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In this article, we deal with the Dirac equation and angular momentum, which have
an important place in physics, in terms of elliptic biquaternions. Thanks to the elliptic
biquaternionic representation of angular momentum, we have expressed some useful
mathematical and physical results.We have obtain the solutions of the Dirac equation
with elliptic Dirac matrices. Then, we have express the elliptic biquaternionic rota-
tional Dirac equation. This equation could be interpreted as the combination of
rotational energy and angular momentum of the particle and anti particle. There-
fore, we also discuss the rotational energy momentum in the Euclidean space, the
elliptic biquaternionic form of the relativistic mass. Further, we expressed the spinor
wave function with elliptic biquaternions. Accordingly, we also have show elliptic
biquaternionic rotational Dirac energy-momentum solutions through this function.
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1 INTRODUCTION

Quantum mechanics has an important place in physics. The Dirac equation is the wave equation of relative quantum mechanics.
The Dirac equation has provided the beginning of quantum field theory. Quaternions and biquaternions have the necessary
algebraic structure to explain physical and mathematical event. There are many studies on quaternions and biquaternions in
physics. Some mathematical and physical studies about quaternions and biquaternions are as follows: Quaternionic Lorentz
Group and Dirac Equation1, On a Generalization of Quantum Mechanics by Quaternions2-10 are examples. A.W. Conway
studied Dirac’s relativistic equation and used complex quaternions. The negative energy particles seen in the Dirac equation
are not actually negative, they are actually positive energy anti-particles by quantum field theory. Elliptic biquaternions include
biquaternions. In this way, it can be used in many areas in physics such as quantum mechanics, special and general relativity.
Therefore, they are useful numbers in physics. Elliptic biquaternionic physical studies will be investigated by us for the first
time. The organization of the paper is as follows: In section 2, we give basic concepts, features of elliptic biquaternion algebra.
In section 3, we define elliptic Pauli matrices and elliptic base matrices of elliptic biquaternions. In section 4, we express the
elliptic biquaternionic angular momentum. In section 5, we discuss an elliptic biquaternionic Dirac-like new equation for free
particle and its solutions .Then, we express the elliptic biquaternionic Dirac equation for the rotating particle. In the last section,
we give conclusions of the study. The conclusion and discussion section of the study is in the last section.

†This is an example for title footnote.
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2 ELLIPTIC BIQUATERNIONS

The set of elliptic biquaternions is defined as follows:

ℍℂp =
{

Q = q + Iq′ = A0e0 + A1e1 + A2e2 + A3e3 ∶ A0, A1, A2, A3 ∈ ℂp, I2 = p<0
}

(1)

where Ai = ai + Ia′i, 0 ≤ i ≤ 3 denote elliptic numbers. The base elements of the elliptic biquaternion are followed the
relations

e0
2 = e0 = I4, e1

2 = e22 = e32 = −I4, ejek = �jke0 − "jklel
where the symbols �jk and "jkl are Kronecker, Levi Civita symbols, respectively. An elliptic biquaternion is expressed as:

Q =
(

a0 + Ia′0
)

e0 +
(

a1 + Ia′1
)

e1 +
(

a2 + Ia′2
)

e2 +
(

a3 + Ia′3
)

e3 (2)

where a0,a1,a2, a3 ∈ ℝ and I2 = p < 0. Any elliptic biquaternion can be written as scalar and vectorial parts as follows:

Q = S (Q) + V (Q) = A0 +A. (3)

The quaternionic product of two elliptic biquaternions Q and P as,

Q⊗ P = A0B0 + A0B + B0A −A.B +A ∧ B (4)

where Q = A0 + A and P = B0 + B and are also defined. Here “.” and “∧” show the inner product (scalar) and the cross
product respectively. The result of this product is the elliptic biquaternion. In addition, this product is non-comutative, but it is
associative. The conjugate of an elliptic biquaternion is defined in three ways as follows:

Q̄ = A0e0 − A1e1 − A2e2 − A3e3, (quaternionic conjugate) (5)

Q∗ = (A0)∗e0 + (A1)∗e1 + (A2)∗e2 + (A3)∗e3, (complex conjugate) (6)

Q† =
(

Q̄
)∗ = (Q∗) = (A0)∗e0 − (A1)∗e1 − (A2)∗e2 − (A3)∗e3. (total conjugate) (7)

The inner product of Q and P elliptic biquaternions is defined as follows:

⟨Q,P⟩ = 1
2
(

Q̄⊗ P + P̄⊗Q
)

= 1
2
(

Q⊗ P̄ + P⊗ Q̄
)

. (8)

On the other hand, the inner product of these two elliptic biquaternions is defined in the following way: Using this inner product
semi-norm of Q is expressed as follows:

N(Q) = ⟨Q,Q⟩ = Q⊗ Q̄ = Q̄⊗Q = A02 + A12 + A22 + A32. (9)

Since the above equation is Ai = qi + Iq′i ∈ ℂp (0 ⩽ i ⩽ 3) it is seen from the above equation that N(Q) can be equal to zero
while. Accordingly, in the algebra ofQ ≠ 0 elliptic biquaternions there areQ elliptic biquaternion which provideQ⊗Q̄ = Q̄⊗Q
equality while, and the algebra of ℍℂp elliptic biquaternions contains zero divisors. Therefore, semi-norm is used instead of
norm in elliptic biquaternion space in order to be appropriateness to the general literature11. Provided the semi-norm is different
from zero the inverse of an elliptic biquaternion is given Q−1 = Q̄

N(Q) . The module of this elliptic biquaternion Q is defined as

N(Q) = Q⊗ Q̄ = Q̄⊗Q = |Q|2

and indicated by |Q|. In the case of

N(Q) = ⟨Q,Q⟩ = Q⊗ Q̄ = Q̄⊗Q = A02 + A12 + A22 + A32 = 1

of this elliptic biquaternion, it is defined as unit elliptic biquaternions11. In equation (8), ifA0 andB0 are zero, then the following
equations can be written as

1
2
(

Q⊗ P̄ + P⊗ Q̄
)

= 1
2
(

Q̄⊗ P + P̄⊗Q
)

= ⟨B,A⟩ (10)
and

1
2
(

P̄⊗Q − Q̄⊗ P
)

= 1
2
(

P⊗ Q̄ −Q⊗ P̄
)

= A ∧ B. (11)

Theorem 1. If an elliptic biquaternion Q is defined as Q = cosh(p �p
2
) + 1

I
q̂ sinh(p �p

2
) then the Q is unit elliptic biquaternion.
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Proof. Let v⃗ = v1e1 + v2e2 + v3e3 be a velocity vector and pure unit elliptic biquaternion q̂ =
√

|p| v1e1+v2e2+v3e3√

<⃗v,⃗v>
. Then Q =

cosh(py)+ 1
I
q̂ sinh(py) can be written as unit elliptic biquaternion. The conjugate of the elliptic biquaternionQ is Q̄ = cosh(py)−

1
I
q̂ sinh(py). Here, if an elliptic angular y is chosen as y = �p

2
then semi-norm of the elliptic biquaternion is written as Q⊗ Q̄ =

N(Q) = cosh2(p �p
2
) − sinh2(p �p

2
) = 1. Thus, it is seen that Q = cosh(p �p

2
) + 1

I
q̂ sinh(p �p

2
) is a unit elliptic biquaternion12.

3 MATRIX REPRESENTATIONS OF ELLIPTIC BIQUATERNIONS

3.1 The 2x2 Matrix Representation of Elliptic Biquaternions
For the matrix representation of elliptic biquaternions, the following isomorphism has been described by Ozen et al.13

� ∶ ℍℂp →M2(ℂp),Q = A0 + A1i + A2j + A3k→ � (Q) =
⎡

⎢

⎢

⎣

A0 +
1

√

|p|
IA1 − A2 −

1
√

|p|
IA3

A2 −
1

√

|p|
IA3 A0 −

1
√

|p|
IA1

⎤

⎥

⎥

⎦

.

We define the elliptic Pauli spin matrices as follows:

�
(

e0
)

= �0 =
[

1 0
0 1

]

, �
(

e1
)

= �1 =

[ p
√

|p|
0

0 − p
√

|p|

]

, �
(

e2
)

= �2 =
[

0 −I
I 0

]

, �
(

e3
)

= �3 =

[

0 − p
√

|p|
− p

√

|p|
0

]

(12)

where I2 = p < 0. The unit bases of the elliptic biquaternion obtained with the help of the matrices described above are defined
as follows:

e0 ≃
[

1 0
0 1

]

, e1 ≃

[ I
√

|p|
0

0 − I
√

|p|

]

, e2 ≃
[

0 −1
1 0

]

, e3 ≃

[

0 − I
√

|p|

− I
√

|p|
0

]

. (13)

Thus the elliptic biquaternion Q = A0 + A1e1 + A2e2 + A3e3 can be represented in type 2 × 2 as

Q ≅

[

A0 +
I

√

|p|
A1 −A2 −

I
√

|p|
A3

A2 −
I

√

|p|
A3 A0 −

I
√

|p|
A1

] (14)

The determinant of the elliptic biquaternion given in here as

Q ≅

[

A0 +
I

√

|p|
A1 − A2 −

I
√

|p|
A3

A2 −
I

√

|p|
A3 A0 −

I
√

|p|
A1

]

.

Thus, we get
detQ = N (Q) .

3.2 The Matrix Representation of Elliptic Biquaternions
Elliptic biquaternions can be represented by 4 × 4 matrices. The base of an elliptic biquaternion and p− complex number I can
be written in matrix form as follows:

e0 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, e1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−I
√

|p|
0 0 0

0 I
√

|p|
0 0

0 0 −I
√

|p|
0

0 0 0 I
√

|p|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

e2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎦

, e3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 −I
√

|p|
0 0

−I
√

|p|
0 0 0

0 0 0 −I
√

|p|

0 0 −I
√

|p|
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, I4 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

(15)



4 AUTHOR ONE ET AL

The elliptic biquaternion Q with the help of these matrices is obtained in the form of 4 × 4 matrix as follows:

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A0 −
I

√

|p|
A1 A2 −

I
√

|p|
A3 0 0

−A2 −
I

√

|p|
A3 A0 +

I
√

|p|
A1 0 0

0 0 A0 −
I

√

|p|
A1 A2 −

I
√

|p|
A3

0 0 − A2 −
I

√

|p|
A3 A0 +

I
√

|p|
A1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

We express in 4 × 4 matrices types the elliptic biquaternion given in (2) as follows:

Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

a0 −
I

√

|p|
a1 a2 −

I
√

|p|
a3 I(a′0 −

I
√

|p|
a′1) I(a′2 −

I
√

|p|
a′3)

−a2 −
I

√

|p|
a3 a0 +

I
√

|p|
a1 − I(a2 +

I
√

|p|
a3) I(a′0 +

I
√

|p|
a′1)

I(a′0 −
I

√

|p|
a′1) I(a′2 −

I
√

|p|
a′3) a0 −

I
√

|p|
a1 a2 −

I
√

|p|
a3

−I(a2 +
I

√

|p|
a3) I(a′0 +

I
√

|p|
a′1) − a2 −

I
√

|p|
a3 a0 +

I
√

|p|
a1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The elliptic biquaternion can be represented by 8 × 8 matrices. For this, let’s define the Γ0, Γ1, Γ2, Γ3 base matrices as,

Γ0 =
[

�0 0
0 �0

]

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, Γ1 =

[

1
I
�2 0
0 − 1

I
�2

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤

⎥

⎥

⎥

⎥

⎦

Γ2 =
[

0 −�0
�0 0

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, Γ3 =

[

0 1
I
�2

1
I
�2 0

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

.

(16)

These matrices are satisfy multiplication relations basis of elliptic biquaternion in the following: Γ02 = Γ0 = I, ΓjΓk =
�jkΓ0 − "jklΓl where the � and " expressions show the Kronecker Delta and Levi-Civita symbols, respectively. Thus for an
elliptic biquaternion Q = A0Γ0 + A1Γ1 + A2Γ2 + A3Γ3 the known left Hamilton matrix using quaternionic bases given in (16)
can be given as:

H−(Q) =

⎡

⎢

⎢

⎢

⎢

⎣

A0 − A1 − A2 − A3
A1 A0 A3 −A2
A2 −A3 A0 A1
A3 A2 −A1 A0

⎤

⎥

⎥

⎥

⎥

⎦

. (17)

We can show left Hamilton matrix with H−(Q). To find the 8 × 8 matrix representation expression of the elliptic biquaternion
Q, let’s first define the following matrices with the help of the matrices Γ as,

T = � × Γ0 =

[

0 Γ0
√

|p|
−Γ0

√

|p| 0

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0
√

|p| 0 0 0
0 0 0 0 0

√

|p| 0 0
0 0 0 0 0 0

√

|p| 0
0 0 0 0 0 0 0

√

|p|
−
√

|p| 0 0 0 0 0 0 0
0 −

√

|p| 0 0 0 0 0 0
0 0 −

√

|p| 0 0 0 0 0
0 0 0 −

√

|p| 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

where quaternionic units provide the following multiplication rules as,

�0
2 = −�j2 = I8 = �0, �1�2 = −�3, �2�3 = −�1, �3�1 = −�2, �2�1 = �3, �3�2 = �1, �1�3 = �2.



AUTHOR ONE ET AL 5

also let we define matrices of �j , j = 0, 1, 2, 3 and � elliptic matrix, 2 × 2 as,

�j = �0 × Γj
=

[

Γ
j
0

0 Γ
j

]

(j = 1, 2, 3) (19)

and
K =

[

0 1
−1 0

]

, � =
√

|p|
[

0 1
−1 0

]

(20)

where K and × denote generator matrix, kronecker product, respectively. From the equation (2) can be written the following
equation as,

H−(Q) = (a0 + T a′0)�0 + (a1 + T a
′
0)�1 + (a2 + T a

′
0)�2 + (a3 + T a

′
0)�3 (21)

We obtain the real matrix representation from the expression (17) - (22) as follows:

ℍ−(Q) ≅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0 −a1 −a2 −a3
√

|p|a′0 −
√

|p|a′1 −
√

|p|a′2 −
√

|p|a′3
a1 a0 a3 −a2

√

|p|a′1
√

|p|a′0
√

|p|a′3 −
√

|p|a′2
a2 −a3 a0 a1

√

|p|a′2 −
√

|p|a′3
√

|p|a′0
√

|p|a′1
a3 a2 −a1 a0

√

|p|a′3
√

|p|a′2 −
√

|p|a′1
√

|p|a′0
−
√

|p|a′0
√

|p|a′1
√

|p|a′2
√

|p|a′3 a0 −a1 −a2 −a3
−
√

|p|a′1 −
√

|p|a′0 −
√

|p|a′3
√

|p|a′2 a1 a0 a3 −a2
−
√

|p|a′2
√

|p|a′3 −
√

|p|a′0 −
√

|p|a′1 a2 −a3 a0 a1
−
√

|p|a′3 −
√

|p|a′2
√

|p|a′1 −
√

|p|a′0 a3 a2 −a1 a0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Also, we can show this matrix in 2 × 2 type as follows:

ℍ−(Q) ≅
[

√

|p|ℍ−(Q)
√

|p|ℍ−(Q′)
−
√

|p|ℍ−(Q′)
√

|p|ℍ−(Q)

]

. (22)

This matrix is antisymmetric matrix.

4 ELLIPTIC BIQUATERNIONIC REPRESENTATION OF ANGULAR MOMENTUM

Angular momentum is a vector quantity in the following manner

L⃗ = r⃗ ∧ P⃗ (23)

where r⃗ and P⃗ are position and momentum vectors, respectively. If r⃗ and P⃗ vectors are written in the elliptic biquaternionic
notation, the following equations are obtained as,

R = r0e0 + Ir1e1 + Ir2e2 + Ir3e3 = r0 + Ir

and
P = P0e0 + IP1e1 + IP2e2 + IP3e3 = P0 + IP .

Using by eq. (23), the elliptic biquaternionic angular momentum can be written as

L = R⊗ P∗ . (24)

Here, “R" represents the elliptic biquaternionic representation of the position, while “P" is the elliptic biquaternionic
representation of momentum. Thus, from the equation (24) is obtained as
L =

[

r0P0 + I2(r1P1 + r2P2 + r3P3)
]

e0 + I
[

−r0P1 + P0r1 + I
(

r2P3 − r3P2
)]

e1 + I
[

−r0P2 + P0r2 + I
(

r3P1 − r1P3
)]

e2
+ I

[

−r0P3 + P0r3 + I
(

r1P2 − r2P1
)]

e3.
If momentum values are written, then we get

L =
[

r0m0c + I2(r1m1v1 + r2m2v2 + r3m3v3)
]

e0 + I
[

−r0m1v1 + m0cr1 + I
(

r2m3v3 − r3m2v2
)]

e1
+ I

[

−r0m2v2 + m0cr2 + I
(

r3m1v1 − r1m3v3
)]

e2 + I
[

−r0m3v3 + m0cr3 + I
(

r1m2v2 − r2m1v1
)]

e3
(25)



6 AUTHOR ONE ET AL

To put it simply, the elliptic biquaternionic angular momentum can be expressed as follows:

L = L0e0 + IL1e1 + IL2e2 + IL3e3 (26)

where L0 ∼ E0 denotes elliptic biquaternionic energy and Lj (j = 1, 2, 3) elliptic biquaternionic angular momentum. The
elliptic biquaternionic energy can be definde as

E0 ∼ L0 = r0P0 + I2 (r.P ) (27)

where r0P0 denotes rest mass-energy of a particle and I2 (r.P ) represents moving the projective energy. Also, the elliptic
biquaternionic angular momentum which the coefficient of ej can be written as following:

Lj =
(

−r0P j + P0rj
)

+ I2(
(

rj ∧ P j
)

)(∀j = 1, 2, 3) . (28)

Here, the first term is the longitudinal component, the second term is the transverse component of the elliptical biquaternionic
momentum. Then, the elliptic biquaternionic angular momentum can be expressed as follows:

L = E0e0 + ILj (∀j = 1, 2, 3) (29)

If necessary to make a few comments mathematically and physically; If r0P0 = 0 is, L0 = −I2 (r.p) then the three-dimensional
state of energy and angular momentum is considered. if r = P = 0 is taken in equation (27), since it will be E0 ≃ r0P0 and
L0 ≃ 0 only a particle with rest mass energy and no rotational motion can be mentioned. Also, if r∧ p = 0 is the case, it can be
expressed as pure energy. But if r.p = 0 is then the pure angular momentum expression is valid. Elliptic biquaternionic angular
momentum since the scalar part expresses elliptic biquaternionic energy and the vector part expresses pure angular momentum,
a few situations described above occur conditionally. It is possible to talk about a particle or antiparticle that exhibits an elliptical
behavior with rotational energy and angular momentum if the statements given are not equal to zero depending on the above
situations.

5 ELLIPTIC BIQUATERNIONIC DIRAC EQUATION

It is predicted that wave mechanics can explain more events than classical mechanics. However, the wave equation does not
include the electron spin given by Shrödinger. In addition, the wave equation is not invariant compared to Lorentz transforma-
tions. As a result, the speed of the Shrödinger equation is valid for low energy systems that are too small compared to the speed
of light. In order to incorporate spin into the wave mechanics and attribute spins to the particles through the Shrödinger equation,
Wolfgang Pauli first thought of wave function  (r⃗) as a two-component vector, which corresponds to one of the possible ori-
entations of the spin. Although the concept of this new wave function constitutes progress, it is not invariant that is, it is not
relativist according to the Lorentz transformation for the new wave equation. In 1928, P.A.M. Dirac generalized the Schrödinger
wave equation to both spin and remain invariant according to Lorentz transformations. It is known from Dirac’s theory that the
presence of positron, the anti-particle of the electron, is one of the greatest achievements for conceptual physics. Now the new
elliptical bicuaternionic definition of the Dirac equation will be investigated for the free electron. The expression of energy in
relativity is known as follows:

E2 = m02c4 + p2c2. (30)
Thus, it was possible to write the Dirac equation for a free particle. In this case, Hamiltonian independent of the position vector
r⃗ and the time t as a linear expression of energy and momentum is defined as follows:

H = c�⃗.P⃗ + �mc2.

Here is P⃗ = −iℏ )
)t
according to Correspondance Principle. � and �⃗(�1, �2, �3) are of independent r⃗, t, P⃗ and E.

E = H = iℏ )
)t
can be written as,

(

E − c�⃗.P⃗ − �mc2
)

 = 0 (31)

or
(

iℏ )
)t
+ iℏc�⃗.∇⃗ − �mc2

)

 = 0 where �1, �2, �3 and � are n × n matrices and  is the spin wave function of the particle.
E, P and m represent energy, momentum and mass, respectively. On the other hand, let the pure elliptic biquaternions � and P
be given as follows:

� = 1
I
�1e1 +

1
I
�2e2 +

1
I
�3e3, P = IP1 + IP2 + IP3. (32)
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If the equation (31) is multiplied by
(

E + c�⃗.P⃗ − �mc2
)

 = 0 from the left, the elliptic expression of energy in relativity is
obtained as

(

E2 − |p| c2
(

Px
2 + Py2 + Pz2

)

− m2c4
)

 = 0 (33)
which satisfy the following situations:

�1�2 + �2�1 = 0
�2�3 + �3�2 = 0
�3�1 + �1�3 = 0

and
�1� + ��1 = 0
�2� + ��2 = 0
�3� + ��3 = 0 .

Also � =
{

�1, �2, �3
}

and � are 4 × 4 elliptic Dirac matrices, which can be written as follows:

�1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 p
√

|p|
0

0 0 0 −p
√

|p|
p

√

|p|
0 0 0

0 −p
√

|p|
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, �2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

, �3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −p
√

|p|
0 0 −p

√

|p|
0

0 −p
√

|p|
0 0

−p
√

|p|
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

� =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

, I =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 I 0
0 0 0 I
I 0 0 0
0 I 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(34)

where I is elliptic number in the matrix form and the rules �12 = �22 = �32 = −p = |p| , �2 = 1 and I2 = p < 0 is satisfied.
The � matrices can be defined with elliptic biquaternionic unit bases as follows:

�1 = −I4e1
�2 = −I4e2
�3 = I4e3.

(35)

Here, Dirac matrices for the free particle are associated with quaternionic bases. eliptic Biquaternionic Dirac equation for the
free particle can be written as follows

(

E − cP .� − �mc2
)

⊗ e0 ⊗ = 0 (36)
where can write as P .� = P1�1 + P2�2 + P3�3. and spinor wafe function  =  0e0 + I 1e1 + I 2e2 + I 3e3 . If the elliptic
terms P and � in the equation (32) are written in equation (36) then is obtained as

(

E − cP1�1 − cP2�2 − cP3�3 − mc2�
)

⊗ e0 ⊗ = 0. (37)

Thus, from the equation (35) is obtained as
((

E − mc2�
)

e0 + IcP1e1 + IcP2e2 − IcP3e3
)

⊗ = 0.

The expression matrix form of equation (37) is

E

⎡

⎢

⎢

⎢

⎢

⎣

 1
I 2
I 3
I 4

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

mc2 0 p
√

|p|
cP1 −IcP2 −

p
√

|p|
cP3

0 mc2 −p
√

|p|
cP3 + IcP2

−p
√

|p|
cP1

p
√

|p|
cP1 −IcP2 −

p
√

|p|
cP3 −mc2 0

IcP2 −
p

√

|p|
cP3 − p

√

|p|
cP1 0 −mc2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

 1
I 2
I 3
I 4

⎤

⎥

⎥

⎥

⎥

⎦

.
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In this case we get the solutions of new like elliptic Dirac equations

(

E − mc2
)

 1 −
p

√

|p|
cPxI 3 +

(

IcPy +
p

√

|p|
cPz

)

I 4 = 0

(

E − mc2
)

I 2 +

(

p
√

|p|
cPz − IcPy

)

I 3 +
p

√

|p|
cPxI 4 = 0

(

E + mc2
)

I 3 −
p

√

|p|
cPx 1 +

(

IcPy +
p

√

|p|
cPz

)

I 2 = 0

(

E + mc2
)

I 4 −
p

√

|p|
cPxI 2 +

(

IcPy −
p

√

|p|
cPz

)

I 3 = 0 .

Taking equal toE = 0 in the new elliptic biquaternionic formula of the Dirac equation known for the free particle in the equation
(31) which gives energy momentum relations depending on the rotational motion of the electron in space-time can be extended
as follows:

(

c� ⊗ L + �Mc2
)

⊗ = 0 . (38)
Here �,L, � and M are elliptic biquaternionic variables. We can think of c as the maximum speed for electrons. Relativistic
elliptic biquaternionic massM which can be expressed as:

M =
"0
c2
e0 + I

|

|

|

|

p1
v1

|

|

|

|

e1 + I
|

|

|

|

p2
v2

|

|

|

|

e2 + I
|

|

|

|

p3
v3

|

|

|

|

e3 ≃ m0e0 + Im1e1 + Im2e2 + Im3e3 (39)

where c is the rest mass and m1, m2 and m3 are the mass of the moving particle of the elliptic biquaternion having velocities
v1, v2 and v3 corresponding to unit bases e1, e2 and e3. The 4 × 4 elliptic Dirac matrices �, the matrix � and the elliptic number
in the matrix form I4 can be defined as:

�0 =
[

�0 0
0 �0

]

, �j =
[

�j 0
0 �j

]

, (∀j = 1, 2, 3)

� =
[

I2 0
0 −I2

]

, I4 =
[

0 I2
I2 0

]

.
(40)

Now, using the quaternionic product � ⊗ L, which is the first term in the expression (38) can be expressed together with the
equations in (32) as follows:

� ⊗ L =
(

�0e0 +
1
I
�1e1 +

1
I
�2e2 +

1
I
�3e3

)

⊗
(

L0e0 + IL1e1 + IL2e2 + IL3e3
)

� ⊗ L =
(

�0L0 − �1L1 − �2L2 − �3L3
)

e0 +
(

I�0L1 +
1
I
L0�1 +

1
I2
�2L3 −

1
I2
�3L2

)

e1

+
(

I�0L2 +
1
I
L0�2 +

1
I2
�3L1 −

1
I2
�1L3

)

e2 +
(

I�0L3 +
1
I
L0�3 +

1
I2
�1L2 −

1
I2
�2L1

)

e3
which can be further simplfy as

� ⊗ L =
[

�0E0 −
1
I2
�.L

]

e0 +
[

I�0Lj +
1
I
L0�j +

1
I2

(

�j ∧Lj
)

]

ej (∀j = 1, 2, 3) . (41)

Correspondingly, the second term in equation (38) i.e. �Mc2 can be expressed as,

�Mc2 = �m0c2e0 + I�m1c2e1 + I�m2c2e2 + I�m3c2e3. (42)

Therefore, from equations (41) and (42), the elliptic rotational Dirac equation can be written as
(

c� ⊗ L + �Mc2
)

⊗ =
(

�0E0 −
1
I2
�.L

)

e0 +
(

I�0Lj +
1
I
L0�j +

1
I2

(

�j ∧Lj
)

)

ej + �m0c2e0

+ I�m1c2e1 + I�m2c2e2 + I�m3c2e3 = 0 (∀j = 1, 2, 3) .
(43)

The elliptic biquaternionic equation (43) contains both scalar and vectorial components that give biquaternionic energy and
angular momentum of electrons. The real part corresponding to e0 gives the elliptic Dirac rotational energy and the part cor-
responding to ej (j = 1, 2, 3) gives the elliptic rotational momentum. The elliptic biquaternionic spinor is defined as follows:

 =  0e0 + I 1e1 + I 2e2 + I 3e3 =
(

 0 + I 1e1
)

+
(

I 2 − I 3e1
)

e2 =  a + I be2 . (44)
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This spin wave function can be expressed as two-component and four-component follows

 =
[

 a
 b

]

and

 =

⎡

⎢

⎢

⎢

⎢

⎣

 0
I 1
I 2
I 3

⎤

⎥

⎥

⎥

⎥

⎦

.

We can use these matrices to define elliptic biquaternionic energy and angular momentum solutions. For energy solutions of the
elliptic biquaternionic rotational Dirac equation, we can express the scalar part in equation (43) as follows:

c
(

�0E0 −
1
I2
�.L + �m0c2e0

)

= 0 (45)

and with the help of the matrices in equation (40) we get the following matrix expression as,
[

c
(

E0 − m0c2
) 1

I
(e.L)

1
I
(e.L) c

(

E0 + m0c2
)

]

[

 a
 b

]

(46)

where e is defined as e = I(−e1,−e2, e3).

c
(

E0 − m0c2
)

 a +
1
I
(e.L) b = 0. (47)

c
(

E0 + m0c2
)

 b +
1
I
(e.L) a = 0. (48)

The equations (47) and (48) obtained represent the positive and negative energy solutions of the particles. If  a and  b values
are taken as a unified function of energy and momentum in these equations then the following solutions are obtained as

c
(

E0 − m0c2
)

 0
(

E0,L
)

+ 1
I
(e.L) 2

(

E0,L
)

= 0

c
(

E0 − m0c2
)

 1
(

E0,L
)

+ 1
I
(e.L) 3

(

E0,L
)

= 0

c
(

E0 + m0c2
)

 2
(

E0,L
)

+ 1
I
(e.L) 0

(

E0,L
)

= 0

c
(

E0 + m0c2
)

 3
(

E0,L
)

+ 1
I
(e.L) 1

(

E0,L
)

= 0.

These statements represent the positive and negative energy solution of the rotating particles. The elliptic solutions obtained
here are associated with elliptic biquaternionic bases corresponding to all positive and negative energy spinners particle and anti
particle. These solutions demonstrate the elliptic behavior of the elliptic biquaternionic quantumwave spinor function associated
with the interaction between elliptic biquaternionic spin and orbital angular momentum.

6 CONCLUSIONS

In this article, we present a study of the Dirac equation and angular momentum in the elliptic biquaternionic field. Elliptic
biquaternion is an algebraic structure consisting of elliptic components, including both biquaternions and quaternions. Dirac
equations explain relativistic systems as they are known and have an important place in physics. Therefore, elliptic biquaternions
can be used to describe important equations in many physical fields such as quantum mechanics, general and special relativity.
In our study and we defined the elliptic matrices of its type. We presented the matrix representation of elliptic biquaternionic
expressions with these matrices we have defined. These matrices are useful matrices for the Dirac equation. With these matrices
we have defined for elliptic biquaternions, we have defined new elliptic Dirac matrices. We associated the elliptic Dirac matri-
ces with elliptic biquaternionic bases. We obtained the solutions of the Dirac equation in (37) with the matrices given in (34)
�. Then, it is given in the new elliptic biquaternionic formula (38), which gives the energy momentum relations depending on
the motion of the space-time electron of the known Dirac equation for the free particle. In addition, the elliptic biquaternionic
mass is defined in equation (39). The mass here is associated with the scalar part rest mass corresponding to the unit bases of
the elliptic biquaternion, and the vectorial part as the moving mass. Moreover, the Dirac equation for the rotating particle was
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written in a simpler and more compact form with the equation (43), which includes the elliptic biquaternionic rotational energy
and angular momentum. Then, elliptic biquaternionic spinor is defined. Thanks to the elliptic biquaternionic definition of this
wave function, elliptic biquaternionic energy and angular momentum solutions have been expressed. With these solutions,
the elliptic behavior of the quantum wave spinor function associated with the interaction between the elliptic biquaternionic
spin and the orbital angular momentum is expressed. These expressions are very useful for fields such as quantum mechanics
general and specific relativity.
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