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Inverse problem of determining the coefficient and kernel in an integro
- differential equation of parabolic type
D.K. Durdiev, Zh.Zh. Zhumaev

Abstract. This article is concerned with the study of the unique solvability of inverse
boundary value problem for integro-differential heat equation. To study the solvability of
the inverse problem, we first reduce the considered problem to an auxiliary system with
trivial data and prove its equivalence (in a certain sense) to the original problem. Then using
the Banach fixed point principle, the existence and uniqueness of a solution to this system is shown.
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1. Introduction

Mathematical physics usually studies well-posed problems, that is, the problems that have
solutions which are unique and stable to small changes in the data in suitable functional spaces.
Such problems, as a rule, are called direct problems. In this case, it is assumed that a differential
equation is specified, as well as certain initial and boundary conditions. However, in applications
there are interesting problems, where the differential (or integro-differential) equation is only par-
tially specified, namely, some functions that are part of the differential equation (either in the
right-hand side, integrant in integro-differential equations or the initial and boundary conditions)
remain unknown. The problems, in which these unknowns are to be determined on some informa-
tion about the solutions of direct problems for differential equations, are called inverse problems.

Inverse problems are widely used to solve practical problems in many branches of science and
engineering. The study of inverse kernel determination problems for hyperbolic and parabolic
integro-differential equations with an integral term of convolution type is very interesting from
both the practical and theoretical viewpoint. Such equations in the case of a parabolic equation
arise in problems of heat propagation in media whose state at a given time instant depends on
their state at all previous time instants.

Inverse problems in this direction can be found in papers [1|-[12] and the problems studied in
them are close to the problem considered in this article. In the above papers, the existence and
uniqueness theorems were proved for the solution of the problem of finding the kernel for various
overdetermination conditions.

In the present paper, we investigate the inverse problem of the simultaneous determination of
two unknowns: the coefficient a(t) and the heat relaxation function k() in the integro-differential
heat equation. For this, two simple observations are given at two different points.

2. Formulation of problem and auxiliary constractions

Consider the problem of determining of functions u(z,t), a(t), k(t), from the following equa-
tions:

Up — Uy + a(t)u = /0 k(t — m)u(z,7)dr, (x,t) € Dy, (1.1)

uli—o = (), € 0,1], (1.2)
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lezo = u|z:1 = 0, t e [O,T], (13)
U(aji,t) = hi(t)>$i € (07 1)7 90(0) = 90(1) = 07 90(372) = hl(O),Z = 07 1v (1'4)

where Dy = {(z,t)|z € (0,1), 0 <t < T}, T >0 are arbitrary fixed numbers.

In equation (1.1) on the left side there is a heat conduction operator acting on the function
u(z,t), and on the right side there is a convolution type integral. In fact, if a and the kernel k of
the integral are known in equation (1.1), then the problem of finding the function u from equation
(1.1), based on conditions (1.2),(1.3), is called the direct problem. Note that direct problem in
this case is initial-boundary problem for the equation (1.1).

Since after finding a and the kernel k the solution of the direct problem becomes known, it is
convenient to call the solution of the inverse problem (1.1)-(1.4) the problem of finding functions
u, k,a.

In the inverse problem, it is required to find a and the kernel k of the integral in equation (1.1)
if the additional conditions (1.4) are known with respect to the solution of the direct problem.
The functions ¢ in condition (1.2) and the function h; in (1.4) are called the data of the direct
and inverse problems, respectively. The last conditions in (1.4) are matching conditions for given
functions.

The following assertation is true:

Lemma-2.1. Problem (1.1)-(1.4) is equivalent to the following auxiliary problem of deter-
mining functions u(x,t),k(t), a(t) :

wt—wm—kal(t)go"(a:)—l—a'(t)/0 w(z, 7)dr+a(t)w(x,t) = k(t)go"(x)+/0 k(T)w(z, t—7)dT, (2,t) € Dr,

(1.5)
wlimo = eIV (x) — a(0)¢'(x), = € (0,1), (1.6)
w|$:0 - 07w|z:1 - 0, (17)
s, = W0+ OO + o0 — K)olw) — [ W= nar. (19

where w(x,t) = Uy (T, 1), ) — (0

_ ¥ (To) — Ny
a(0) = A (1.9)
V) is the fourth derivative of function o(z).

Proof. By setting J(z,t) = w(x,t)and differentiating in ¢ , we reduce (1.1)-(1.4) to the
problem

Vim0 = ¢"(x) — a(0)p(z), x € (0,1), ( ;

Vp—0 = 0,9]p=1 =0, (1.12)

D(xo, 1) = ho(t), Oz, t) = hiy(t). (1.13)

From condition (1.11) and (1.13),requiring the matching condition at the points (0, z() and (0, x1)

we obtain
wo) = By(0) (1) — W4 (0)
0= @
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Hence it follows that if (u, k, a) is solution of problem (1.1)-(1.4), then (1.10)-(1.13) has a solution

(9, k, a) with the same k, a as well. Let us prove the converse. Let (9, k, a) satisfy relations(1.10)-
(1.13); then

u(z,t) = /0 Wz, 7)dT + @(x).

Let us show that relation (1.1) holds. It follows from (1.10)-(1.12) that

U — Ugy + at)u — /0 k(t — m)u(x, 7)dr =

= J(z,t) — /0 o (2, 7)dT — " (2) + a(t)/o Y(x, 7)dr + a(t)p(x)—
—/0 k;(T)/O_Tﬁ(x,a)dadT—/O k(t)p(z)dr =
[ et = duater) ) [ 0la)da+ ar)e.m) + ' (P)ple) — Krpta)-

— / k(x, a)d(z, 7 — oz)doz} dr =0
0
This completes the proof of the equivalence of problems (1.1)-(1.4) and (1.10)-(1.13).

Now consider the second auxiliary problem. It is obtained from problem (1.10)-(1.13) for the
function p(z,t) = V. (x,t),

Dt — Dz + a'(t)/o p(z, 7)dT +d (1)@ () + a(t)p(z,t) = k(t)' (z) + /0 k(T)p(x,t — 7)dr, (1.14)

pli=o = ¢"(x) — a(0)¢'(2); (1.15)
pm|x=0 = 07 p:}c|a::1 = 0; (116)
Pale—e, = B (t) + ' (t)hi(t) + a(t)hi(t) — k(t)p(z:) — /0 k(T)R'(t — 7)dr. (1.17)

Therefore, if problem (1.10)-(1.13) has a solution (¥, k,a), then problem (1.14)-(1.17) has a

solution (p, k,a) with the same k, a; moreover, p(x,t) = ¥,(x,t). Conversely, let (p, k,a) satisfy
relations (1.14)-(1.17).

Hence it follows that

J(x,0) = /Oxp(y, 0)dy = /0 (" (y) — a(0)¢'(y))dy = " (x) — a(0)p(x);

i.e., condition (1.11) is satisfied. It remains to show that equation (1.10) holds. It follows from
relations (1.14)-(1.17) that

9y = ne + (1) /0 I, 7)dr + d ()p(@) + at)9(z, £) — k(t)p(z) — /O k()0 (a, t — 7)dr =

= /Ox [pt(y,t) — pyy(y,t) + a(t) /Otp(y, T)dT + d ()¢ (y) + a(t)p(y, t)—
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We have thereby proved the equivalence of problems (1.10)-(1.13) and (1.14)-(1.17). In similar
way, one can show that problem (1.14)-(1.17) is equivalent to problem (1.5)-(1.8) for the function
w = p,. This implies the equivalence of problems (1.1)-(1.4) and (1.5)-(1.8). The lemma is proved.

3. Formulation of main result and its proof

In this section existence and uniqueness for the problem (1.5)-(1.8) is proved using the con-
traction mapping principle. The idea is to write the integral equations for unknown functions
w(z,t), k(t),a(t) as a system with a nonlinear operator, and prove that this operator is a con-
traction mapping operator for sufficiently small 7. The existence and uniqueness then follow
immediately.

From problem (1.5)-(1.7), we obtain

w(z, (x,t) / / (x, &t — 1)k(T)p(§)dEdT — /Ot/ol G(z, &t — 1)a(T)w(E, T)dEdT—

—/Ot/OIG(x,f,t—T) dde—// (2,61 — )/ (r )/ (€, @)daddr+
/ / (.61 — / k(a)w(E, 7 — a)dadédr, (2.1)

w%ﬁﬂil(ﬂﬁﬂﬂ@WWO_Mmﬁ@W&

where

Gt —72,8) =2 Z e~ M) gin (n€) sin (Tna)
n=1
is the Green function of the initial-boundary problem for one-dimensional heat equation. By

setting * = xg,x = x; in integral equation (2.1) and by taking into account condition (1.8), for
the functions k(t), a’(t)), we obtain the integral equations

k(t) = % [hl (1) (wo(:co, ) — hg(zs)) ~ ho(t) (wolx1, 1) — h;’(t))] +

+—/ / G(xg, & t—7) — ho(t)G(x17€,t—T)> [k(T)SO(ﬁ)—a(T)w(f,T)—a’(7)¢”(§)]d5d7+
+—/0 /0 xo,fyt—T)—ho(t)G(m,f,t—r)> [a’(r) /Ofw(g,a)da_/;k(a)w(§77_a)da]d§d7_
a(t 1

~ (mmym - mmm@+zl%m@mw@ﬂmmwmuﬂﬂm (2:2)

where

A = p(x1)ho(t) — p(x0)ha(2).

(1) = [l enlmo, 1) = H(0) ~ o) nlan, 1) — WD) +
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t [ [ (00606 -7 o), & 1) (MO —a(r)e(e, ) - ()6 e

1= / / (o, &, t—7)— go(xo)G(xl,f,t—T)) {a'm /0 " (e, a)da— /0 Tk(a)w(f,T—a)da]dde—
—T(< DI = el (1) + 5| K (elatilt =) = pleolitt = ). @23
a(t) =a (0)+/0 a(r)dr. (2.4)

Equations (2.1)-(2.4) form a complete system of integral equations for the unknown functions
w(z,t), k(t),d (t),a(t). We represent this system in the form of the operator equation

b = A, (2.5)

where ¢ = (Y, s, ) = (w(, 1), K(1) +a(0)B(2), /(1) +a(thr(0), a(t)), (8(6) = & (m(B)mi(r) -

ho(t)h’l(t)) () = & <g0(m1)h’ (t) — (o) (t ))) is the vector-function and unknown functions are
represented by functions vy, 19, 93, 14 as follows:

w(z,t) =d(x,1), k(1) = a(t) = a()B(1),

a'(t) = ¥s(t) — va(t)v(t), alt) = va(t).
A= (A, Ay, Az, Ay is defined by the right sides of equations (2.1)-(2.4):

(Aot t) =enfa)+ [ [ Gto 6t =) (107) a5 -

- 1G<x,§,t—r)%(r)%(&m)dsdr— [ G(x,f,t—ﬂ(wsm—w4<f>v<7>)so<f)dsd7—
[ [ 6t t=n(un) - wutrn ) [t adodars
v [ [ ewet-n [ (o) - ¢4(a)6(a))¢1(€,  — a)dadgdr
(A)a(t) =  [In () o(o,6) — HE(0) — holt) ol 1) — ()] +

A/ / ()G 0., =) — ho(t)Car, &1 — 7)) x
CGE %04(7)5(7))@(5) = a6, 7) = (¥s(r) = va(r)(7) )" () | dedr+
+% /Ot /01 (MG (@0, €.t = 7) = ho(G w1, .t = 7)) x
<[ (valr) = vatrn)) [ ot arda = [ (o) = vataita) (e, - ayda] dedr+



#3 [ (4300) = a3 (a0 = ) = ol e = ) )

(Av)s(r) = - [ﬁp(fﬂl)(wo(fcm 1) = W (1)) — plwo) (wo(mn, 1) — ()] +

_/ / G, &, —7) — gp(xO)G(xl,f,t—T)>><

x| (va(r) - wwm) (©) = ea(Ma(6,7) = (a(r) = al(P)1(7) )" ()| declr+

_/ / G, &1 —7) — <p(x0)G(x1,§,t—T)>><

[(¢3 / 1 (€, )dow — /T <¢2(Oz) - @D4(@)B(a)>¢1(§, T — a)da} dédr+
*% / (02(r) = 0B (sl hlt = ) = ol (¢ = 7)) dr,
+/0 T))dT.

Let o := (o1, Yoz, o3, Yosa), Where

o1 = WO(JU,Y%
1

Yoz = A [hl(t)(wo(moat) — hg(t)) — ho(t)(wo(w1,t) — h/f(t))}a

—_

dos = 5 [en) (wnleo, ) = BE(0) — pla)nler,t) = W(1)].

Yos = a(0).

Theorem (existence and uniqueness). If the conditions ¢(z) € C*(0,1), hi(t) €
CQ[OuT]ai - 0717 90(0> = 90(1) = O’ @(Iz) = hz(0>’l = 0717A 7é 07(,0(1'0) 7é Oaw(xl) 7£ 0 are
met,then there exists sufficiently small number T* € (0,T') that the solution to the system of integral
equations (2.1)-(2.4) in the class of functions w(z,t) € C*' (D], k(t) € C(0,T],a(t) € C*(0,T)]
exists is unique. Thus, there is the unique classical solution to the problem (1.1)-(1.4).

Proof. Consider the functional space of vector functions ¢» € C'(Dr) with the norm given by
the relation

1] ZmaX{ sup [¢1(z,1)], sup [(t)], sup |is(f)], sup |¢4(t)|} =

(z,t)€Dr te[0,7) te[0,7) t€[0,T]

= macc { [l [l ] [l

In this space, by B(ty, ||1o]|) we denote the ball with center ¢y and radius |1, i.e. B(¢o, ||¢0]|) =
{ || — Yol < ||¢ol|}- Obviously,
[0 < 2[[4o]l-
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Let us show that A is a contraction operator in the ball B(ty, ||¢o||) provided that T is
sufficiently small number. For simplicity, we denote

ho := maX{ sup |h;(t)], sup [i(t)], sup Ihé’(t)l},iZO,l, f = max [3(t)],y = max |y(t)]

te(0;T) te(0,T) te(0,7) t€[0,T] (t)elo,17

o = maX{ sup [p(z)], sup |¢'(z)], sup |¢"(z )!}
z€(0,1) z€(0,1) z€(0,1)
Let us verify the first condition of a fixed point argument. Let ¢ € B; then ||| < 2[¢||. In
addition, for (z,t) € Dy, we have estimates

[(AY)1 — Yoi|| = sup  [(AY)1 — Yor| <

(z,t)eDp

// (2.6, = ) (1a(r) — va(P)B() ) o(€)dedr| +

< sup
(LB t EDT

sup
J,’ t)eDT

// (.60 =) (¥s(r) — () (7)) (&) dedr | +

/ /Gx£t Pa(F) (€, 7)dgdr | +

sup
(x t EDT
sup

(¢,)€Dr / / (2,68 = <¢3( ) = thal7 / 1 (&, a)dad&dr| +

/ / Gl &t - /T <¢2(04) - 1/14(04)6(04))1/11(577 — a)dadédr| <

< 27|l [(2+ B + 7)o + llthol|(1 + 2T + T8 + T)] .

sup
$ t)EDT

[(A)2 — Yoall = sup [((A)2 — Yo2)| <

te(0,T)

< %WOH(@O(Q—I-ﬁ—F’Y)‘F||¢0||(1+2T+T7+TB)+h0(1+5));

[(A)s — o3| = sup [((A)s — tho3)| <

te(0,T)

< 4T900||1/10||

< A (¢o(2+ B +7) + [[thol|(1 4+ 2T + Ty +Tp) + ho(L + 5));

[(Ap)s — Yoall = sup [((A¥)s — hoa)| < 2{[ho||T(1 + ),

te(0,T)

Denote 77 = min {711, T12, T13, T14} , where T};,1 = 1,4 are the positive roots of the following
equations, respectively

27| (24 B+ 7)o + lwoll(L+2T + TH+T7)| = 1,



22 (2 8+ 9) + o1+ 27+ Ty + T5) + ho(1+ 6)) =

T (0(2 4 B+ 7) + Il (L + 2T + Ty + TB) + ho(1 4 6) ) =

2I(1+~v) = 1.
If we choose T so that T' < T, then Ay € B(vy, ||1o]]).
We now check the second condition of a fixed point argument

(A=Al < s [ [ 6= (k) - 300 - i) — w1 Yo ptear| +
v s [ [ 6wt -ntwkmulien - v | +
v s [ [ ewet-n(wie >—w§<7>]—[wim—wi<r>h<7>)<p<s>dsdf "
Y [ [ ower- / 016, (7 — V(€ )2(r)dadgdr]| +
v [ [ e@et-n [ wheanio) - vieanion e +
ey [ [ owet-n [[wier - awhi) - viter - asteidadedr] +
v s [ [ et [(Wier - awlio) - viier - i) dodeir|

The integrand in the second integral can be estimated as follows:

Hwi% ¢4¢1H - ” by — VU + (Y — le <
< 2||9" = [ max ([ [[¥3]]) < 41wl [* = 7.

Therefore,

1(AY! = A || < [l" = &2 @IIvoll(2 + B+ )T + (2 + B + 7)o + 4llvol)T) ;

The next components can be estimated in a similar way,
1 2 2hg 2 1 2
I(AQ! = Ag)sl < == (((2+ B+ )90 + ho(L + B) + 4llol) T + 2[[0 | (2 + B +3)T°) [¥" —¢°]|;

(A0~ 492l < 222 (24 6 + )0 + ho(1 4+ B) + 4ol T+ 2loll (2 + 5 + 1T [0 4]

1(AY! = Ap?)all < (1 +7) Tle' — ¢

Denote Ty = (Tby, Tho, Toz, Tos); where Ty, i = 1,4 are the positive roots of the following
equations, respectively

2090l (2+ 8+7) T2+ (2 + B+ 7)o +4llvoll )T = 1,



2hg

(@4 B+ 7000+ ho(1+8) + 4ol T+ 2|2 + 6+ )T

%(((2 + B+ 7)p0 + ho(1+ B) + 4||%||)T +2||thol|(2 + B + )T

N~~~ N———
Il |
\t—‘

L,

(1+7>T: 1.

Therefore, if the number 7™ is small enough to ensure that condition 7% € (0, min(7},73)) is
satisfied, then A is contraction operator on B. Then, by the Banach principle, integral equations
(2.1)-(2.4) has a unique solution in B. Theorem is proved.

By found function w(x,t), the function u(z,t) is found by virtue of the formula w,, = ¥, from
which follows

ul(z,t) = plx) — p(0) + 2/(0) + / - / (€, ) drde.

References

1. J. Janno , L.V. Wolfersdorf , Inverse problems for identification of memory kernels in heat
flow, Inverse and Ill-Posed Problems, 4:1 (1996), 39-66.

2. E. Pais, J. Janno, Inverse problem to determine degenerate memory kernel in heat flux
third kind boundary conditions, Math. Modellind and Analysis, Volume 11, No. 4, 2006, 427-450.

3. F. Colombo, A inverse problem for a parabolic integro-differential model in the theory of
combustion, Phys. D, 236(2007), 81-89.

4.  D.K. Durdiev, J.J.Jumaev, Memory kernel reconstruction problems in the integro-
differential equation of rigid heat conductor, Mathematical Methods in the Applied Sciences,
2020, DOI: 10.1002/mma.7133

5. D.K. Durdiev , A.Sh. Rashidov, Inverse problem of determining the kernel in an integro-
differential equation of parabolic type, Differential Equations, 50:1(2014),110-116.(In Russian)

6. D.K. Durdiev , Zh.Zh. Zhumaev, Problem of determining a multidimensional thermal

memory in a heat conductivity equation, Methods of Functional Analysis and Topology,
25:3(2019), 219-226.

7. D.K. Durdiev , Zh.Zh. Zhumaev, Problem of Determining the Thermal Memory of a
Conducting Medium, Differential Equations,56:6(2020), 785-796.

8. D.K. Durdiev , Zh.Zh. Zhumaev, The problem of determining the thermal memory of a
medium, Uzbek Mathematical Journal, 1(2020), 36-51.

9. D.K. Durdiev, Z.Z.Nuriddinov, Determination of a multidimensional kernel in some
parabolic integro-differential equation, Journal of Siberian Federal University - Mathematics and



10

Physics, 2021, 14(1), crp. 117-127.

10. Avdonin S. , Ivanov S., Wang J. Inverse problems for the heat equation with memory,
Inverse problems and imaging. 2019. vol. 13. no. 1. pp. 31-38.

11. D. Guidetti, Reconstruction of a convolution kernel in a parabolic problem with a memory
term in the boundary conditions, Bruno Pini Mathematical Analysis Seminar, 2013, 4(1), 47-55.
https://doi.org/10.6092 /issn.2240-2829/4154

12.  D. Guidetti, Some inverse problems of identification for integrodifferential parabolic

systems with a boundary memory term, Discrete & Continuous Dynamical Systems - S 2015,
8(4): 749-756 doi: 10.3934/dcdss.2015.8.749

Durdiev Durdimurod Kalandarovich

Bukhara branch of the institute of Mathematics named after V.I. Romanovskiy at the
Academy of sciences of the Republic of Uzbekistan,

Uzbekistan, 200100, 11 M. Ikbal St. Bukhara

durdiev65Q@mail.ru

Zhumaev Zhonibek Zhamolivich

Bukhara branch of the institute of Mathematics named after V.I. Romanovskiy at the
Academy of sciences of the Republic of Uzbekistan,

Uzbekistan, 200100, 11 M. Ikbal St. Bukhara

jonibekjj@mail.ru



