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Abstract

This work is devoted to the study of existence of positive solutions and hydrodynamic
limit of the steady Boltzmann equation with in-flow boundary condition. The proof is
based on a L6 − L∞ framework developed by [10] and a refined positivity-preserving
scheme in deriving positivity of solutions with in-flow boundary condition and external
force. The incompressible Navier–Stokes–Fourier limit with Dirichlet boundary condition
is justified for in-flow boundary data as small perturbation of a global Maxwellian.

1 Introduction

In this paper we consider existence of positive solutions and hydrodynamic limit of the fol-
lowing steady Boltzmann equation with in-flow boundary condition

v · ∇xFε + ε2Φ · ∇vFε =
1

ε
Q(Fε, Fε) in Ω× R3, (1.1)

Fε = Hε on γ−, (1.2)

which models the motion of a rarefied gas, subjecting to the action of an external field
Φ = Φ(x). Here Fε(x, v) ≥ 0 represents the distribution density of the gas molecules with
position x ∈ Ω and velocity v ∈ R3, and Ω ⊂ R3 is a C3 bounded domain. The collision
operator takes the form

Q(F,G)(v) : =

ˆ
R3

ˆ
S2
B(v − v∗, ω)[F (v′)G(v′∗)− F (v)G(v∗)]dωdv∗

: = Q+(F,G)(v)−Q−(F,G)(v),

where v′ = v − [(v − v∗) · ω]ω, v′∗ = v∗ + [(v − v∗) · ω]ω, and B stands for the hard spheres
cross section with Grad’s angular cutoff B(v− v∗, ω) = |(v− v∗) · ω|. The positive parameter
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ε > 0 represents the Knudsen number, proportional to the mean free time and is very small.
Let

Mρ,u,T := ρ(2πT )−
3
2 e−

|v−u|2
2T

stand for a local Maxwellian with density ρ, bulk velocity u and temperature T , and

µ ≡M1,0,1 := (2π)−
3
2 e−

|v|2
2

be a global Maxwellian.
The boundary condition (1.2), which is called the in-flow boundary condition, represents

that the number density on the incoming set is prescribed [24]. More precisely, we denote the
phase boundary in the space Ω × R3 by γ = ∂Ω × R3, and define the outgoing set γ+, the
incoming set γ− and the singular set γ0 as

γ± = {(x, v) ∈ ∂Ω× R3 : n(x) · v ≷ 0},
γ0 = {(x, v) ∈ ∂Ω× R3 : n(x) · v = 0}.

Then the in-flow function Hε in (1.2) is given by a local Maxwellian

Hε = M1+ε2ρ̃,ε2ũ,1+ε2θ̃, (1.3)

with prescribed functions ρ̃, ũ and θ̃ independence of ε. Here, for simplicity, the in-flow data
is taken as small perturbation of the global Maxwellian M1,0,1 with amplitude of order O(ε2),
which will lead to homogeneous Dirichlet boundary condition for hydrodynamic equations. In
fact, the in-flow data on density and temperature can also be taken as small perturbation with
amplitude of order O(ε), which will eventually export non-homogeneous Dirichlet boundary
condition for hydrodynamic equations, cf. Remark 1.2.

The Boltzmann equation is the cornerstone of kinetic theory connecting the microscop-
ic and macroscopic theory of gases and fluids. Therefore, the hydrodynamic limit of the
Boltzmann equation has been drawn a lot of attention. Justifying these limiting processes
rigorously has been an active research field in the past several decades, and a lot of progress
has been made, cf. [2, 3, 4, 5, 7, 13, 14, 16, 17, 19, 22, 23, 25, 26].

However, less is known for hydrodynamic limit of the Boltzmann equation with in-flow
boundary condition. Recently, Jiang and Zhang [20, 21] studied global renormalized solu-
tions and Navier–Stokes limit of the Boltzmann equation for long rang interaction and cutoff
collision kernels. However, due to the lack of L1 and entropy estimates, this framework of
DiPerna–Lions’ renormalized solutions [8] is not available to the steady Boltzmann equation,
which is indeed an important topic [15]. Particularly, Esposito, Guo, Kim and Marra [10]
developed a L6–L∞ framework to study hydrodynamic limit of the steady Boltzmann equa-
tion with diffuse boundary condition, and proved the positivity of steady solutions through
analyzing the asymptotic behavior of solutions to the corresponding time-dependent Boltz-
mann equation. Then Esposito, Guo and Marra extended the study to exterior domain [11]
and constructed a positivity-preserving scheme for steady solutions similarly as Arkeryd and
Nouri [1].

In this paper, inspired by the works [1, 10, 11, 20, 21], we consider the steady Boltzmann
equation with in-flow boundary condition (1.1)–(1.2) and seek for its positive solutions and
hydrodynamic limit. More precisely, we show that (1.1)–(1.2) has a unique positive solution
of the form

Fε = µ+ ε
√
µfε, (1.4)
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and the perturbation fε converges to

f∗ = [ρ+ u · v + θ
|v|2 − 3

2
]
√
µ (1.5)

weakly in L2(Ω× R3). Here (ρ, u, θ) solves the steady incompressible Navier–Stokes–Fourier
system (INSF for short) with Dirichlet boundary condition

u · ∇xu+∇xp = η∆xu+ Φ, ∇x · u = 0 in Ω, (1.6)

u · ∇xθ = κ∆xθ, ∇x(ρ+ θ) = 0 in Ω, (1.7)

u(x) = 0, θ(x) = 0 on ∂Ω, (1.8)

where η, κ and p represent viscosity, heat conductivity and pressure, respectively. Moreover,
we construct a refined positivity-preserving scheme directly for the solution of the steady
Boltzmann equation with in-flow boundary condition, even in the presence of an external
force.

To state the main result accurately, we introduce some notations. Let

Lf := − 1
√
µ

[
Q(µ,

√
µf) +Q(

√
µf, µ)

]
, Γ(f, g) :=

1
√
µ
Q(
√
µf,
√
µg)

stand for the linearized collision operator and nonlinear collision operator, respectively. The
null space of L, which we denote by N(L), is a five-dimensional subspace of L2(R3

v)

N(L) = span{√µ, v√µ, |v|
2 − 3

2

√
µ}.

Let P represent the orthogonal projection of L2(R3
v) onto N(L), that is,

Pf = a
√
µ+ b · v√µ+ c

|v|2 − 3

2

√
µ for f ∈ L2(R3

v).

Let (I−P)f = f −Pf be the projection on the orthogonal complement of N(L). It is known
that Lf = νf −Kf , where ν = ν(v) is collision frequency defined by

ν(v) :=
1
√
µ
Q−(
√
µ, µ) =

ˆ
R3

ˆ
S2
|(v − v∗) · ω|µ(v∗)dωdv∗, (1.9)

and

Kf :=

ˆ
R3

k(v, v∗)f(v∗)dv∗ =
1
√
µ

[Q+(µ,
√
µf) +Q+(

√
µf, µ)−Q−(µ,

√
µf)]

is a compact operator on L2(R3
v). In addition, for hard sphere cross section, there are C0, C1 >

0, such that

C0〈v〉 ≤ ν(v) ≤ C1〈v〉

with 〈v〉 :=
√

1 + |v|2.
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By substituting (1.4) into (1.1) and expanding (1.3), we find that the perturbation fε
satisfies

v · ∇xfε + ε2Φ · ∇vfε −
1

2
ε2Φ · vfε +

1

ε
Lfε = Γ(fε, fε) + εΦ · v√µ in Ω× R3, (1.10)

fε = hε on γ−, (1.11)

where

hε = ε(ρ̃+ ũ · v + θ̃
|v|2 − 3

2
)
√
µ+O(ε2). (1.12)

For notations simplicity, we use A . B to denote A ≤ CB, where C > 0 is a constant
not depending on A, B. We use 〈· , ·〉 to represent the L2(R3

v) inner product. Define

‖·‖p := ‖·‖Lp(Ω×R3) for 1 ≤ p ≤ ∞ and a weighted L2 norm ‖·‖ν := ‖ν
1
2 ·‖L2(Ω×R3) with ν given

in (1.9). For the phase boundary integration, we use | · |–norm, that is, |f |pp :=
´
γ |f(x, v)|pdγ

for 1 ≤ p <∞, where dγ = |n(x) · v|dS(x)dv and dS(x) is the surface measure. Similarly, let
|f |∞ represent sup(x,v)∈γ |f(x, v)|. We also denote |f |p,± = |f1γ± |p for 1 ≤ p <∞.

Then we can state our main results.

Theorem 1.1. Let Ω be a bounded domain in R3 with C3 boundary ∂Ω. Assume that ρ̃, ũ, θ̃ ∈
L∞(∂Ω), Φ ∈ C1(Ω) and ‖Φ‖2 � 1. Then for each 0 < ε� 1, the steady Boltzmann equation
(1.1)–(1.2) has a unique positive solution Fε = µ + ε

√
µfε, where fε satisfies (1.10)–(1.11)

and
‖Pfε‖6 + ε−1‖(I−P)fε‖ν + ε−

1
2 |fε|2,+ + ε

1
2 ‖wfε‖∞ � 1 (1.13)

with a weight w(v) = eβ|v|
2

for 0 < β � 1. Moreover,

fε → f∗ weakly in L2(Ω× R3) as ε→ 0, (1.14)

where f∗ is given by (1.5) and (ρ, u, θ) solves the steady INSF with Dirichlet boundary condi-
tion (1.6)–(1.8).

The proof of Theorem 1.1 is based on the L6 − L∞ framework developed by [10] and a
refined positivity-preserving scheme in deriving positivity of solutions.

One difficulty comes from the well-known challenge – showing the positivity of solutions to
the steady Boltzmann equation. An indirect treatment is through analyzing the asymptotic
behavior of solutions to the corresponding time-dependent Boltzmann equation, as shown in
[9, 10]. Inspired by [1, 11], we construct a refined positivity-preserving scheme directly for
the steady Boltzmann solution in the case of in-flow boundary condition and external force,
cf. Lemma 3.1.

Another feature lies in the in-flow boundary condition, where the total boundary norm
ε−

1
2 |fε|2,+, rather than its dissipation part ε−

1
2 |(1 − Pγ)fε|2,+ for the model with diffusive

boundary condition, is controlled in the uniform estimate (1.13). This further leads to different
treatment when taking limit for the boundary condition, cf. the proof of Theorem 1.1.

Remark 1.2. If the in-flow function Hε in (1.2) is given as small perturbation of the global
Maxwellian M1,0,1 with amplitude of order O(ε), that is,

Hε = M1+ερ̄,0,1+εθ̄
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with prescribed functions ρ̄, θ̄ ∈ H
1
2 (∂Ω)∩W 1,∞(∂Ω) independence of ε, then positive solution

Fε can still be obtained, but with non-homogeneous Dirichlet boundary condition in the limiting
Fourier equation

θ(x) = θ̄ on ∂Ω. (1.15)

In fact, this can be shown by constructing an auxiliary function

fw = [ρw + θw
|v|2 − 3

2
]
√
µ

where (ρw, θw) is an extension of (ρ̄, θ̄) in Ω, and translating the remainder equation and
boundary condition through Fε = µ+ ε

√
µ(fε + fw) as done in [10].

The rest of this paper is organized as follows. Section 2 concentrates on deducing linear
estimate for the remainder equation (1.10)–(1.11). In Section 3 , we construct a refined
positivity-preserving scheme for solutions to (1.1)–(1.2) and give the proof of Theorem 1.1.

2 Linear Estimate

In this section, we deduce the linear estimate for the remainder equation (1.10)–(1.11). For
this, we consider the corresponding linear problem v · ∇xf + ε2Φ · ∇vf −

1

2
ε2Φ · vf + ε−1Lf = g in Ω× R3,

f = r on γ−.
(2.1)

Firstly, we present the following L∞ estimate for the linear equation (2.1).

Lemma 2.1. Assume that f solves the equation (2.1). Then there holds

‖wf‖∞ . |wr|∞ + ε‖〈v〉−1wg‖∞ + ε−
1
2 ‖Pf‖6 + ε−

3
2 ‖(I−P)f‖2, (2.2)

where w(v) = eβ|v|
2

with 0 < β � 1.

Proof. The spirit of proving this result comes from [9, 10], but the in-flow boundary condition
here leads to different treatment along the characteristic. We just give the derivation for the
difference.

In fact, by letting
h(x, v) := w(v)f(x, v), (2.3)

it follows from (2.1) and Lemma 3 of [18] that[
v · ∇x + ε2Φ · ∇v −

1

2
ε2Φ · v + ε−1C0〈v〉

]
|h| ≤ ε−1

ˆ
R3

kβ̃(v, v∗)|h(x, v∗)|dv∗ + |wg|, (2.4)

|h| ≤ w(v)|r| for (x, v) ∈ γ−, (2.5)

where β̃ = β̃(β) and

kβ̃(v, v∗) := {|v − v∗|+ |v − v∗|−1} exp

[
−β̃|v − v∗|2 − β̃

||v|2 − |v∗|2|2

|v − v∗|2

]
. (2.6)
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Clearly, ε−1C0〈v〉 − 1
2ε

2Φ · v ∼ ε−1C0〈v〉.
Define the characteristics

Ẋ = V, V̇ = ε2Φ; X(t; t, x, v) = x, V (t; t, x, v) = v. (2.7)

Then for max{0, t1} < s ≤ t ≤ T0, there holds

d

ds

[
e−
´ t
s

C0
ε
〈V (τ ;t,x,v)〉dτ |h(X(s; t, x, v), V (s; t, x, v))|

]
≤e−

´ t
s

C0
ε
〈V (τ ;t,x,v)〉dτ 1

ε

ˆ
R3

kβ̃(V (s; t, x, v), v′)|h(X(s; t, x, v), v′)|dv′

+ e−
´ t
s

C0
ε
〈V (τ ;t,x,v)〉dτ |wg(X(s; t, x, v), V (s; t, x, v))|.

(2.8)

Along with the characteristics, (2.4) has the following expression

|h(x, v)|

≤ 1{t1<0}e
−
´ t
0

C0
ε
〈V (τ ;t,x,v)〉dτ |h(X(0; t, x, v), V (0; t, x, v))| (2.9)

+

ˆ t

max{0,t1}
ds

1

ε
e−
´ t
s

C0
ε
〈V (τ ;t,x,v)〉dτ

×
ˆ
R3

kβ̃(V (s; t, x, v), v′)|h(X(s; t, x, v), v′)|dv′ (2.10)

+

ˆ t

max{0,t1}
ds

1

ε
e−
´ t
s

C0
ε
〈V (τ ;t,x,v)〉dτ |εwg(X(s; t, x, v), V (s; t, x, v))| (2.11)

+1{t1≥0}e
−
´ t
t1

C0
ε
〈V (τ ;t,x,v)〉dτ |h(X(t1; t, x, v), V (t1; t, x, v))|, (2.12)

where X(t1; t, x, v) = xb(x, v) and V (t1; t, x, v) = vb(x, v).
Then (2.9), (2.11) and (2.12) are bounded directly by

e−
C0
ε
t‖h‖∞ + ‖wr‖∞ + ε‖〈v〉−1wg‖∞. (2.13)

With the help of the second iteration and Duhamel principle, (2.10) is bounded by

ε−
1
2 ‖Pf‖6 + ε−

3
2 ‖(I−P)f‖2 + ‖wr‖∞ + ε‖〈v〉−1wg‖∞ + o(1)‖h‖∞, (2.14)

similarly as that of Proposition 2.6 in [10]. The detail is omitted for simplicity.

In order to acquire the estimate for Pf , we need the following lemma.

Lemma 2.2. Assume that g ∈ L2(Ω×R3), r ∈ L2(γ−), Φ ∈ L∞(Ω) . Let f τ be a solution of
the following equation{

[(1− τ)ε−1ν − 1
2ε

2Φ · v]f τ + v · ∇xf τ + ε2Φ · ∇vf τ + ε−1τLf τ = g in Ω× R3,

f τ = r on γ−
(2.15)

in the sense of distribution. Then for all τ sufficiently close to 1, there holds

‖Pf τ‖2 . ε−1τ‖(I−P)f τ‖ν + ‖ g√
ν
‖2 + |f τ |2,+ + |r|2,−

+ {o(1) + ε2‖Φ‖∞}‖(I−P)f τ‖2,
(2.16)
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‖Pf τ‖6 . ε−1τ‖(I−P)f τ‖ν + ‖ g√
ν
‖2 + Cηε

− 1
2 |f τ |2,+ + ηε

1
2 ‖wf τ‖∞

+ ε−
1
2 |r|2,− + ε

1
2 |wr|∞ + {o(1) + ε2‖Φ‖∞}‖(I−P)f τ‖6.

(2.17)

Proof. The proof is similar to that of Lemma 2.12 in [10], except for dealing with boundary
terms carefully due to the in-flow boundary condition. We skip the detail for simplicity.

Define a norm

9 f9 := ‖Pf‖6 + ε−1‖(I−P)f‖ν + ε−
1
2 |f |2,+ + ε

1
2 ‖wf‖∞. (2.18)

Then we can state the following main result of this section.

Theorem 2.3. Assume that g ∈ L2(Ω × R3), r ∈ L2(γ−) and Φ ∈ L∞(Ω). Then for
0 < ε� 1, the linear problem (2.1) has a unique solution f , which satisfies

9 f9 . ε−
1
2 |r|2,− + ε

1
2 |wr|∞ + ε

3
2 ‖〈v〉−1wg‖∞ + ε−1‖Pg‖2 + ‖ν−

1
2 (I−P)g‖2. (2.19)

Proof. Firstly, we consider the following auxiliary problem{
L f := (ε−1ν − 1

2ε
2Φ · v)f + v · ∇xf + ε2Φ · ∇vf = g in Ω× R3,

f = r on γ−.
(2.20)

We claim that (2.20) has a unique solution f for sufficiently small ε� 1, which satisfies

ε−1‖f‖2ν + |f |22,+ . ε‖ g√
ν
‖22 + |r|22,−. (2.21)

In fact, denote σ := ε−1ν − 1
2ε

2Φ · v. Obviously, σ ≥ 1
2ε
−1ν0〈v〉. From the characteristics

(2.7) and (2.20), for −tb(x, v) < t < tf (x, v), we deduce

f(x, v) = r(xb(x, v), vb(x, v))e
−
´ 0
−tb

σ(τ)dτ
+

ˆ 0

−tb
g(X(s), V (s))e−

´ 0
s σ(τ)dτds,

where

tf (x, v) := sup{t ≥ 0 : X(t; 0, x, v) ∈ Ω}, tb(x, v) := sup{t ≥ 0 : X(−t; 0, x, v) ∈ Ω},(
X(s), V (s)

)
:=
(
X(s; 0, x, v), V (s; 0, x, v)

)
, σ(τ) := σ

(
X(τ ; 0, x, v), V (τ ; 0, x, v)

)
.

Existence and uniqueness of solution of (2.21) are thus achieved. Further, the inequality
(2.21) follows from standard L2 energy estimate. Thus the operator L −1 is well-defined and
bounded in L2.

Next, from the definition of L in (2.20), a solution to (2.1) is a fixed point of the map

f 7→ L −1[ε−1Kf + g]. (2.22)

Hence for any f ∈ L2, there is h ∈ L2 such that f = L −1h. Thus, the fixed point problem
(2.22) for f is equivalent to the following fixed point problem for h

h 7→ ε−1KL −1h+ g. (2.23)
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The operator KL −1 is in fact a compact operator, which can be proved similarly as
Appendix A.2 in [10]. Moreover, we claim that

if hτ solves hτ = τε−1KL −1hτ + g for some τ ∈ [1−, 1],

then ‖hτ‖ is bounded uniformly in τ.
(2.24)

In fact, since L −1 is bounded, it suffices to show a uniform bound of f τ = L −1hτ , which is
a solution to (2.15). Standard L2 energy estimate of (2.15) leads to

ε−1‖(I−P)f τ‖2ν + |f τ |22,+ .|r|22,− + ε2‖Φ‖∞‖f τ‖2ν + o(1)‖f τ‖2ν + ε‖f τ‖22
+ o(1)ε−1‖f τ‖2ν + ε−1‖Pg‖22 + ε‖ν−

1
2 (I−P)g‖22.

(2.25)

Combining this with the macroscopic estimate of Pf τ given in Lemma 2.2, we have

δ‖Pf τ‖22 + ε−2τ‖(I−P)f τ‖2ν + ε−1|f τ |22,+ . ε−1|r|22,− + ‖ν−
1
2 (I−P)g‖22 + ε−2‖Pg‖22.

(2.26)

Therefore, we have shown the uniform boundedness of ‖f τ‖2 in τ . Due to f τ = L −1hτ and
(2.24), we have

hτ = τε−1Kf τ + g. (2.27)

Then ‖hτ‖2 is bounded uniformly in τ and the claim (2.24) is thus proved.
Hence, by the Schaefer’s fixed point theorem [12], (2.23) has a fixed point h, which further

indicates that (2.22) has a fixed point f = L −1h. Thus, the existence of a unique solution f
to (2.1) is proved.

Finally, applying the L2 energy estimate to f − f τ , we have

δ‖P(f − f τ )‖22 + ε−2τ‖(I−P)(f − f τ )‖2ν + ε−1|f − f τ |22,+
.ε−2(1− τ)‖f τ‖2ν → 0 as τ → 1.

(2.28)

Therefore, f τ converges to f strongly in L2. From (2.26), as τ → 1, we obtain

‖Pf‖2 + ε−1‖(I−P)f‖ν + ε−
1
2 |f |2,+ . ‖ν−

1
2 (I−P)g‖2 + ε−1‖Pg‖2 + ε−

1
2 |r|2,−. (2.29)

Similarly, we can conclude

‖Pf‖6 . ε−1‖(I−P)f‖ν+‖ g√
ν
‖2 +ε−

1
2 |f |2,+ +ε−

1
2 |r|2,−+ε

1
2 |wr|∞+ε

3
2 ‖〈v〉−1wg‖∞. (2.30)

Then (2.19) follows from (2.29), (2.30) and (2.2). This completes the proof.

3 Validity of the nonlinear problem

In this section, we improve the argument from [1, 11] and construct a non-negative solution
to the problem (1.1)–(1.2) for the case of in-flow boundary condition and external force.

Define F+
ε := max{Fε, 0}, F−ε := max{−Fε, 0}. Then Fε = F+

ε − F−ε . Let us consider
the following equation

v · ∇xFε + ε2Φ · ∇vFε − ε2Φ · ∇v(
1
√
µ

)
√
µF−ε

= ε−1
[
Q(F+

ε , F
+
ε )−Q(µ, F−ε )−Q(F−ε , µ)

]
in Ω× R3, (3.1)

Fε = M1+ε2ρ̃,ε2ũ,1+ε2θ̃ on γ−. (3.2)

We have the following result.
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Lemma 3.1. Let Fε ∈ L∞(Ω×R3) be a solution of (3.1)–(3.2). Then F−ε = 0 and F+
ε solves

the Boltzmann equation (1.1)–(1.2).

Proof. Observe that F−ε 6= 0 implies F+
ε = 0. It follows that

1F−ε 6=0Q
−(F+

ε , F
+
ε ) = 1F−ε 6=0F

+
ε ν
(
F+
ε

)
= 0.

Thus we get the following equation for F−ε

− v · ∇xF−ε − ε2Φ · ∇vF−ε − ε2Φ · ∇v(
1
√
µ

)
√
µF−ε

=ε−11F−ε 6=0

[
Q+(F+

ε , F
+
ε )−Q(µ, F−ε )−Q(F−ε , µ)

]
in Ω× R3.

(3.3)

By (3.2), we know Fε > 0 on γ−. Then by the definition of F−ε , we have

F−ε = 0 on γ−. (3.4)

Multiplying (3.3) with −µ−1F−ε and integrating on Ω× R3, we get

¨
Ω×R3

µ−1v · ∇x
(F−ε )2

2
dxdv

=

¨
Ω×R3

ε−11F−ε 6=0µ
−1F−ε [Q(µ, F−ε ) +Q(F−ε , µ)]dxdv

−
¨

Ω×R3

ε−11F−ε 6=0Q
+(F+

ε , F
+
ε )F−ε µ

−1dxdv,

(3.5)

where we have used the following simplification

ε2

¨
Ω×R3

µ−1Φ · ∇v
(F−ε )2

2
dxdv + ε2

¨
Ω×R3

Φ · ∇v
( 1
√
µ

)
µ−1/2(F−ε )2dxdv

= ε2

¨
Ω×R3

µ−1Φ · ∇v
(F−ε )2

2
dxdv + ε2

¨
Ω×R3

Φ · ∇v
( 1

µ

)(F−ε )2

2
dxdv

= 0.

By the spectral inequality, cf. Theorem 7.2.5 in [6], there holds

−
¨

Ω×R3

1F−ε 6=0µ
−1F−ε [Q(µ, F−ε ) +Q(F−ε , µ)]dxdv &

∥∥∥(I−P)
(F−ε√

µ

)∥∥∥2

ν
. (3.6)

Combining (3.5) and (3.6), we get

¨
∂Ω×R3

µ−1v·n(x)
(F−ε )2

2
dS(x)dv + ε−1

∥∥∥(I−P)
(F−ε√

µ

)∥∥∥2

ν

.−
¨

Ω×R3

ε−11F−ε 6=0Q
+(F+

ε , F
+
ε )F−ε µ

−1dxdv ≤ 0.

(3.7)

It implies (I−P)
(F−ε√

µ

)
= 0. According to (3.4), this indicates F−ε = 0 on γ+ and then

F−ε = 0 on γ.
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Owing to µ−1F−ε > 0 and (3.7), we obtain

Q(µ, F−ε ) +Q(F−ε , µ) = 0. (3.8)

From (3.3) and (3.8), we find

−v · ∇xF−ε − ε2Φ · ∇v
(F−ε√

µ

)√
µ = ε−11F−ε 6=0Q

+(F+
ε , F

+
ε ) ≥ 0.

In summary, we conclude
v · ∇x

(F−ε√
µ

)
+ ε2Φ · ∇v

(F−ε√
µ

)
≤ 0 in Ω× R3,

F−ε√
µ

= 0 on γ.

(3.9)

Obviously,
d

ds

(F−ε√
µ

)
= (v · ∇x + ε2Φ · ∇v)

(F−ε√
µ

)
.

Then integrating the first inequality of (3.9) on [t− tb, t], one has

F−ε√
µ

(t, x, v) ≤ F−ε√
µ

(t− tb, xb, vb) = 0.

This gives F−ε ≤ 0. While F−ε ≥ 0 by the definition of F−ε , we have F−ε = 0. Then Fε = F+
ε

and F+
ε solves the problem (1.1)–(1.2). The proof is completed.

With the help of Lemma 3.1, to prove existence and positivity of a solution to (1.1)–(1.2),
it suffices to show existence of a solution to (3.1)–(3.2).

For this, define

f̄ε :=

{
fε, if µ+ ε

√
µfε ≥ 0,

−ε−1√µ, if µ+ ε
√
µfε < 0,

(3.10)

and

f̃ε := f̄ε − fε. (3.11)

For fixed (x, v) ∈ Ω× R3, if Fε = µ+ ε
√
µfε ≥ 0 then

F+
ε = Fε = µ+ ε

√
µfε = µ+ ε

√
µf̄ε.

If Fε = µ+ ε
√
µf < 0 then

F+
ε = 0 = µ+ ε

√
µf̄ε.

Moreover,

F−ε = F+
ε − Fε = µ+ ε

√
µf̄ε − (µ+ ε

√
µfε) = ε

√
µf̃ε.

Hence, we have

F+
ε = µ+ ε

√
µf̄ε, (3.12)

F−ε = ε
√
µf̃ε. (3.13)
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Substituting (3.12) and (3.13) into (3.1), we conclude

v · ∇xfε +
1
√
µ
ε2Φ · ∇v(

√
µfε) + ε−1Lfε = Γ(f̄ε, f̄ε) + ε

√
µ(Φ · v) +

1

2
ε2(Φ · v)f̃ε, (3.14)

fε|γ− = hε, (3.15)

where hε has been given in (1.12).
We need the following lemma on the relations among f̄ε, f̃ε and fε.

Lemma 3.2. Let Ω be a bounded domain in R3. Then the following inequalities hold:∣∣f̄ε∣∣ ≤ ∣∣fε∣∣, (3.16)∣∣f̃ε∣∣ ≤1{µ+ε
√
µfε<0}2

∣∣f ∣∣, (3.17)∣∣f̄1
ε−f̄2

ε

∣∣ ≤ ∣∣f1
ε − f2

ε

∣∣, (3.18)∣∣f̃1
ε − f̃2

ε

∣∣ ≤ (1{µ+ε
√
µf1ε<0} + 1{µ+ε

√
µf2ε<0}

)
2
∣∣f1
ε − f2

ε

∣∣, (3.19)

where f̄ iε and f̃ iε are defined in (3.10) and (3.11), respectively.

Proof. Firstly, if Fε = µ + ε
√
µfε ≥ 0 then f̄ε = fε. If Fε = µ + ε

√
µfε < 0 then f̄ε =

−ε−1√µ < 0. Hence
ε
∣∣f̄ε∣∣ = −εf̄ε =

√
µ < −εfε = ε

∣∣fε∣∣,
which indicates (3.16).

Next, it follows from Fε = µ+ ε
√
µfε ≥ 0 that

fε = f̄ε,
∣∣f̃ε∣∣ =

∣∣f̄ε − fε∣∣ = 0.

In the case Fε = µ+ ε
√
µfε < 0, thank to the triangle inequality and (3.16), we have∣∣f̃ε∣∣ =

∣∣f̄ε − fε∣∣ ≤ (
∣∣f̄ε∣∣+

∣∣fε∣∣)1{µ+ε
√
µfε<0} ≤ 2

∣∣fε∣∣1{µ+ε
√
µfε<0},

which proves (3.17). Finally, (3.18) and (3.19) can be proved similarly as that of Lemma 6.3
in [11].

We are now in the position to present existence and uniqueness of the solution to (3.14)–
(3.15).

Theorem 3.3. Let Ω be a bounded domain in R3 with ∂Ω ∈ C3. Assume that Φ(x) ∈ C1(Ω)
and ‖Φ‖2 � 1. Then the problem (3.14)–(3.15) has a unique solution fε.

Proof. We define a sequence {fnε }∞n=1, where fn+1
ε is the solution to linear problem

v · ∇xfn+1
ε +

1
√
µ
ε2Φ · ∇v(

√
µfn+1

ε ) + ε−1Lfn+1
ε

= Γ(f̄nε , f̄
n
ε ) + ε

√
µ(Φ · v) +

1

2
ε2(Φ · v)f̃nε in Ω× R3, (3.20)

fn+1
ε = hε on γ−, (3.21)

with f0 := 0.
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Define
Ξn = sup

0≤j≤n
9f jε 9 .

For 0 < η0 � 1, let Ξ2
n < η0. We claim that

9 fn+1
ε 92 < η0 for all n ≥ 1. (3.22)

Indeed, (3.22) can be proved by applying the linear theory given in Section 2. For this,
let

g := Γ(f̄nε , f̄
n
ε ) + ε

√
µ(Φ · v) +

1

2
ε2(Φ · v)f̃nε .

From (3.16) and Lemma 2.13 in [10], we have

‖ν−
1
2 Γ(f̄nε , f̄

n
ε )‖2 . ε

1
2
[
ε

1
2 ‖wf̄nε ‖∞

(
ε−1‖ν

1
2 (I−P)f̄nε ‖2

)]
+ ‖Pf̄nε ‖3‖Pf̄nε ‖6 . 9fnε 92 .

Using (3.17), there holds

‖ν−
1
2 (I−P)

1

2
ε2(Φ · v)f̃nε ‖2 . ‖ε2(Φ · v)f̃nε ‖2 . ‖ε2(Φ · v)|fnε |‖2

. ε2‖Φ‖∞[‖Pfnε ‖2 + ‖(I−P)fnε ‖ν ]

. ε2 9 fnε 9 .

Based on the above estimates, we find

‖ν−
1
2 (I−P)g‖22 . 9fnε 94 +ε4 9 fnε 92 . (3.23)

By Lemma 2.5 in [18], we conclude

‖ν−1wΓ(f̄nε , f̄
n
ε )‖∞ . ‖ν−1wΓ(fnε , f

n
ε )‖∞ . ‖wfnε ‖2∞ . ε−1 9 fnε 92 .

Due to (3.17), we get

ε2‖ν−1w(Φ · v)f̃nε ‖∞ . ε2‖Φ‖∞‖wfnε ‖∞ . ε
3
2 9 fnε 9 .

Noticing that
ε‖ν−1w

√
µ(Φ · v)‖∞ . ε‖Φ‖∞,

we deduce
ε3‖〈v〉−1wg‖2∞ . ε 9 fnε 94 +ε5‖Φ‖2∞ + ε6 9 fnε 92 . (3.24)

Since Pg = εΦ · v√µ+ 1
2ε

2P[(Φ · v)f̃nε ] and

‖ε2P[(Φ · v)f̃nε ]‖22 . ε4‖Φ‖2∞‖fnε ‖22 . ε4 9 fnε 92,

we conclude

ε−2‖Pg‖22 . ε2 9 fnε 92 +‖Φ‖22. (3.25)

From the boundary term (1.12), there holds

ε−1|hε|22,− . ε, (3.26)
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ε|whε|2∞,− . ε3. (3.27)

Substituting (3.23)–(3.27) into (2.19), we conclude

9fn+1
ε 92 . Ξ4

n + ε2Ξ2
n + ε5‖Φ‖2∞ + ‖Φ‖22 + ε . η0,

which proves the claim(3.22).
Taking difference between (3.20) for the (n+ 1)-th step and n-th step, we have

v · ∇x(fn+1
ε − fnε ) +

1
√
µ
ε2Φ · ∇v(

√
µ(fn+1

ε − fnε )) + ε−1L(fn+1
ε − fnε )

= Γ(f̄nε , f̄
n
ε )− Γ(f̄n−1

ε , f̄n−1
ε ) +

1

2
ε2(Φ · v)(f̃nε − f̃n−1

ε ) in Ω× R3,

fn+1
ε − fnε = 0 on γ−.

Repeating the same procedure as above for fn+1
ε − fnε , we can get

9fn+1
ε − fnε 9 . (Ξn + ε2 + ε

1
2 Ξn + ε3 + ε) 9 fnε − fn−1

ε 9 . (3.28)

It follows that there exists 0 < λ < 1 such that

9fn+1
ε − fnε 9 ≤ λ 9 fnε − fn−1

ε 9 .

This means that {fnε } is a Cauchy sequence in L∞ ∩ L2, for any given ε > 0. Therefore,
{fnε } converges strongly to fε in the norm of 9·9 and fε is the unique solution of (3.14)–(3.15).
The proof is completed.

Remark 3.4. By Theorem 3.3 we know that Fε = µ+ ε
√
µfε is the unique solution of (3.1)–

(3.2). This, combined with Lemma 3.1, implies that Fε = µ + ε
√
µfε is the unique positive

solution to the Boltzmann equation (1.1)–(1.2).

Finally, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. In fact, by virtue of Remark 3.4, existence and positivity of a
unique solution Fε to (1.1)–(1.2) has been shown. Thus, it remains to check the hydrodynamic
limit equations together with the boundary conditions.

It follows from (1.13) that ‖(I−P)fε‖ν → 0 as ε→ 0. Moreover, Pfε is bounded in L6
x,v

and 〈v〉−
1
2 Γ(fε, fε) is bounded in L2

x,v. Therefore, with the aid of (1.10), we find

v · ∇x(〈v〉−
1
2 fε) + ε2〈v〉−

1
2

1
√
µ

Φ · ∇v[
√
µfε] ∈ L2(Ω× R3). (3.29)

Since fε is bounded in L2, passing to the weak limit as ε → 0, up to a subsequence, we see
that fε → f∗ weakly and ε2〈v〉−

1
2

1√
µΦ · ∇v(

√
µfε)→ 0 in the sense of distribution. Thus

v · ∇x(〈v〉−
1
2 fε) + ε2〈v〉−

1
2

1
√
µ

Φ · ∇v(
√
µfε)→ v · ∇x(〈v〉−

1
2 f∗) (3.30)

in the sense of distribution.
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Combining (3.29), (3.30) and the uniqueness of the distribution limit, we get

f∗ = Pf∗, v · ∇x(f∗〈v〉−
1
2 ) ∈ L2

x,v, ‖f∗‖L6
x,v
� 1.

It follows that

f∗ = [ρ+ u · v + θ(|v|2 − 3)/2]
√
µ (3.31)

and ρ, u, θ ∈ H1(Ω). The limiting fluid equations can be deduced similarly as that in [3]. In
fact, applying P to (1.10) and taking the weak limit, we obtain

P(v · ∇xf∗) = 0,

which is equivalent to

∇x(ρ+ θ) = 0, ∇x · u = 0.

Then multipling (1.10) by ε−1v
√
µ, integrating on velocity and taking the weak limit, we

obtain

Φ = lim
ε→0

ε−1∇x · 〈
√
µv ⊗ vfε〉

= lim
ε→0

ε−1∇x · 〈L−1[(v ⊗ v − |v|
2

3
I)
√
µ], Lfε〉+ lim

ε→0
ε−1∇x〈

|v|2

3

√
µ, fε〉

= ∇x · 〈L−1[(v ⊗ v − |v|
2

3
I)
√
µ],Γ(f∗, f∗)− v · ∇xf∗〉+∇xp

= u · ∇xu− η4u+∇xp,

where

p := lim
ε→0

ε−1〈 |v|
2

3

√
µ, fε〉,

and I is the unit matrix. Hence u is a weak solution to (1.6).

Similarly, we multiply (1.10) by ε−1 |v|2−5
2

√
µ, integrate and take the weak limit,

0 = lim
ε→0

ε−1〈 |v|
2 − 5

2

√
µ, v · ∇xfε〉

= lim
ε→0

ε−1∇x · 〈L−1[v
|v|2 − 5

2

√
µ], Lfε〉

= ∇x · 〈L−1[v
|v|2 − 5

2

√
µ],Γ(f∗, f∗)− v · ∇xf∗〉

=
5

2
∇x · (κ∇xθ − uθ).

Thus θ is a weak solution to (1.7).
Next, we check the boundary conditions that (u, θ) satisfies. Taking φ(x, ·) ∈ C∞0 (R3),

φ(·, v) ∈ C∞(Ω̄), we haveˆ
γ
ν−

1
2 fεφdλ : =

¨
∂Ω×R3

ν−
1
2 fεφn(x) · vdvdSx

=

¨
Ω×R3

v · ∇x(φfε)ν
− 1

2 dxdv

=

¨
Ω×R3

v · ∇xφfεν−
1
2 dxdv +

¨
Ω×R3

v · ∇xfεφν−
1
2 dxdv.
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Since

fε → f∗, v · ∇xfεν−
1
2 → v · ∇xf∗ν−

1
2

weakly in L2, we obtain

ˆ
γ
ν−

1
2 fεφdλ→

ˆ
γ
ν−

1
2 f∗φdλ.

That is to say, fε converges to f∗ on γ in the sense of distribution, where f∗ is given by (3.31).
By the uniform estimate (1.13), one has

ε−
1
2 |fε|22,+ ≤ C.

Combining the boundary (1.12) with the above result, we conclude that fε → 0 strongly in
L2
γ+ and fε → 0 strongly in L2

γ− . In view of the uniqueness of the distribution limit, we deduce

f∗
∣∣
γ

=
[
ρ
∣∣
∂Ω

+ v · u
∣∣
∂Ω

+ θ
∣∣
∂Ω

(|v|2 − 3)/2
]√

µ = 0,

for every v ∈ R3. This implies
u
∣∣
∂Ω

= θ
∣∣
∂Ω

= 0,

that is, (1.8) holds.
Finally, observe that ‖u‖6 and ‖θ‖6 are small, inheriting from the uniform estimate (1.13)

and the weak limit. This, combined with standard L2 energy estimate, leads to the uniqueness
of weak solution to INSF (1.6)–(1.8). This further indicates that all the weak limit points of
fε must coincide and fε converges to f∗ weakly in L2. This completes the proof of Theorem
1.1.
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