj(t)
jSa

i;j(t)=S
a�
i;j(t);I

a
i;j(t)=I

a�
i;j(t);S

h
i;j(t)=S

h�
i;j (t);I

h
i;j(t)=I

h�
i;j (t);ui(t)=u

�

i (t);vj(t)=v
�

j (t)
= 0:

Thus, we have

u�i (t) =

8>>>><
>>>>:

0; �i < 0;

�i; 0 � �i � 1;

1; �i > 1;

v�j (t) =

8>>>><
>>>>:

0; 	j < 0;

	j ; 0 � 	j � 1;

1; 	j > 1;

where �i =
(�1i(t)�Ci)S

a�
i;j(t)+(�2i(t)�Ci)I

a�
i;j(t)

Di
, 	j =

c�2j(t)I
h�
i;j (t)�KjI

h�
i;j (t)(1+�3I

h�
i;j (t))

(1+�3Ih�i;j (t))Lj
. Furthermore, we

obtain equation (18). Hence, we can acquire an optimal control system. Analysis shows that

slaughtering poultry and treatment for humans are useful measures to control the spread of avian

in
uenza.

6. Numerical Simulation of the Stability of Equilibrium Points

In this section, we want to verify our theoretical results through numerical simulations. Sim-

ulations are based on a scale-free network with p(k) = (r � 1)m(r�1)k�r, where m represents the

smallest degree on a scale-free network nodes, r is power exponent. Let m = 1; r = 3, the number
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of nodes on a scale-free network is N = 100, and we add each new node with 3 new edges. We

choose degree k as k1 = 1; k2 = 2; k3 = 3; k4 = 4; k5 = 5; k6 = 6; k7 = 7; k8 = 8; k9 = 9. We get the

average degree of complex network structure hkia(hk
2ia) = 3:27(9:04) through simple calculation.

Example 6.1. For model (3), all parameters take the following values: �a = 350 per day, �a =

3 � 10�7 per day, �a = 0:01 per day, �a = 0:05 per day, �1 = 0:001 per day, �h = 100 per day,

�ah = 6:201 � 10�7 per day, �h = 3:91 � 10�3 per day, �h = 0:3 per day, �2 = 0:001 per day,


h = 0:01 per day, we can get R0 = 0:4838 < 1, which satisfy condition of Theorem 4.1. Fig. 1

shows the unique disease-free equilibrium point E0 is globally asymptotically stable, and the virus

will die out in the long run.

Example 6.2. For model (3), all parameters take the following values: �a = 350 per day, �a =

9 � 10�7 per day, �a = 0:01 per day, �a = 0:05 per day, �1 = 0:001 per day, �h = 100 per day,

�ah = 6:201 � 10�7 per day, �h = 3:91 � 10�3 per day, �h = 0:3 per day, �2 = 0:001 per day,


h = 0:01 per day, we can get R0 = 1:4514 > 1, which satisfy condition of Theorem 4.2. Fig. 2

shows the unique endemic equilibrium point E� is globally asymptotically stable, and the virus will

persist.
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Figure 1: The density of infected nodes with di�erent degree k = 1; 2; 3; 4; 5; 6; 7; 8; 9 when R0 < 1

Figure 2: The density of infected nodes with di�erent degree k = 1; 2; 3; 4; 5; 6; 7; 8; 9 when R0 > 1

Furthmore, we can obtain that the density of infected nodes increase with the degree k increase.
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In other words, the lager the degree k is, the higher the density of infected nodes is, which indi-

cates that the nodes having lots of relative neighbors are more likely to be infected by contacting

frequently.

7. Conclusions and Future Works

In this paper, we have investigated the epidemic dynamics of an avian in
uenza model in com-

plex heterogeneous networks. The model has two equilibrium points: the disease-free equilibrium

point E0 and the endemic equilibrium point E�. We have obtained the basic reproduction number

R0 according to the method discussed in [19]. In the following, we have proven that the disease-free

equilibrium point E0 is globally asymptotically stable if R0 < 1, and the endemic equilibrium E�

is globally asymptotically stable if R0 > 1. Furthermore, an optimal control problem is established

by taking slaughter rate and treatment for humans. We have also performed a series of numerical

experiments to con�rm the correctness of the theoretical analysis. Our future work is to propose

the stochastic avian in
uenza models with spatial di�usion on complex networks.
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