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Memory kernel reconstruction problems in the
integro–differential equation of rigid heat conductor

D.K. Durdiev, Zh.Zh. Zhumaev

Abstract. The inverse problems of determining the energy-temperature relation
α(t) and the heat conduction relation k(t) functions in the one-dimensional integro–
differential heat equation are investigated. The direct problem is the initial-boundary
problem for this equation. The integral terms have the time convolution form of
unknown kernels and direct problem solution. As additional information for solving
inverse problems, the solution of the direct problem for x = x0 is given. At the
beginning an auxiliary problem, which is equivalent to the original problem is
introduced. Then the auxiliary problem is reduced to an equivalent closed system of
Volterra-type integral equations with respect to unknown functions. Applying the
method of contraction mappings to this system in the continuous class of functions
with weighted norms, we prove the main result of the article, which is a global
existence and uniqueness theorem of inverse problem solutions.
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1. Introduction and Setting up the Problem

Integro–differential equations arise in many fields of physics and applied mathemat-
ics for modeling the processes of heat transfer with finite propagation speed, systems
with thermal memory, viscoelasticity problems and acoustic waves in composite media.
In [1] Gurtin and Pipkin derived the integro-differential equation

utt = 4u(x, τ) +

t∫
0

K ′(t− τ)4u(x, τ)dτ + h(x, t), (1.1)

describing propagation of heat in media with memory at a finite speed. Here ∆ is the
Laplace operator in the variables x = (x1, ..., xn). Along with equation (1.1), in the
literatures it is considered the equation

ut(x, t) =

t∫
0

K(t− τ)4u(x, τ)dτ + g(x, t) (1.2)

of the first order in the time variable t. Nowadays, equations (1.1) and (1.2) are
referred to as the Gurtin - Pipkin equations. It can readily be seen that equation (1.1)
is derived from (1.2) by differentiating with respect to variable t if we set K(0) = 1
and h(x, t) = gt(x, t).
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In [2] Miller studied existence, uniqueness, and continuous dependence on parame-
ters for solutions of the certain initial–boundary value problem for following system of
integro–differential equations:

e(t, x) = e0 + α(0)θ(t, x) +

∫ t

0

α′(t− τ)θ(τ, x)dτ,

q(t, x) = −k(0)θx(t, x)−
∫ t

0

k′(t− τ)θx(τ, x)dτ, (1.3)

et(t, x) = −qx(t, x) + r(t, x),

where 0 ≤ t < ∞, x ∈ (0; l), et = (∂/∂t) e, qx = (∂/∂x) q. In (1.3) α(t) and k(t)
are relaxation functions of internal energy and heat flow, respectively. The first and
second equalities in equations (1.3) are linearized (with respect to certain constant e0
energy) constitutive equations for internal energy and heat flow, respectively. And
the third relation in (1.3) expresses the fundamental law of thermal conductivity -
Fourier’s law. For k(0) = 0 these equations represent the linearized theory for heat
flow in a rigid, isotropic, homogeneous material as proposed by Gurtin and Pipkin
(see e.g., [1], [3]). For k(0) > 0 the equations represent an alternate linearized theory
proposed by Coleman and Gurtin [4]. For the direct problem consisting in determining
the distribution of heat from some initial-boundary value problem for equation (1.3)
Grabmueller [5] gave a very general uniqueness proof for generalized solutions in a
Sobolev space and proved existence theorems in certain special situations.

The determination of the integral operator from the observable information about
the solutions of the corresponding equations is a new class of inverse problems that has
not yet been sufficiently studied. In view of a wide range of applications, the theory of
inverse problems for integro–differential equations is one of the most urgent and rapidly
developing fields of world science.

The problem of determining the kernel K(t) of the integral term in equation (1.1)
were studied in many publications [6]–[21] (see also references in them), in which both
one- and multidimensional inverse problems were investigated. In these works, the
questions of correctness of the considered problems were studied. The numerical solu-
tions for this problems were considered in the works [22]–[24].

In the present paper, we study the inverse problems about determining the kernels
of an integral convolution-type terms in the system of integro-differential equations
(1.3) by the single observation at the point x = x0 from below equations (1.5)-(1.7).

Among the works which are close to the problem under study below we note [25]–
[29]. In [25] there was proven the uniqueness theorem for solution of kernel determi-
nation problem for one-dimensional heat conduction equation. The papers [26]–[29]
deal with the inverse problems of determining the kernel depending on a time variable
t and (n − 1)-dimensional spatial variable x′ = (x1, ..., xn−1) . While the main part of
the considered integro-differential equation is n-dimensional heat conduction operator
and the integral term has a convolution type form with respect to unknown functions:
the solutions of direct and inverse problem. In these works the theorems of existence
and uniqueness of problems solutions were obtained.
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It is supposed the rigid body will occupy a fixed open interval (0, l) (one dimensional
case). The energy-temperature relation function α(t) and the heat conduction relation
k(t) are both assumed sufficiently continuously differentiable functions.

From (1.3) it follows that

θt(t, x) = −α
′(0)

α(0)
θ(t, x) +

k(0)

α(0)
θxx(t, x)+

+

∫ t

0

[
k′(t− τ)

α(0)
θxx(τ, x)− α′′(t− τ)

α(0)
θ(τ, x)

]
dτ +

r(t, x)

α(0)
. (1.4)

Let k(0) > 0 and α(0) 6= 0. Rewrite the equation (1.4) in the compact form:

θt(t, x) = f(t, x)+Cθxx(t, x)−a(0)θ(t, x)+

∫ t

0

[Cb(t− τ)θxx(τ, x)− a′(t− τ)θ(τ, x)] dτ

(1.5)
for all t ≥ 0, x ∈ (0; l) and consider the initial-boundary value problem with

θ(0, x) = θ0(x), (1.6)

θ(t, 0) = µ1(t); θ(t, l) = µ2(t); θ0(0) = µ1(0); θ0(l) = µ2(0); (1.7)

the initial and boundary conditions, where

C =
k(0)

α(0)
, a(t) =

α′(t)

α(0)
, b(t) =

k′(t)

k(0)
, f(t, x) =

r(t, x)

α(0)
.

In equalities (1.6) and (1.7) θ0(x), µ1(t) and µ1(t) are given functions. If r(t, x), θ0, α(t),
k(t), µ1(t), µ2(t) are given functions, then finding the function θ(t, x) from (1.5)-(1.7)
is called as a direct problem.

We pose the inverse problems:
Inverse problem 1. For given functions r(t, x), θ0(x), k(t), µ1(t), µ2(t) it is

required to determine the function α(t), t > 0 of the integral term in (1.5) using
additional information about the solution of the direct problem (1.5)-(1.7):

θ |x=x0= ψ(t), x0 ∈ (0, l), t > 0 (1.8)

In this case ψ(t), t > 0 are assumed to be given functions.
Inverse problem 2. For given functions r(t, x), θ0(x), α(t), µ1(t), µ2(t) it is

required to determine the function k(t), t > 0 of the integral term in (1.5) using
additional information (1.8) on the solution of the direct problem (1.5)-(1.7).

Since the method for studying the inverse problems allow to find simultaneously
the solution to the inverse problem and the solution to the direct problem, then in
the sequel, we will call the inverse problem 1 as a problem of determining functions
θ(t, x), α(t) from equations (1.5)-(1.8).

2. Preliminaries

Let Cm (0; l) be the class of m times continuously differentiable with all derivatives
up to the m−th order (inclusive) in (0; l) functions. In the case m = 0 this space
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coincides with the class of continuous functions. Cm,k(DT ) is the class of m times
continuously differentiable with respect to t and k times continuously differentiable
with respect to x all derivatives in the domain DT functions.

We need the following assertion:
Lemma 1. (see [2]) Suppose α(0) > 0, α ∈ C3[0, T ], k ∈ C2[0, T ], T > 0 is an

arbitrary fixed number, are true with k(0) > 0. Then equation (1.3) is equivalent to
the following integrodifferential equation:

∂θ

∂t
(t, x) = F (t, x) + C4θ(t, x) + y(0)θ(t, x) +

∫ t

0

y′(t− τ)θ(τ, x)dτ, (2.1)

where F is defined as

F (t, x) = f(t, x)−
∫ t

0

D(t− τ)f(τ, x)dτ +D(t)θ(0, x),

and where D(t) and y(t) satisfy the scalar equations

D(t) = b(t)−
∫ t

0

b(t− τ)D(τ)dτ, (2.2)

y(t) = b(t)− a(t)−
∫ t

0

b(t− τ)y(τ)dτ. (2.3)

If b(t) function is continuously for t > 0 then the solution to the integral equations
(2.2) exists and unique. Note that for given equation (2.3) it can be considered to be
an integral Volterra equation of the second kind with respect to y(t) with the kernel
b(t),

y(t) = −
∫ t

0

b(t− τ)y(τ)dτ + [b(t)− a(t)]. (2.4)

It follows from the general theory of integral equations (see, e.g., [30, p.39-44]) that
the solution of this equation is expressed by the formula

y(t) = b(t)− a(t) +

∫ t

0

R(t− τ) [b(τ)− a(τ)] dτ, (2.5)

where the kernels R(t) and b(t) are related by

b(t) = −R(t)−
∫ t

0

R(t− τ)b(τ)dτ. (2.6)

If b(0) is a known number, from relation (2.6) we find R(0) = −b(0).
Everywhere in this paper it is supposed α(0) and k(0) are given numbers such that

α(0) 6= 0, k(0) > 0.
In the next sections we will use the contraction mapping principle to proof the

unique solvability of inverse problems.
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Definition.Let F be an operator defined on a closed set Ω which is a subset of
a Banach space. F is called a contraction mapping operator in Ω if it satisfies the
following two properties:

1) if y ∈ Ω, then Fx ∈ Ω (i.e. F maps Ω into itself);
2) if y, z ∈ Ω, then ‖Fy − Fz‖ ≤ ρ ‖y − z‖ with ρ < 1 (ρ - is a constant independent

of y and z ).
Lemma 2.(contraction mapping principle [[31], pp. 87-97]). If F is a

contraction mapping operator from Ω to Ω, then the equation

y = Fy

has a unique solution y0 ∈ Ω.

3. Problem of determining the functions θ(t, x), α(t)

In this section existence and uniqueness for the inverse problem (2.1), (1.6)-(1.8)
is proved using the contraction mapping principle [Lemma 2]. The idea is to write
the integral equations for unknown functions θ(x, t), a(t) as a system with a nonlinear
operator, and prove that this operator is a contraction mapping operator. The existence
and uniqueness then follow immediately.

The solution of the initial-boundary problem (2.1), (1.6), (1.7) satisfies the integral
equation [[32], pp. 200-221]:

θ(t, x) = Ψ(t, x) +

∫ t

0

∫ l

0

G(t− τ, x, ξ)
(
y(0)θ(τ, ξ) +

∫ τ

0

y′(τ − α)θ(α, ξ)dα

)
dξdτ =

= Ψ(t, x) +

∫ t

0

∫ l

0

G(t− τ, x, ξ)θ0(ξ)y(τ)dξdτ+

+

∫ t

0

∫ l

0

G(t− τ, x, ξ)
∫ τ

0

y(α)θα(τ − α, ξ)dαdξdτ . (3.1)

where

Ψ(t, x) =

∫ l

0

G(t, x, ξ)θ0(ξ)dξ +

∫ t

0

∫ l

0

G(t− τ, x, ξ)F (τ, ξ)dξdτ+

+
∞∑
n=1

∫ t

0

2πn

l2
[µ1(τ)− (−1)nµ2(τ)] e−(

πn
l
)2(t−τ)sin

(πn
l
x
)
dτ ;

G(t− τ, x, ξ) =
2

l

∞∑
n=1

e−(
πan
l

)2(t−τ)sin
(πan

l
ξ
)
sin
(πan

l
x
)

is the Green function of the initial-boundary problem for one-dimensional heat equa-
tion.

We differentiate the equation (3.1) with respect to t. Introducing the notation
ϑ(t, x) := θt(t, x) and taking into account the following relations:

lim
t→0

G(t, ξ, x) = δ(x− ξ), lim
t→0

∫ l

0

G(t, x, ξ)θ0(ξ)dξ = θ0(x),
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where δ(·) is the Dirac’s delta function, we rewrite the result in the form

ϑ(t, x) = Ψt(t, x) + θ0(x)y(t) +

∫ t

0

y(α)ϑ(t− α, x)dα+

+

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)y(τ)dξdτ +

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

y(α)ϑ(τ −α, ξ)dαdξdτ .

(3.2)
Further, using the condition (1.8), we obtain:

ψ′(t) = Ψt(t, x0) + θ0(x0)y(t) +

∫ t

0

y(α)ϑ(t− α, x0)dα+

+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)θ0(ξ)y(τ)dξdτ+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)
∫ τ

0

y(α)ϑ(τ−α, ξ)dαdξdτ .

Next we write this equality as the integral equation of the second order with respect
to unknown function y(t)

y(t) = − 1

θ0(x0)

[
Ψt(t, x0)− ψ′(t) +

∫ t

0

y(α)ϑ(t− α, x0)dα+

+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)θ0(ξ)y(τ)dξdτ+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)
∫ τ

0

y(α)ϑ(τ−α, ξ)dαdξdτ
]
.

(3.3)
Replacing t = 0 in integral equation (3.3), the unknown function y(0) is found as

follows:
y(0) =

ψ′(0)−Ψt(0, x0)

θ0(x0)
;

In what follows we assume θ0(x0) 6= 0.
We represent the system of equations (3.2), (3.3) in the form

Ag = g, (3.4)

where g = (g1, g2) = (ϑ(x, t)− θ0(x)y(t), y(t)) is the vector-function and unknown
functions are represented by g1, g2 functions as follows:

ϑ(t, x) = θt(t, x) = g1(t, x) + θ0(x)g2(t);

y(t) = g2(t).

A = (A1, A2) is defined by the right sides of equations (3.2), (3.3):

A1g = g01 +

∫ t

0

g2(α) (g1(t− α, x) + θ0(x)g2(t− α)) dα+

+

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)g2(τ)dξdτ +

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)×
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×
∫ τ

0

g2(α)
(
g1(τ − α, ξ) + θ0(ξ)g2(τ − α)

)
dαdξdτ ; (3.5)

A2g = g02 −
1

ψ(0)

∫ t

0

g2(α) (g1(t− α, x0) + θ0(x0)g2(t− α)) dα−

− 1

ψ(0)

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)θ0(ξ)g2(τ)dξdτ−

− 1

ψ(0)

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)
∫ τ

0

g2(α)
(
g1(τ − α, ξ) + θ0(ξ)g2(τ − α)

)
dαdξdτ . (3.6)

The following notations were introduced in the equalities (3.1), (3.2):

g0(t, x) = (g01(t, x), g02(t)) = (Ψt(t, x), − 1

ψ(0)

(
Ψt(t, x0)− ψ′(t)

)
).

Theorem 1(existence and uniqueness). Assume the conditions θ0(x) ∈ C (0, l),
ψ(t) ∈ C[0;T ], r(t, x) ∈ C(DT ), µi(t) ∈ C[0, T ], i = 1, 2, k(t) ∈ C2[0, T ], θ0(0) = ψ(0),
θ0(x0) 6= 0, θ0(0) = µ1(0), θ0(l) = µ2(0) are hold. Then there exists sufficiently
small number T ∗ ∈ (0, T ) that the solution to the integral equations (3.1), (3.2) in
the class of functions ϑ(t, x) ∈ C1,2 (DT ∗), y(t) ∈ C[0;T ∗] exist and unique, where
DT ∗ = {(x, t)|x ∈ (0, l), t ∈ [0, T ∗]}.

To prove the theorem 1,we define for the unknown vector-function g(x, t) ∈ C(DT )
the following weight norm:

‖g‖σ = max

{
sup

(x,t)∈DT

∣∣g1(x, t)e−σt∣∣ , sup
t∈[0,T ]

∣∣g2(t)e−σt∣∣} =

= max {‖g1‖σ, ‖g2‖σ} , σ ≥ 0.

At σ = 0 this norm coincides with the usual norm

‖g‖ = max

{
sup

(x,t)∈DT
|g1(x, t)| , sup

t∈[0,T ]
|g2(t)|

}
.

The number σ > 0 will be chosen later. Denote by S(g0, ρ) the ball of vector-functions
g with center at the point g0 and radius ρ > 0, i.e. S(g0, ρ) = {g : ‖g− g0‖σ ≤ ρ}. The
number ρ > 0 will be also chosen later.

Obviously, ‖g‖ ≤ ρ + ‖g0‖ for g(x, t) ∈ S(g0, ρ). We prove that the operator A
is contracting in the Banach space S(g0, ρ) if the numbers σ and ρ will be chosen in
suitable way.

Note that the weight norm ‖ · ‖σ is equivalent to the usual norm ‖ · ‖ :

‖ · ‖σ ≤ ‖ · ‖ ≤ eσT‖ · ‖σ, σ ≥ 0. (3.7)

The convolution operator is commutative and invariant with respect to multiplica-
tion by e−σt:

(h1 ∗ h2) (t) =

∫ t

0

h1(t− s)h2(s)ds =

∫ t

0

h1(s)h2(t− s)ds = (h2 ∗ h1) (t), (3.8)
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e−σt (h1 ∗ h2) (t) = (e−σth1(t)) ∗ (e−σth2(t)). (3.9)

The last formula implies the estimation

‖h1 ∗ h2‖σ ≤ ‖h1‖σ‖h2‖σT. (3.10)

Moreover, since ∫ t

0

e−σsds =

∫ t

0

e−σ(t−s)ds ≤ 1

σ
, σ ≥ 0 (3.11)

we have
‖h1 ∗ h2‖σ ≤

1

σ
‖h1‖‖h2‖σ ≤

1

σ
‖h1‖‖h2‖, σ ≥ 0 (3.12)

using (3.7) and the results of [10].
Now we write two properties of Green function [see [32], pp.200-221] which will be

needed in the future.
Remark 1. The integral of the Green function does not exceed 1:∫ l

0

G(x, ξ, t)dξ ≤ 1, x ∈ (0, l), t ∈ (0, T ].

Remark 2. The function G(x, ξ, t) is infinitely continuously differentiable with
respect to x, ξ, t and Gt(x, ξ, t) is bounded for 0 < x < l, 0 < ξ < l, 0 < t ≤ T, i.e.

|Gt(x, ξ, t− τ)| ≤ 2

l
.

Now we check the first condition of contractive mapping for operator A.
We introduce the notations

θ0 := max
x∈(0;l)

|θ0(x)| , ψ0 := max

{
max
t∈[0,T ]

|ψ(t)| , max
t∈[0,T ]

|ψ′(t)|
}
.

Let g(x, t) be an element of S(g0, ρ), i.e. g ∈ S(g0, ρ). Then for (x, t) ∈ DT we have

‖A1g−g01‖σ = sup
(x,t)∈DT

|(A1g−g01)e−σt| ≤ sup
(x,t)∈DT

∣∣∣∫ t

0

g2(α)(g1(t−α, x)+θ0(x)g2(t−α))e−σtdα
∣∣∣+

+ sup
(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)g2(τ)e−σtdξdτ
∣∣∣+ sup

(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)×

×
∫ τ

0

g2(α)
(
g1(τ − α, ξ) + θ0(ξ)g2(τ − α)

)
e−σtdαdξdτ

∣∣∣=: I1 + I2 + I3.

We estimate each Ii, i = 1, 2, 3, separately:

I1 := sup
(x,t)∈DT

∣∣∣∫ t

0

g2(α)(g1(t− α, x) + θ0(x)g2(t− α))e−σtdα
∣∣∣≤



Memory Kernel Reconstruction Problems ... 9

≤ sup
(x,t)∈DT

∣∣∣∫ t

0

g2(α)g1(t− α, x)e−σtdα
∣∣∣+ sup

(x,t)∈DT

∣∣∣∫ t

0

g2(α)θ0(x)g2(t− α)e−σtdα
∣∣∣≤

≤ sup
(x,t)∈DT

∣∣(g2 ∗ g1)(t)e−σt∣∣+ θ0 sup
(x,t)∈DT

∣∣(g2 ∗ g2)(t)e−σt∣∣ ≤
≤ sup

(x,t)∈DT

∣∣∣{[(g2 − g02) ∗ (g1 − g01)] (t)+(g2 ∗ g01) (t)+(g1 ∗ g02) (t)−(g02 ∗ g01) (t)
}
e−σt

∣∣∣+
+θ0 sup

(x,t)∈DT

∣∣∣{[(g2 − g02) ∗ (g2 − g02)] (t)+(g2 ∗ g02) (t)+(g2 ∗ g02) (t)−(g02 ∗ g02) (t)
}
e−σt

∣∣∣ ≤
≤
(
‖g2 − g02‖σ‖g1 − g01‖σT +

1

σ
‖g2‖σ‖g01‖+

1

σ
‖g1‖σ‖g02‖+

1

σ
‖g01‖σ‖g02‖

)
+

+θ0

(
‖g2 − g02‖σ‖g2 − g02‖σT +

1

σ
‖g2‖σ‖g02‖+

1

σ
‖g2‖σ‖g02‖+

1

σ
‖g02‖σ‖g02‖

)
≤

≤ (1 + θ0)(ρ
2T +

2

σ
(ρ+ ‖g0‖)‖g0‖+

1

σ
‖g0‖2);

I2 := sup
(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)g2(τ)e−σtdξdτ
∣∣∣≤ 2θ0(ρ+ ‖g0‖)

σ
;

I3 := sup
(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t−τ, x, ξ)
∫ τ

0

g2(α)
(
g1(τ−α, ξ)+θ0(ξ)g2(τ−α)

)
e−σtdαdξdτ

∣∣∣≤
≤ sup

(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

g2(α)g1(τ − α, ξ)e−σtdαdξdτ
∣∣∣+

+ sup
(x,t)∈DT

∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

g2(τ − α)θ0(ξ)g2(α)e−σtdαdξdτ
∣∣∣≤

≤ 2(ρ+ ‖g0‖)2T
σ

+
2θ0(ρ+ ‖g0‖)2T

σ
= (1 + θ0)

2(ρ+ ‖g0‖)2T
σ

;

Accordingly, we get

‖A1g − g01‖σ ≤ (1 + θ0)(ρ
2T +

2

σ
(ρ+ ‖g0‖)‖g0‖+

1

σ
‖g0‖2) +

2θ0(ρ+ ‖g0‖)
σ

+

+(1 + θ0)
2(ρ+ ‖g0‖)2T

σ
= (1 + θ0)Tρ

2 + (2‖g0‖(1 + θ0) + 2θ0)
(ρ+ ‖g0‖)

σ
+

+(1 + θ0)
1

σ
‖g0‖2 + (1 + θ0)

2(ρ+ ‖g0‖)2T
σ

.

Now we can choose ρ, σ such that there hold the inequalities:
(1 + θ0)Tρ

2 < 1
4
ρ,

(2‖g0‖(1 + θ0) + 2θ0)
(ρ+‖g0‖)

σ
< 1

4
ρ,

(1 + θ0)
1
σ
‖g0‖2 < 1

4
ρ,

(1 + θ0)
2(ρ+‖g0‖)2T

σ
) < 1

4
ρ.
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It follows that if 
ρ < 1

4(1+θ0)T
= ρ1,

β1 = 4(2‖g0‖(1 + θ0) + 2θ0)
(ρ1+‖g0‖)

ρ1
< σ,

β2 = (1 + θ0)
4
ρ1
‖g0‖2 < σ,

β3 = (1 + θ0)
8(ρ1+‖g0‖)2T

ρ1
< σ.

then A1g ∈ S(g0, ρ).
So, if the inequality

σ > σ1 = max{β1, β2, β3}

and ρ ∈ (0, ρ1) holds, then the operator A1 maps S(g0, ρ) into itself, i.e. A1g ∈ S(g0, ρ).

‖A2g − g02‖σ = sup
t∈[0,T ]

∣∣(A2g − g02)e−σt
∣∣ ≤ sup

t∈[0,T ]

∣∣ 1

θ0(x0)

∫ t

0

g2(α)(g1(t− α, x0)+

+θ0(x0)g2(t− α))e−σtdα
∣∣+ sup

t∈[0,T ]

∣∣∣∣ 1

θ0(x0)

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)θ0(ξ)g2(τ)e−σtdξdτ

∣∣∣∣+
+ sup

t∈[0,T ]

∣∣∣∣ 1

θ0(x0)

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)
∫ τ

0

g2(α)
(
g1(τ − α, ξ) + θ0(ξ)g2(τ − α)

)
e−σtdαdξdτ

∣∣∣∣ ≤
≤ (1 + θ0)

θ0(x0)
(ρ2T +

2

σ
(ρ+‖g0‖)‖g0‖+

1

σ
‖g0‖2)+

2θ0(ρ+ ‖g0‖)
θ0(x0)σ

+(1+θ0)
2(ρ+ ‖g0‖)2T

θ0(x0)σ
=

=
(1 + θ0)Tρ

2

θ0(x0)
+(2‖g0‖(1+θ0)+2θ0)

(ρ+ ‖g0‖)
θ0(x0)σ

+(1+θ0)
1

θ0(x0)σ
‖g0‖2+(1+θ0)

2(ρ+ ‖g0‖)2T
θ0(x0)σ

.

Now we can choose ρ, σ such that there hold the inequalities:
(1+θ0)Tρ2

θ0(x0)
< 1

4
ρ,

(2‖g0‖(1 + θ0) + 2θ0)
(ρ+‖g0‖)
θ0(x0)σ

< 1
4
ρ,

(1 + θ0)
1

θ0(x0)σ
‖g0‖2 < 1

4
ρ,

(1 + θ0)
2(ρ+‖g0‖)2T
θ0(x0)σ

< 1
4
ρ.

It follows that if 
ρ < θ0(x0)

4(1+θ0)T
= ρ2,

β4 = 4(2‖g0‖(1 + θ0) + 2θ0)
(ρ1+‖g0‖)
θ0(x0)ρ2

< σ,

β5 = (1 + θ0)
4

θ0(x0)ρ2
‖g0‖2 < σ,

β6 = (1 + θ0)
8(ρ1+‖g0‖)2T
θ0(x0)ρ2

< σ.

then A2g ∈ S(g0, ρ).
So, if the inequality

σ > σ2 = max{β4, β5, β6}
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and ρ ∈ (0, ρ1) holds, then the operator A2 maps S(g0, ρ) into itself, i.e. A2g ∈ S(g0, ρ).
As a result, we conclude that if σ, ρ satisfy the conditions σ > max {σ1, σ2} ,

ρ ∈ (0, ρ2), then operator A maps S(g0, ρ) into itself, i.e. Ag ∈ S(g0, ρ).
Further we check the second condition of contractive mapping. In accordance with

(3.5) for the first component of operator A we get

‖(Ag1 − Ag2)1‖σ = sup
(x,t)∈DT

∣∣∣∣∫ t

0

[
g12(α)g11(t− α, x)− g22(α)g21(t− α, x)

]
dαe−σt

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣∣∣∫ t

0

θ0(x)[g12(α)g12(t− α)− g22(α)g22(t− α)]dαe−σt
∣∣∣∣+

+ sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)
[
g12(τ)− g22(τ)

]
dξdτe−σt

∣∣∣∣+
+ sup

(x,t)∈DT

∣∣ ∫ t

0

∫ l

0

Gt(t− τ, x, ξ)×

×
∫ τ

0

[
g12(α)g11(τ − α, ξ)− g22(α)g21(τ − α, ξ)

]
dαdξdτe−σt

∣∣+
+ sup

(x,t)∈DT

∣∣ ∫ t

0

∫ l

0

Gt(t− τ, x, ξ)×

×
∫ τ

0

θ0
[
g12(α)g12(τ − α)− g22(α)g22(τ − α)

]
dαdξdτe−σt

∣∣ =:
5∑
i=1

Ji.

We denoted the summands in this equality by Ji(i = ¯1, 5) respectively and carry
out the estimates for them separately.

Taking into account the relation

g12 ∗ g11 − g22 ∗ g21 =
(
g12 − g22

)
∗
(
g11 − g01

)
+
(
g11 − g21

)
∗
(
g22 − g02

)
+

+g01 ∗
(
g12 − g22

)
+ g02 ∗

(
g11 − g21

)
,

estimate the J1, J2 as follows:

J1 := sup
(x,t)∈DT

∣∣∣∣∫ t

0

[
g12(α)g11(t− α, x)− g22(α)g21(t− α, x)

]
dαe−σt

∣∣∣∣ =

= sup
(x,t)∈DT

∣∣∣∣∫ t

0

[
g12 ∗ g11 − g22 ∗ g21

]
dαe−σt

∣∣∣∣ ≤
≤
[∥∥g12 − g22∥∥σ ∥∥g11 − g01∥∥σ T +

∥∥g11 − g21∥∥σ ∥∥g22 − g02∥∥σ T + ‖g01‖σ
∥∥g12 − g22∥∥σ +

+ ‖g02‖σ
∥∥g11 − g21∥∥σ] ≤ 2

(
ρT +

1

σ
‖g0‖

)∥∥g1 − g2∥∥
σ
,
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J2 := sup
(x,t)∈DT

∣∣∣∣∫ t

0

θ0(x)
[
g12(α)g12(t− α)− g22(t− α)g22(α)

]
dαe−σt

∣∣∣∣ =

= sup
(x,t)∈DT

∣∣∣∣∫ t

0

θ0(x)
[
g12 ∗ g12 − g22 ∗ g22

]
dαe−σt

∣∣∣∣ ≤
≤ θ0

[∥∥g12 − g22∥∥σ ∥∥g12 − g02∥∥σ T +
∥∥g12 − g22∥∥σ ∥∥g22 − g02∥∥σ T + ‖g02‖σ

∥∥g12 − g22∥∥σ +

+ ‖g02‖σ
∥∥g12 − g22∥∥σ] ≤ 2θ0

(
ρT +

1

σ
‖g0‖

)∥∥g1 − g2∥∥
σ
,

J3 := sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)
[
g12(τ)− g22(τ)

]
dξdτe−σt

∣∣∣∣ ≤
≤ 2θ0

σ

∥∥g1 − g2∥∥
σ
,

J4 := sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

[
g12(α)g11(τ − α, ξ)− g22(α)g21(τ − α, ξ)

]
dαdξdτe−σt

∣∣∣∣ ≤
≤ 4T

σ
(ρ+ ‖g0‖)

∥∥g1 − g2∥∥
σ
,

J5 := sup
(x,t)∈DT

∣∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

θ0
[
g12(α)g12(τ − α)− g22(α)g22(τ − α)

]
dαdξdτe−σt

∣∣∣∣ ≤
≤ 4θ0T

σ
(ρ+ ‖g0‖)

∥∥g1 − g2∥∥
σ
,

Here the integrand in the last integral can be estimated as follows∥∥g12g11 − g22g21∥∥σ =
∥∥(g12 − g22)g11 + g22(g11 − g21)

∥∥
σ
≤

≤ 2
∥∥g1 − g2∥∥

σ
max

(∥∥g11∥∥σ , ∥∥g22∥∥σ) ≤ 2(‖g0‖+ ρ)
∥∥g1 − g2∥∥

σ
.

Summing the obtained estimates for Ji, i = 1, 2, .., 5 we have that the first compo-
nent of A can be estimated in the following form:

‖(Ag1 − Ag2)1‖σ ≤ 2

(
ρT +

1

σ
‖g0‖

)∥∥g1 − g2∥∥
σ

+

+2θ0

(
ρT +

1

σ
‖g0‖

)∥∥g1 − g2∥∥
σ

+
2θ0
σ

∥∥g1 − g2∥∥
σ

+
4T

σ
(ρ+ ‖g0‖)

∥∥g1 − g2∥∥
σ

+

+
4θ0T

σ
(ρ+ ‖g0‖)

∥∥g1 − g2∥∥
σ

=

= ((2 + 2θ0)ρT + (2‖g0‖+ 2θ0‖g0‖+ 2θ0)
1

σ
+ (4θ0T + 4T ) (ρ+ ‖g0‖)

1

σ
)
∥∥g1 − g2∥∥

σ
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Now we choose numbers σ, ρ so that the expression at ‖g1 − g2‖σ becomes less than
1, i.e., the inequality

(2 + 2θ0)ρT + (2‖g0‖+ 2θ0‖g0‖+ 2θ0)
1

σ
+ (4θ0T + 4T ) (ρ+ ‖g0‖)

1

σ
< 1

is fulfilled. This inequality is valid if numbers σ, ρ will be chosen from conditions
(2 + 2θ0)ρT < 1

3
,

(2‖g0‖+ 2θ0‖g0‖+ 2θ0)
1
σ
< 1

3
,

(4θ0T + 4T ) (ρ+ ‖g0‖) 1
σ
< 1

3
.

Solving these inequalities with respect to σ, ρ we obtain
ρ < 1

3(2+2θ0)
= ρ3,

β7 = 3(2‖g0‖+ 2θ0‖g0‖+ 2θ0) < σ,

β8 = 3(4θ0T + 4T ) (ρ3 + ‖g0‖) < σ.

From these estimates it is clear that if σ and ρ are chosen from condition σ > σ5 =
max(β7, β8) and ρ < (0, ρ3), then the operator A2 satisfies the second condition of
contracting mapping.

The second component of A can be estimated in the following form:

‖(Ag1−Ag2)2‖σ =
1

θ0(x0)
sup

(x,t)∈DT

∣∣∣∣∫ t

0

[
g12(α)g11(t− α, x0)− g22(α)g21(t− α, x0)

]
dαe−σt

∣∣∣∣+
+

1

θ0(x0)
sup

(x,t)∈DT

∣∣∣∣∫ t

0

θ0(x)
[
g12(α)g12(t− α)− g22(α)g22(t− α)

]
dαe−σt

∣∣∣∣+
+

1

θ0(x0)
sup

(x,t)∈DT

∣∣∣∣∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)θ0(ξ)
[
g12(τ)− g22(τ)

]
dξdτe−σt

∣∣∣∣+
+

1

θ0(x0)
sup

(x,t)∈DT

∣∣ ∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)×

×
∫ τ

0

[
g12(α)g11(τ − α, ξ)− g22(α)g21(τ − α, ξ)

]
dαdξdτe−σt

∣∣+
+

1

θ0(x0)
sup

(x,t)∈DT

∣∣ ∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)×

×
∫ τ

0

θ0
[
g12(α)g12(τ − α)− g22(α)g22(τ − α)

]
dαdξdτe−σt

∣∣ ≤
≤
(
(2 + 2θ0)

ρT

θ0(x0)
+ (2‖g0‖+ 2θ0‖g0‖+ 2θ0)

1

θ0(x0)σ
+

+(4θ0T + 4T ) (ρ+ ‖g0‖)
1

θ0(x0)σ

) ∥∥g1 − g2∥∥
σ
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Now we choose numbers σ, ρ so that the expression at ‖g1 − g2‖σ becomes less than
1, i.e., the inequality

(2 + 2θ0)
ρT

θ0(x0)
+ (2‖g0‖+ 2θ0‖g0‖+ 2θ0)

1

θ0(x0)σ
+ (4θ0T + 4T ) (ρ+ ‖g0‖)

1

θ0(x0)σ
< 1

is fulfilled. This inequality is true if numbers σ, ρ will be chosen from conditions
(2 + 2θ0)

ρT
θ0(x0)

< 1
3
,

(2‖g0‖+ 2θ0‖g0‖+ 2θ0)
1

θ0(x0)σ
< 1

3
,

(4θ0T + 4T ) (ρ+ ‖g0‖) 1
θ0(x0)σ

< 1
3
.

Solving these inequalities with respect to σ, ρ we obtain
ρ < θ0(x0)

3(2+2θ0)
= ρ4,

β9 = 3(2‖g0‖+ 2θ0‖g0‖+ 2θ0)
1

θ0(x0)
‖g0‖ < σ,

β10 = 3(4θ0T + 4T ) (ρ4 + ‖g0‖) 1
θ0(x0)

< σ.

From these estimates it follows that if σ and ρ are chosen from conditions σ > σ6 =
max(β9, β10) and ρ < (0, ρ4), then the operator A3 satisfies the second condition of
contracting mapping.

As result, we conclude that if σ and ρ are taken from conditions σ >
max(σ1, σ2, σ3, σ4, σ5, σ6) and ρ ∈ (0, min(ρ1, ρ2, ρ3, ρ4)), then the operator A
carries out contracting mapping the ball S(g0, ρ) into itself and according to Banach
theorem in this ball it has a unique fixed point, i.e., there exists a unique solution of
operator equation (3.4). The proof of the theorem is complete.

Having found the functions ϑ(t, x) and y(t), we determine the functions θ(t, x), a(t)
by integral equation (2.3):

a(t) = b(t)− y(t)−
∫ t

0

b(t− τ)y(τ)dτ.

θ(t, x) = θ0(x) +

∫ t

0

ϑ(τ, x)dτ.

With the known function a(t), solving the differential equation a(t) = α′(t)
α(0)

, we find
the function

α(t) = α(0) + α(0)

∫ t

0

a(τ)dτ,

the solution of the inverse problem 1 (1.5)-(1.8).

4. Inverse problem 2

This section deals with the problem of finding θ(t, x) and k(t) from equalities (1.5)-
(1.8). According to Lemma 1, the equation (1.5) is equivalent to equation (2.1). The
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solution of the direct problem (2.1), (1.6), (1.7) is expressed in the form of integral
equation (3.1). We rewrite this equation as follows:

θ(t, x) = Φ(t, x)+

∫ t

0

∫ l

0

G(t−τ, x, ξ)F (τ, ξ)dξdτ +

∫ t

0

∫ l

0

G(t−τ, x, ξ)θ0(ξ)y(τ)dξdτ+

+

∫ t

0

∫ l

0

G(t− τ, x, ξ)
∫ τ

0

y(α)θα(τ − α, ξ)dαdξdτ , (4.1)

where

Φ(t, x) =

∫ l

0

G(t, x, ξ)θ0(ξ)dξ+

∞∑
n=1

∫ t

0

2πn

l2
[µ1(τ)− (−1)nµ2(τ)] e−(

πn
l
)2(t−τ)sin

(πn
l
x
)
dτ.

Differentiating equation (4.1) in t, we use the equality (2.2) and notation ϑ(t, x) :=
θt(t, x). Then we have

ϑ(t, x) = Φt(t, x)+f(t, x)−
∫ t

0

D(t−τ)f(τ, x)dτ+b(t)θ0(x)−θ0(x)

∫ t

0

b(t−τ)D(τ)dτ+

+θ0(x)y(t) +

∫ t

0

y(τ)ϑ(t− τ, ξ)dτ +

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)F (τ, ξ)dξdτ+

+

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)θ0(ξ)y(τ)dξdτ +

∫ t

0

∫ l

0

Gt(t− τ, x, ξ)
∫ τ

0

y(α)ϑ(τ − α, ξ)dαdξdτ

(4.2)
and we obtained the following equation using the additional condition (1.8):

ψ′(t) = Φt(t, x0)+f(t, x0)−
∫ t

0

D(t−τ)f(τ, x0)dτ+b(t)θ0(x0)−θ0(x0)
∫ t

0

b(t−τ)D(τ)dτ+

+θ0(x0)y(t) +

∫ t

0

y(τ)ϑ(t− τ, ξ)dτ +

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)F (τ, ξ)dξdτ+

+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)θ0(ξ)y(τ)dξdτ+

∫ t

0

∫ l

0

Gt(t−τ, x0, ξ)
∫ τ

0

y(α)ϑ(τ−α, ξ)dαdξdτ.

From the above equation the unknown function b(t) is found:

b(t) = − 1

θ0(x0)

[
Φt(t, x0) + f(t, x0)− ψ′(t)−

∫ t

0

D(t− τ)f(τ, x0)dτ−

−θ0(x0)
∫ t

0

b(t− τ)D(τ)dτ + θ0(x0)y(t) +

∫ t

0

y(τ)ϑ(t− τ, ξ)dτ+

+

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)F (τ, ξ)dξdτ +

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)θ0(ξ)y(τ)dξdτ+
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+

∫ t

0

∫ l

0

Gt(t− τ, x0, ξ)
∫ τ

0

y(α)ϑ(τ − α, ξ)dαdξdτ
]
. (4.3)

The existence and uniqueness of the solution of the system of closed integral equa-
tions (4.2) and (4.3) is proved by applying the principle of contraction mapping as in
section 3. Therefore, it is true the following assertion:

Theorem 2(existence and uniqueness). Assume the conditions θ0(x) ∈ C (0, l),
ψ(t) ∈ C[0;T ], r(t, x) ∈ C(DT ), µi(t) ∈ C[0, T ], i = 1, 2, α(t) ∈ C2[0, T ], θ0(0) = ψ(0),
θ0(x0) 6= 0, θ0(0) = µ1(0), θ0(l) = µ2(0) are hold. Then there exists sufficiently
small number T ∗ ∈ (0, T ) that the solution to the integral equations (4.2), (4.3) in
the class of functions ϑ(t, x) ∈ C1,2 (DT ∗), b(t) ∈ C[0;T ∗] exist and unique, where
DT ∗ = {(x, t)|x ∈ (0, l), t ∈ [0, T ∗]}.

From the found function b(t), the unknown function k(t) is determined as follows:

k(t) = k(0) + α(0)

∫ t

0

b(τ)dτ.

5. Conclusion

In this work, two inverse problems were considered for determining the kernels α(t)
and k(t) included in the system of equations (1.3) with a simple observation (1.8)
at the point x0 ∈ (0, l) of the solution of this system with the initial and boundary
conditions (1.5), (1.6). Conditions for given functions are obtained, under which the
inverse problems have unique solutions for a sufficiently small time interval. When
determining one of the kernels, it was assumed that the other is known. In this case,
it should be noted the question of the simultaneous determination of two kernels in
the system of equations (1.3) remains open using some additional conditions of the
corresponding measurement.
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