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Abstract	48 

Population	size	is	a	central	parameter	for	conservation,	however	monitoring	abundance	is	often	49 

problematic	 for	 threatened	marine	 species.	Despite	 substantial	 investment	 in	 research,	many	50 

marine	species	remain	data-poor	resulting	in	uncertain	population	forecasts	and	restricting	the	51 

evaluation	 of	 past	 and	 present	 conservation	 actions.	 Such	 is	 the	 case	 for	 the	 white	 shark	52 

(Carcharodon	carcharias),	a	highly	mobile	apex	predator	 for	whom	population	monitoring	 is	a	53 

conservation	priority	following	substantial	declines	recorded	through	the	20th	century.	Here,	we	54 

estimate	 the	 effective	 number	 of	 breeders	 that	 successfully	 contribute	 offspring	 in	 one	55 

reproductive	cycle	(𝑁𝑏),	providing	a	snapshot	of	recent	reproductive	effort	in	an	east-Australian	56 

New	Zealand	population	of	white	shark.	 	𝑁𝑏	was	estimated	over	four	consecutive	age	cohorts	57 

(2010,	2011,	2012,	2013)	using	 two	genetic	estimators	 (linkage-disequilibrium;	 LD	and	 sibship	58 

assignment;	 SA)	 based	 on	 genetic	 data	 derived	 from	 two	 types	 of	 genetic	 markers	 (single-59 

nucleotide-polymorphisms;	SNPs	and	microsatellite	loci).	While	estimates	of	𝑁𝑏	using	different	60 

marker	types	produced	comparable	estimates,	microsatellite	loci	were	the	least	precise.		The	LD	61 

and	SA	estimates	of	𝑁𝑏	within	cohorts	using	SNPs	were	comparable,	for	example	the	2013	age-62 

cohort	𝑁𝑏(𝑆𝐴)	was	289	(95%CI	200-461)	and	𝑁𝑏(𝐿𝐷)	was	208.5	(95%CI	116.4-712.7).	We	show	63 

that	 over	 the	 time	 period	 studied	 𝑁𝑏	was	 stable	 and	 ranged	 between	206.1(±45.9)	64 

and	252.0(±46.7)	 per	 year	 using	 a	 combined	 estimate	 of	𝑁𝑏 𝐿𝐷 + 𝑆𝐴 	 from	 SNP	 loci,	 and	 a	65 

simulation	approach	showed	that	in	this	population	effective	population	size	(𝑁𝑒)	per	generation	66 

can	 be	 expected	 to	 be	 larger	 than	𝑁𝑏	 per	 reproductive	 cycle.	 This	 study	 demonstrates	 how	67 

breeding	population	size	can	be	monitored	over	time	to	provide	insight	into	the	effectiveness	of	68 
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recovery	and	conservation	measures	for	the	white	shark,	where	the	methods	described	here	may	69 

be	applicable	to	other	data-poor	species	of	conservation	concern.			70 

	71 
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Introduction	72 

Assessing	the	size	of	natural	populations	is	a	key	objective	of	monitoring	programs	which	73 

are	vital	for	understanding	the	conservation	status	of	species,	the	regulating	effects	of	biotic	and	74 

abiotic	 factors,	 and	 for	 the	 assessment	 of	 management	 efforts	 (Lindenmayer	 et	 al.,	 2020).	75 

However,	 for	many	marine	 populations,	 there	 is	 a	 lack	 of	 consistent	monitoring	 programs	 at	76 

appropriate	 spatial	 and	 temporal	 scales	 for	 conservation	 and	 policy	 needs	 (Papa,	 Oosting,	77 

Valenza-Troubat,	 Wellenreuther,	 &	 Ritchie,	 2020).	 This	 presents	 a	 significant	 problem	 for	78 

chondrichthyans	(sharks,	skates,	rays	and	chimaeras),	where	more	than	half	of	known	species	are	79 

characterised	by	insufficient	data	and	one-quarter	are	estimated	to	be	at	risk	of	extinction	(Dulvy	80 

et	al.,	2014).	Within	the	elasmobranchs	(sharks,	skates	and	rays),	each	contributes	significantly	to	81 

connect	 ecosystems	 and	 regulate	 marine	 food	 webs	 (Heupel,	 Knip,	 Simpfendorfer,	 &	 Dulvy,	82 

2014).	However,	habitat	loss	and	continued	pressures	on	mortality	though	bycatch	and	targeted-83 

fishing	have	resulted	in	many	populations	of	elasmobranchs	being	depleted	at	a	rate	that	exceeds	84 

their	 natural	 recovery	 potential	 (Worm	 et	 al.,	 2013).	 Given	 the	 significant	 challenges	 facing	85 

elasmobranchs	and	the	importance	of	their	role	in	regulating	marine	ecosystems,	improvements	86 

for	monitoring	changes	in	natural	populations	is	critical.				87 

Monitoring	threatened	elasmobranch	species	is	particularly	challenging	for	many	reasons.	88 

In	the	case	of	the	white	shark,	Carcharodon	carcharias	(Linnaeus,	1758),	where	monitoring	is	a	89 

both	a	social	and	conservation	priority,	efforts	to	establish	long	term	population	trends	have	been	90 

hampered	by	issues	including	detectability	[misidentification	in	photo-ID	surveys	(Burgess	et	al.,	91 

2014),	lack	of	re-sightings	in	mark-recapture	studies	(Gore,	Frey,	Ormond,	Allan,	&	Gilkes,	2016),	92 
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effects	of	environment	on	heterogeneity	of	behaviour	(Jacoby,	Croft,	&	Sims,	2012)		and	a	lack	of	93 

catch	statistics	(i.e.	illegal,	unregulated	and	unreported	fishing).	The	need	for	alternate	methods	94 

to	 index	 shark	 populations	 has	 therefore	 led	 to	 the	 increasing	 use	 of	 molecular	 markers	 to	95 

evaluate	change	and	inform	management	(Blower,	Pandolfi,	Bruce,	Gomez-Cabrera,	&	Ovenden,	96 

2012;	Bruce	et	al.,	2018;	Hillary	et	al.,	2018).	In	this	study,	we	focus	on	the	concept	of	genetic	97 

effective	population	size	(herein	effective	population	size	−	Ne),	which	can	be	used	to	evaluate	98 

change	 in	 abundance	 from	 allele	 frequencies	 (Schwartz,	 Luikart,	 &	 Waples,	 2007).	 When	99 

populations	 are	 small,	 genetic	 models	 predict	 that	 the	 evolutionary	 force	 of	 genetic	 drift	100 

(stochastic	changes	in	allele	frequencies)	will	predominate	over	other	evolutionary	forces	such	as	101 

natural	 selection,	 to	 reduce	 genetic	 diversity,	 population	 viability	 and	 evolutionary	 potential	102 

(Frankham,	1996;	Franklin,	1980).	The	extent	to	which	a	population	is	vulnerable	to	such	effects	103 

is	inversely	related	to	the	magnitude	of	Ne,	where	the	effects	of	drift	will	occur	more	slowly	in	104 

populations	with	larger	effective	sizes	than	those	with	smaller	effective	sizes	(Wang,	2005).	When	105 

a	genetic	sample	contains	only	individuals	from	a	single	age-cohort	(a	group	of	individuals	having	106 

the	same	age-class),	then	the	estimate	of	Ne	corresponds	to	the	effective	number	of	breeders	107 

(Nb)	which	 contributed	 offspring	 to	 that	 cohort	 (Wang,	 Santiago,	&	 Caballero,	 2016;	Waples,	108 

Luikart,	 Faulkner,	 &	 Tallmon,	 2013).	 For	 long-lived,	 iteroparous	 species,	 estimates	 of	Nb	 are	109 

generally	considered	more	useful	for	monitoring	as	they	apply	to	a	single	breeding	season	and	110 

represent	an	accessible	parameter	for	monitoring	population	trends	at	ecological	timescales	most	111 

relevant	to	conservation	and	management	needs	(Ovenden	et	al.,	2016;	Schwartz	et	al.,	2007;	112 

Waples	&	Do,	2008).	Past	research	has	confirmed	the	power	and	usefulness	of	Nb	as	a	tool	to	113 
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monitor	population	trends	(Antao,	Pérez-Figueroa,	&	Luikart,	2011;	Nunziata	&	Weisrock,	2018).	114 

For	 instance,	 quantifying	 changes	 in	Nb	 over	 time	 has	 helped	 to	 identify	 factors	 relevant	 to	115 

shaping	populations	(i.e.	management	interventions,	demographic	parameters)	with	successful	116 

outcomes	 reported	 for	 populations	 of	 commercially	 important	 bony	 fishes.	 Examples	 include	117 

salmon	(Bacles	et	al.,	2018;	Perrier,	April,	Cote,	Bernatchez,	&	Dionne,	2016),	trout	(Ruzzante	et	118 

al.,	2019;	Whiteley	et	al.,	2013;	Wood,	Belmar-Lucero,	Hutchings,	&	Fraser,	2014),	snapper	(Jones	119 

et	al.,	2019)	and	tuna	(Waples,	Grewe,	Bravington,	Hillary,	&	Feutry,	2018).	In	these	examples,	120 

both	Nb	and	Ne	were	used	to	investigate	demographic	(i.e.	variance	in	reproductive	success	under	121 

commercial	harvest	conditions)	and	environmental	(i.e.	stream	productivity,	competition,	habitat	122 

quality,	 year-of-the-young	 development)	 effects	 on	 long-term	 population	 viability,	 with	123 

significant	implications	for	management	and	conservation.	124 

In	this	study,	we	trialled	a	sampling	and	genotyping	protocol	aimed	at	estimating	Nb	over	125 

four	breeding	seasons	(2010-2013)	in	a	population	of	C.	carcharias	of	conservation	concern.	We	126 

focus	on	the	east	Australia	New-Zealand	population	(EAP)	of	C.	carcharias	which,	due	to	patterns	127 

of	 coastal	 residency	 and	 site	 fidelity	 (Bruce,	 Harasti,	 Lee,	 Gallen,	 &	 Bradford,	 2019;	 Spaet,	128 

Patterson,	Bradford,	&	Butcher,	2020)	is	genetically	distinct	from	other	identified	populations	in	129 

the	North-Pacific,	South-West	Australia,	Atlantic,	South	Africa,	and	Mediterranean	(Andreotti	et	130 

al.,	2016;	Blower	et	al.,	2012;	Gubili	et	al.,	2010;	O’Leary	et	al.,	2015;	Tanaka,	Kitamura,	Mochizuki,	131 

&	Kofuji,	 2011).	 The	 EAP	has	 experienced	 a	 large	 (greater	 than	 90%)	 decline	 during	 the	 20th	132 

century	due	to	targeted	fishing	and	mortalities	associated	with	bather	protection	programs	(Reid,	133 

Robbins,	&	Peddemors,	2011;	Roff,	Brown,	Priest,	&	Mumby,	2018),	however	recovery	 is	now	134 
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anticipated	due	to	protection	through	international	conventions	and	jurisdictional	legislature	[i.e.	135 

International	Plan	of	Action	for	the	Conservation	and	Management	of	Sharks	(FAO,	2000)	and	the	136 

Environment	Protection	and	Biodiversity	Conservation	(EPBC)	Act	of	1999	(EPBC,	1999)].	Previous	137 

efforts	to	detect	population	recovery	using	historical	catch	data	(Roff	et	al.,	2018)	and	genetic	138 

close-kin-mark-recapture	(Bruce	et	al.,	2018;	Hillary	et	al.,	2018)	found	no	significant	evidence	of	139 

population	growth	or	recovery	in	the	EAP.	Updated	bather-protection	programs	along	parts	of	140 

east	 coast	 Australia	 (i.e.	 SMART	 drumlines,	 see	 Tate	 et	 al.,	 2019)	 aimed	 at	 minimising	141 

unfavourable	 interactions	with	marine	 environment	 users	 offer	 an	 opportunity	 for	 non-lethal	142 

tissue	sampling	and	to	determine	the	usefulness	of	this	genetic	monitoring	method	in	the	EAP.	143 

Our	specific	objectives	were	to:	(i)	use	two	genetic	methodologies	to	estimate	𝑁𝑏	over	time	in	144 

the	EAP	[sibship	assignment	(SA)	(Wang,	2009)	and	linkage-disequilibrium	(LD)	(Hill,	1974,	p.	197;	145 

Waples,	 2006)];	 (ii)	 validate	 these	 results	 using	 two	 types	 of	 nuclear	 genetic	markers	 (single-146 

nucleotide	 polymorphisms	 and	 microsatellites);	 (iii)	 investigate	 -.
-
	 ratios	 using	 published	147 

estimates	of	the	adult	population	size	(Na)	and	(iv)	develop	expectations	for	generational	𝑁𝑒	in	148 

the	EAP	using	life-history	information	and	simulations.	Our	results	for	the	EAP	of	C.	carcahrias	149 

suggest	 that	 𝑁𝑏	 has	 not	 changed	 significantly	 year-to-year	 and	 provides	 insight	 into	 the	150 

effectiveness	of	recovery	and	conservation	measures	following	historical	declines.	151 

	152 



9	
	

Methods	153 

Tissue	Sampling	154 

To	obtain	genetic	data	to	estimate	𝑁𝑏	in	the	east	coast	Australia-New	Zealand	population	155 

of	C.	carcharias	(EAP)	tissue	samples	(n	=	247)	were	non-lethally	collected	during	2015	to	2018	156 

from	 juvenile	 and	 sub-adult	 C.	 carcharias	 between	 Buckley	 Beach,	 Narrawalle	 (-35.29873,	157 

150.48331)	 and	 Seven	 Mile	 Beach,	 Lennox	 Head	 (-28.76130,	 153.62020).	 Individuals	 were	158 

captured,	 restrained,	 tagged	 and	 released	 as	 part	 of	 the	 New	 South	Wales	 (Australia)	 Shark	159 

Management	Strategy.	Fin-clips	were	collected	for	genetic	purposes	and	fork	length	(FL)	and	total	160 

length	(TL)	measurements	were	taken	from	each	individual.	Since	migration	between	populations	161 

can	 bias	 genetic	 estimates	 of	 both	𝑁𝑒	 and	𝑁𝑏	 (Macbeth,	 Broderick,	 Ovenden,	&	 Buckworth,	162 

2011),	the	population	of	origin	of	individuals	was	resolved	through	the	inclusion	of	tissue	samples	163 

of	white	sharks	collected	from	other	 locations	(Western	Australia	n	=	3;	South	Australia	n	=	9;	164 

South	Africa	n	=	20;	total	n	=	279,	see	Table	S1).	All	samples	were	used	in	the	SNP	discovery	and	165 

genotyping	pipeline.	166 

Cohort	Assignment			167 

To	group	individuals	into	age-cohorts,	a	year-of-birth	was	assigned	to	each	sample	using	168 

the	year	the	individual	was	sampled	minus	the	age	of	the	individual	in	that	given	year.	To	estimate	169 

the	 age	 of	 individuals,	 we	 used	 the	 von	 Bertalanffy	 growth	 function	 (VBGF)	 (Supplementary	170 

Appendix	2)	to	transform	the	relationship	of	TL	to	relationships	at	age	using	growth	parameters	171 

specific	 to	 the	 EAP	 (O’Connor,	 2011).	 We	 considered	 fork	 length	 (FL,	 defined	 here	 as	 the	172 
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measurement	from	the	tip	of	the	rostrum	to	the	fork	in	the	tail	over	the	body)	the	more	accurate	173 

measurement	at	the	time	of	sampling.	Conversion	of	FL	to	TL	was	achieved	by	linear	regression	174 

based	 on	 measurements	 of	 study	 samples	 using	 the	 lm	 function	 in	 R	 (O’Connor,	 2011).	175 

Assumptions	of	linearity,	normality,	and	heteroscedasticity	were	checked	by	means	of	residual	176 

and	quantile	plots	and	the	following	conversion	was	used	to	transform	measurements:	177 

TL	(cm)	=	6.80	+	FL	(cm)	*	1.07	178 

Equation	1	179 

SNP	and	microsatellite	loci	datasets	180 

DNA	 was	 extracted	 from	 all	 samples	 (n	 =	 279)	 using	 a	 standard	 salt	 precipitation	181 

procedure.	 The	 samples	were	 genotyped	 by	DArT	 P/L	 laboratory	 using	DArTseqTM	 technology	182 

(Kilian	et	al.,	2012).	Sequencing	steps	followed	Kilian	et	al.,	(2012)	and	were	completed	using	an	183 

Illumina	Hiseq2500.	Resulting	sequences	were	processed	using	the	proprietary	DArT	analytical	184 

software,	 DArTsoft14.	 DArTsoft14	 uses	 technical	 sample	 replicates	 to	 optimize	 its	 algorithm	185 

parameters	and	ensure	scoring	consistency	(see	Georges	et	al.,	2018).	Post-processing	of	SNPs	186 

was	completed	in	R	(R	Core	Team,	2018)	using	the	R-Package	radiator	0.0.5	(Gosselin,	2017)	and	187 

custom	R-scripts	following	current	best	practice	(O’Leary,	Puritz,	Willis,	Hollenbeck,	&	Portnoy,	188 

2018;	 Shafer	 et	 al.,	 2017).	 A	 two-stage	 post-processing	 approach	 was	 employed	 to	 the	 SNP	189 

dataset	to	identify	and	remove	1)	migrants	and	2)	outlier	(non-selectively	neutral)	loci.	SNP	data	190 

representing	all	samples	(East	Australia,	South	Africa,	Western	Australia,	South	Australia)	were	191 

filtered	 following	 the	 steps	 outlined	 in	 Table	 S3.1	 (Supplementary	 Materials	 3),	 and	 was	192 
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subsequently	used	for	sample	population	assignment	and	initial	outlier	loci	discovery.	Strongly	193 

divergent	 individuals	 create	 strong	mixture	 LD	 which	 downwardly	 bias	 estimates	 of	𝑁𝑒(𝐿𝐷)	194 

(Waples	&	England,	2011)	and	may	contribute	to	upward	bias	in	estimates	using	the	SA	method	195 

(Ackerman	et	al.,	2017).	To	identify	divergent	individuals,	we	performed	a	Discriminant	analysis	196 

of	 principal	 components	 (DAPC)	 (Jombart,	 Devillard,	 &	 Balloux,	 2010)	 implemented	 in	 the	 R-197 

package	adegenet	(Jombart	et	al.,	2010).	The	optimal	number	of	discriminant	functions	to	retain	198 

was	calculated	using	the	 function	xvalDAPC	using	80%	of	 the	data	 in	 the	training	set,	and	the	199 

number	of	PCs	retained	in	the	final	DAPC	were	associated	with	the	lowest	Mean	Squared	Error.	200 

As	 indicated	 in	 Figure	 S3.1	 (Supplementary	 Materials	 3),	 two	 samples	 collected	 from	 east	201 

Australia	appeared	distinct	from	other	EAP	samples	(subsequently	confirmed	using	tracking	data	202 

from	 acoustic	 tagging,	 Spaet	 et	 al.,	 2020).	 These	 samples	 were	 removed	 from	 subsequent	203 

analysis.	We	also	performed	tests	for	outlier	loci	which	deviate	from	the	assumptions	necessary	204 

for	estimating	𝑁𝑒	(Waples	&	England,	2011).	We	used	pcadapt	(Luu,	Bazin,	&	Blum,	2017)	which	205 

identifies	 outlier	 loci	 in	 a	multidimensional	 space	 (we	 used	 k	 =	 3	 principal	 components).	We	206 

removed	 loci	when	 the	 q-value	 (test	 statistic)	was	 smaller	 than	 the	 false-discovery	 rate	 (𝛼 =207 

0.05).	 In	 the	 second	 stage	 of	 SNP	 post-processing,	 we	 used	 a	 dataset	 (herein	 Dataset-2)	208 

containing	 all	 SNP	 loci	 except	 those	 identified	 as	 outliers	 and	 including	 samples	 representing	209 

genotypes	of	EAP	origin	only.	We	then	filtered	Dataset-2	using	reproducibility	greater	than	98%,	210 

a	minor-allele-count	greater	than	three,	coverage	(minimum	5,	maximum	25),	retained	only	one	211 

SNP	per	locus	and	removed	individuals	missing	greater	than	20%	of	SNP	loci.	Loci	were	further	212 

removed	where	Hardy-Weinberg	disequilibrium	mid-p	𝛼 < 0.1	and	if	FIS	was	less	than	or	equal	to	213 
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+	0.5	and	greater	than	-	0.5	(see	Table	S3.2,	Supplementary	Materials	3).	Dataset-2	was	then	used	214 

to	make	estimates	of	Nb.	215 

Extracted	 DNA	 from	 192	 EAP	 samples	 were	 further	 genotyped	 in	 another	 laboratory	216 

(Stellenbosch	University)	with	nineteen	species-specific	microsatellite	 loci	 to	provide	alternate	217 

estimates	 of	 𝑁𝑏.	 Fourteen	 of	 the	 loci	 were	 derived	 from	 previous	 studies:	 Ccar1,	 Ccar13,	218 

Ccar6.27x,	Ccar9,	Iox10,	Cca1419,	Cca83,	Cca1536,	Cca1273,	Cca711,	Cca1072,	Cca1466,	Cca1276,	219 

Cca1226	(Gubili	et	al.,	2010;	O’Leary	et	al.,	2015;	Pardini	et	al.,	2001).	Five	loci	(CcSA1,	CcSA2,	220 

CcSA3,	CcSA4	and	CcSA5)	were	developed	using	the	methods	described	in	Andreotti	et	al.	(2016).	221 

Wet	lab	genotyping	was	performed	as	described	by	Andreotti	et	al.	(2016)	and	genotype	scoring	222 

was	performed	in	Geneious	v.5.6.5	(©2005	-	2012	Biomatters	Ltd).	Assessment	of	amplification	223 

errors,	such	as	large	allele	drop-out,	stuttering	and	null	alleles	was	conducted	in	Microchecker	224 

v.2.2.3	(Van	Oosterhout,	Hutchinson,	Wills,	&	Shipley,	2004).	The	program	SHAZA	(Macbeth	et	225 

al.,	2011)	was	used	to	detect	duplicates	in	the	dataset.	Descriptive	statistics,	including	observed	226 

heterozygosity	 (Ho)	 and	 expected	 heterozygosity	 (He)	 were	 calculated	 using	 the	 R-package	227 

hierfstat	(Goudet,	Jombart,	&	Goudet,	2015).	Hardy-Weinberg	equilibrium	(HWE)	was	evaluated	228 

using	an	exact	 test	based	on	10,000	Monte	Carlo	permutations	of	alleles	and	 implemented	 in	229 

Genepop	(Rousset,	2008).	230 

Estimation	of	Nb	231 
	232 
Two	methods	were	used	to	estimate	𝑁𝑏	from	data	derived	from	SNP	and	microsatellite	233 

loci:	 (1)	 the	 linkage-disequilibrium	method	 (LD)	 (Hill,	 1974;	Waples,	 2006)	 and	 (2)	 the	 sibship	234 

assignment	 method	 (SA)	 (Wang,	 2009).	 Estimates	 are	 referred	 to	 as	 𝑁𝑏(𝐿𝐷)	 and	 𝑁𝑏(𝑆𝐴).	235 
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Broadly,	the	LD	method	determines	the	size	of	the	parental	generation	using	a	measure	of	the	236 

genetic	association	(or	LD)	in	a	given	age-cohort.	In	finite	populations,	random	genetic	drift	leads	237 

to	 associations	 of	 alleles	 at	 different	 loci.	 The	 LD	 method	 uses	 the	 extent	 of	 non-random	238 

association	between	alleles	at	different	loci	to	estimate	genetic	Ne	and	reflects	the	inbreeding	Ne	239 

when	loci	are	unlinked	(Hill,	1981;	Waples	&	Do,	2010).	The	formulation	of	the	LD	method	uses	240 

the	observed	average	disequilibrium	between	pairs	of	independent	(ie.	non-linked),	neutral	loci	241 

in	a	sample	of	individuals	taken	from	a	single,	isolated,	randomly	mating	population.	Estimates	of	242 

Nb(LD)	are	based	on	the	theoretical	relationship	between		𝑟7	and	𝑁𝑒	as	described	in	Hill	(1981);	243 

𝑁8 =
1

3(𝑟7 − 1𝑆)
	244 

Equation	2a	from	(Waples	&	Do,	2010)	245 

where	r2	is	the	mean	squared	correlation	of	allele	frequencies	at	different	gene	loci	adjusted	for	246 

sampling	 error	 (i.e.	 the	 observed	 average	 disequilibrium)	 and	 S	 is	 the	 number	 of	 individuals	247 

sampled.	We	implemented	this	method	using	the	program	NeEstimator	v2.1	(Do	et	al.,	2014).	In	248 

contrast,	the	SA	method	uses	the	direct	relationship	between	genetic	relatedness	and	inbreeding	249 

Ne,	such	that	any	two	individuals	sampled	randomly	from	a	population	with	a	small	Ne	will	have	250 

a	higher	probability	of	sharing	the	same	parent	or	parents	(Wang,	2009).	The	SA	method	(Wang,	251 

2009)	 determines	 the	 size	 of	 the	parental	 generation	by	 estimating	 the	probability	 that	 dyad	252 

relationships	are	either	full	or	half	siblings	in	a	sample	from	the	same	cohort,	sharing	two,	one	or	253 

zero	parents,	respectively;	254 

	255 
1
𝑁𝑒

= 1 +
3𝛼
4
(𝑄= + 𝑄7 + 2𝑄?) −

𝛼
2
(
1
𝑁=
+
1
𝑁7
)	256 

Equation	10	from	Wang	(2009)	257 



14	
	

where	Q1,	Q2,	Q3	are	the	paternal,	maternal	half-sibs	and	full-sibs	respectively,	N1	and	N2	are	the	258 

number	 of	male	 and	 female	 parents,	 and	𝛼	 is	 a	measurement	 of	 the	 deviation	 from	 Hardy-259 

Weinberg	proportions	in	genotype	frequencies	(Wang,	2009).	The	SA	method	was	implemented	260 

in	the	program	COLONY	(Wang,	2009).	261 

Both	𝑁𝑏(𝐿𝐷)	and	𝑁𝑏(𝑆𝐴)	were	estimated	for	the	EAP	across	four	year-of-birth-cohorts	262 

(2010,	2011,	2012,	2013)	where	sample	size	per	cohort	was	greater	than	25	individuals.	Estimates	263 

of	𝑁𝑏(𝐿𝐷)	 and	𝑁𝑏(𝑆𝐴)	 were	made	 using	 either	 SNP	 or	 microsatellite	 marker	 data	 sets.	 To	264 

estimate	𝑁𝑏(𝐿𝐷)	with	NeEstimator	v2.1	(Do	et	al.,	2014)	a	random	mating	model	was	specified,	265 

rare	 alleles	which	 upwardly	 bias	 estimates	were	 excluded	 using	 the	 criterion	𝑃𝑐𝑟𝑖𝑡	 =	 0.05	 as	266 

recommended	 in	Waples	and	Do	 (2010),	and	 jack-knife	confidence	 intervals	 that	accounts	 for	267 

pseudo-replication	due	to	physical	linkage	and	overlapping	loci	pairs	were	used	(Jones,	Ovenden,	268 

&	Wang,	2016;	Waples	&	Do,	2010).	To	estimate	𝑁𝑏(𝑆𝐴),	relatedness	coefficients	were	estimated	269 

for	 individuals	within	each	year	of	birth	cohort	using	COLONY	v2.0.5.6	 (Jones	&	Wang,	2010).	270 

COLONY	estimates	the	likelihoods	of	full,	maternal-half	and	paternal-half	siblings	depending	on	271 

the	mating	 system	 chosen	 in	 the	 programs	 settings,	 which	may	 impact	 the	 final	 estimate	 of	272 

𝑁𝑏(𝑆𝐴).	We	tested	different	COLONY	parameters	to	determine	any	effects	on	the	final	estimates	273 

of	𝑁𝑏(𝑆𝐴)	(Supplementary	Appendix	4).	Results	are	presented	for	the	maximum-likelihood	with	274 

random	mating	model,	with	male	polygamy/female	monogamy,	no	update	of	allele	frequencies,	275 

medium	sibship	prior	(sibship	size	per	parent	𝑘 = 10,	run	for	5	replicate	runs,	error	rate	0.001.	276 

Inference	of	Nb/Na	ratios	277 
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	 To	calculate	𝑁𝑏 𝑁𝑎	ratios	we	used	𝑁𝑎	as	described	in	Bruce	et	al.,	(2018),	where	Na	is	278 

the	number	of	adults	in	the	population.	As	the	species	has	a	low	intrinsic	capacity	for	population	279 

increase,	low	fecundity	and	low	life-time	variance	in	reproductive	success	(Bruce,	2008),	the	Na	280 

estimates	from	Bruce	et	al.	(2018)	apply	to	the	time	period	corresponding	to	our	study;	𝑁𝑎=750	281 

with	an	uncertainty	range	470	to	1,030	(Bruce	et	al.,	2018).	Our	estimates	of	𝑁𝑏(𝐿𝐷)	and	𝑁𝑏(𝑆𝐴)	282 

were	combined	(herein	𝑁𝑏(𝐿𝐷 + 𝑆𝐴)	to	provide	a	single-value	of	𝑁𝑏	with	which	to	infer	𝑁𝑏 𝑁𝑎	283 

ratios.	 	𝑁𝑏(𝐿𝐷)	and	𝑁𝑏(𝑆𝐴)	were	combined	by	taking	the	harmonic	mean	of	 the	two	values,	284 

weighted	by	the	inverse	of	their	variances	as	suggested	in	previous	studies	(see	Waples	&	Do,	285 

2010);	see	Appendix	A	for	a	worked	example.	In	our	study,	the	differences	between	the	estimates	286 

from	 the	 LD	 and	 SA	methods	were	 not	 overly	 large,	 so	 using	 a	 combined	 estimate	 of	𝑁𝑏	to	287 

determine	the	𝑁𝑏 𝑁𝑎	ratio	would	not	change	the	conclusions	described	herein.			288 

Expectations	for	Ne		289 

To	develop	expectations	 for	generational	Ne	 in	 the	EAP	of	C.	carcharias,	we	use	a	simulation-290 

based	approach.	This	route	was	taken	as	the	assumptions	of	single-sample	genetic	estimators	of	291 

𝑁𝑒,	 including	 LD	 and	 SA	 methods	 used	 herein,	 dictate	 that	 data	 used	 to	 make	 estimates	292 

represents	a	random	sample	of	a	population	across	an	entire	generation	(Hare	et	al.,	2011).	Since	293 

the	white	shark	 is	 long-lived	and	samples	 in	this	study	were	mostly	 juvenile	or	sub-adults,	we	294 

instead	characterise	the	expected	-.
-8
	 	ratio	using	simulations	based	on	published	methods	and	295 

parametrised	using	the	 life-history	of	white	sharks.	This	 indirectly	allowed	the	 inference	of	an	296 

expected	𝑁𝑒/𝑁𝑏	 ratio,	 which	may	 permit	 a	 better	 understanding	 of	 inbreeding	 and	 implied	297 
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fitness	of	the	population.	We	use	both	deterministic	and	forward-time	population	simulations	298 

following	methods	 described	 in	Waples	&	 Antao,	 (2014),	 to	 determine	𝑁𝑒	 and	𝑁𝑏.	 First,	we	299 

implemented	the	discrete-time,	deterministic	hybrid	Felsenstein–Hill	method	for	calculating	𝑁𝑒	300 

in	 iteroparous	 species	 (Waples,	 Do,	 &	 Chopelet,	 2011).	 The	 model	 was	 implemented	 in	 the	301 

software	AgeNe	 (Waples	et	al.,	2011),	herein	𝑁𝑏(𝑎𝑔𝑒𝑁𝑒),	and	parametrised	using	 life-history	302 

information	from	white	sharks	in	the	EAP	(Supplementary	Appendix	7).	Furthermore,	since	the	303 

Felsenstein-Hill	method	 assumes	 the	 probability	 of	 reproduction	 is	 not	 affected	 by	 events	 in	304 

previous	time	periods,	we	also	use	forward-time	population	simulations	implemented	in	simuPOP	305 

(Peng	 &	 Kimmel,	 2005),	 to	 create	 a	 single,	 isolated,	 randomly	 mating	 population	 to	 further	306 

characterise	the	-.
-8
	ratio	under	two	intermittent-breeding	scenarios	as	in	Waples	&	Antao	(2014).	307 

Each	simulation	was	parametrised	using	outputs	from	AgeNe,	including	total	population	size	and	308 

stable	age	distribution	in	the	population,	given	the	specified	vital	rates	and	a	specified	number	of	309 

offspring	produced	per	cycle	that	survived	to	age	1	(N1),	here	N1	=	1000.	Each	 individual	was	310 

represented	by	100	microsatellite-like	 loci,	each	having	10	possible	allelic	states,	no	mutation,	311 

and	data	was	tracked	for	50	reproductive	cycles	after	a	burn-in	period	of	50	cycles.	We	forced	a	312 

number	of	females	to	skip	either	zero,	one	or	two	cycles	of	breeding	(a	proportion	of	females)	313 

hypothesised	in	this	species	(Domeier	&	Nasby-Lucas,	2013;	Mollet	&	Cailliet,	2002).	Intermittent	314 

or	 skipped	 breeding	 occurs	 when	 sexually	mature	 adults	 skip	 breeding	 opportunities	 (Last	 &	315 

Stevens,	 2009;	 Shaw	 &	 Levin,	 2011),	 in	 this	 case	 likely	 due	 to	 the	 costs	 of	 reproduction	 or	316 

prolonged	 gestation	 period	 in	 females	 (Bruce,	 2008).	 We	 directly	 calculated	 mean	 (𝑘)	 and	317 

variance	 (𝑉𝑘)	 lifetime	 reproductive	 success,	 and	 𝑁𝑒	 and	 𝑁𝑏	directly	 from	 simulation	318 
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demographic	data	for	each	reproductive	cycle	using	Equation	1	and	Equation	2	from	Waples	et	319 

al.,	 (2014),	where	presented	values	represent	the	arithmetic	mean	of	𝑘,	𝑉𝑘	and	the	harmonic	320 

means	of	𝑁𝑒	and	𝑁𝑏	calculated	across	10	population	replicates,	herein	𝑁𝑒 𝑑𝑒𝑚𝑜 ,𝑁𝑏(𝑑𝑒𝑚𝑜).			321 

Data	Availability	322 

Data	for	this	study	are	available	at	UQ	espace:	https://doi.org/10.14264/uql.2020.634.	All	plots	323 

in	this	study	were	made	using	the	ggplot2	package	in	R	(Wickham,	2016).		324 

Results	325 

Cohort	Assignment	326 

Using	the	relationship	between	TL	and	age	we	found	that	one	individual	was	born	in	2005	327 

with	various	years	represented	by	the	following	number	of	individuals;	2007	(n	=	3),	2008	(n	=	6),	328 

2009	(n	=	10),	2010	(n	=	30),	2011	(n	=	43),	2012	(n	=	53),	2013	(n	=	67),	2014	(n	=	23),	2015	(n	=	329 

9)	and	2016	(n	=	2).	The	physical	size	of	individuals	within	age-cohorts	increased	with	age	(Figure	330 

S2.1).	The	range	of	FL	between	age-cohorts	overlapped	principally	driven	by	heterogeneous	year-331 

of-capture	sampling;	2010	(n	=	30,	224	cm	and	296	cm	FL),	2011	(n	=	43,	207	cm	and	276	cm	FL),	332 

2012	(n	=	52,	187	cm	and	255	cm	FL)	and	2013	(n	=	67,	174	cm	and	268	cm	FL)	(Table	S5).	As	low	333 

sample	 sizes	 can	 bias	 estimates	 of	 𝑁𝑏	 using	 the	 methods	 of	 this	 study,	 only	 age-cohorts	334 

containing	greater	than	25	samples	were	used	(2010,	2011,	2012	and	2013).	335 

SNP	and	microsatellite	loci	data	336 

The	DArTsoft14	pipeline	delivered	9841	SNPs	across	9180	loci.	The	final	SNP	dataset	after	337 

filtering	consisted	of	3668	diallelic	SNPs	consisting	of	236	EAP	individuals	with	high	quality	SNP	338 
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genotypes	(Dataset-2).	Nineteen	microsatellite	loci	were	successfully	genotyped	across	181	EAP	339 

individuals.	No	evidence	of	null	alleles	or	scoring	errors	were	detected.	The	genotypic	distribution	340 

of	microsatellite	genotypes	per	locus	showed	three	loci	did	not	conform	to	the	expectations	of	341 

Hardy-Weinberg	equilibrium	using	𝛼 = 0.05	(loci	Cca1419,	Cca1072,	CcSA2).	These	markers	were	342 

removed	from	further	analysis	(LD	method	only).	One	locus	(CcSA5)	was	not	polymorphic	(see	343 

Table	S6.1)	and	was	also	excluded.	Per	individual,	97%	had	no	missing	loci	while	the	remaining	344 

3%	of	samples	had	three	or	less	missing	loci.	345 

Empirical	estimation	of	Nb	346 

	 Using	SNP	data,	𝑁𝑏	estimates	per	year-of-birth	cohort	were	similar	between	the	LD	and	347 

SA	methods	and	had	overlapping	95%	confidence	intervals	(Table	1).	Estimates	of	𝑁𝑏(𝑆𝐴)	were	348 

not	sensitive	to	changes	in	model	parameters	such	as	the	sibship	prior,	inbreeding	settings,	error	349 

rate	 and	 polygamy	 settings	 (Table	 S4.1).	 This	was	 consistent	with	 the	 expectations	 of	 the	 SA	350 

estimator	 which	 becomes	 increasingly	 independent	 of	 the	 prior	 with	 increasing	 marker	351 

information	and	sample	size.	 	Although	confidence	 intervals	overlapped,	estimates	of	𝑁𝑏(𝑆𝐴)	352 

were	generally	higher	than	those	determined	from	𝑁𝑏(𝐿𝐷)	across	all	cohorts.	The	2011	cohort	353 

showed	 the	 largest	 difference	 between	 estimates;	 𝑁𝑏(𝑆𝐴7L==)	 =	 344	 (95%CI	 204-923),	354 

𝑁𝑏(𝐿𝐷7L==)	=	195.1	(95%CI	104-952.9).	355 

Comparing	between	the	SA	and	LD	method	using	data	from	microsatellite	loci,	estimates	356 

of	 𝑁𝑏(𝐿𝐷MNOP)	 were	 higher	 than	 the	 equivalent	 estimate	 of	 𝑁𝑏(𝑆𝐴MNOP).	 The	 number	 of	357 

estimated	full	and	half	sib-ships	in	each	cohort	sample	was	high	and	pairwise-probabilities	were	358 
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low	 (data	 not	 shown)	 compared	 to	 those	 sib-ships	 estimated	 using	 SNPs.	 This	 resulted	 in	359 

𝑁𝑏(𝑆𝐴MNOP)	 estimates	 being	 substantially	 lower	 than	 the	 equivalent	 SNP	 estimate,	 with	 the	360 

exception	 of	 2011	𝑁𝑏 𝑆𝐴MNOP (Table	 1).	 The	𝑁𝑏(𝐿𝐷MNOP)	 were	 the	 least	 precise	 estimates,	361 

where	all	but	one	cohort	(2013)	did	not	return	an	upper	(95%	CI)	estimate.	362 

The	ratio	𝑁𝑏 𝑁𝑎	was	estimated	using	combined	estimates	of	𝑁𝑏(𝐿𝐷 + 𝑆𝐴).	The	SNP-363 

based	𝑁𝑏	estimate	for	the	2010	cohort	contained	at	least	one	infinite	upper	estimate	of	𝑁𝑏,	so	364 

in	this	case	we	did	not	calculate	a	combined	estimate.	For	cohorts	2011	to	2013,	𝑁𝑏(𝐿𝐷 + 𝑆𝐴)	365 

ranged	 from	the	 smallest	estimated	value	 in	2012,	𝑁𝑏 𝐿𝐷 + 𝑆𝐴7L=7 = 206 45.9	𝑆𝐷 ,	 to	 the	366 

largest	 in	 2013,	 𝑁𝑏(𝐿𝐷 + 𝑆𝐴7L=?) = 252(46.7	𝑆𝐷)	 (Table	 1).	 The	 inferred	 ratio	 of	 𝑁𝑏 𝑁𝑎	367 

ranged	from	0.27	to	0.34;	𝑁𝑏 𝑁𝑎7L=7	=	0.27	(0.44-0.2)	to	𝑁𝑏 𝑁𝑎7L=?	=	0.34	(0.54-0.24).	The	368 

intervals	 (in	parentheses)	were	calculated	using	the	 lower	and	upper	uncertainty	estimates	of	369 

𝑁𝑎	from	Bruce	et	al.,	(2018).	370 

The	 ratio	 of	 𝑁𝑏/𝑁𝑒	 was	 evaluated	 using	 simulations.	 Using	 a	 standard	 model	371 

implemented	 in	 AgeNe	 yielded	 estimates	 of	 𝑁𝑏(𝑑𝑒𝑚𝑜),	 𝑁𝑒	(𝑑𝑒𝑚𝑜)		 of	 372.7	 and	 857.2	372 

respectively,	and	an	𝑁𝑏(𝑑𝑒𝑚𝑜)/𝑁𝑒(𝑑𝑒𝑚𝑜)	ratio	of	0.43.		To	account	for	variations	in	breeding	373 

biology,	further	forward-time	population	simulations	in	SimuPop	showed	the	equivalent	no-skip	374 

breeding	model	closely	reflected	AgeNe	results	(𝑁𝑏T8UV	=	365.46,	𝑁𝑒T8UV	=	860.67),	validating	375 

the	model,	while	alternate	breeding	models	decreased	the	𝑁𝑏/𝑁𝑒	ratio	(see	Table	S7.2).		376 

Discussion	377 
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Using	data	from	SNP	and	microsatellite	loci	and	two	single	sample	genetic	estimators,	our	378 

results	show	the	effective	breeding	population	(Nb)	of	the	EAP	remained	unchanged	across	four	379 

successive	years	(2010	-	2013).	We	caution	that	these	results	may	not	be	indicative	of	a	broader	380 

temporal	trend,	as	monitoring	(using	either	genetic	or	census	methods)	would	require	more	than	381 

five	 generations	 to	 pass	 between	 sampling	 events	 to	 correctly	 identify	 a	 population	 trend	382 

(Tallmon	et	al.,	2010).	Nonetheless,	our	study	supports	existing	evidence	(Hillary	et	al.,	2018;	Roff	383 

et	al.,	2018)	that	the	white	shark	population	has	not	changed	significantly	in	size	over	the	years	384 

studied	 herein,	 despite	 measures	 implemented	 to	 rebuild	 the	 population.	 The	 white	 shark	385 

recorded	substantial	declines	 through	the	20th	century	 in	Australia	and	New	Zealand	and	has	386 

since	been	the	subject	of	legislated	protection	and	management	interventions	targeted	toward	387 

population	recovery	(i.e.	National	Plans	of	Action	for	the	Conservation	and	Management	of	Sharks	388 

Shark	Advisory	Group,	2004;	EPBC,	1999;	Commonwealth	of	Australia,	2013).	Regrettably,	 the	389 

long	monitoring	period	required	to	detect	a	population	trend	as	recommended	in	Tallmon	et	al.,	390 

(2010)	contrasts	with	the	needs	of	management	and	conservation	which	requires	prompt	and	391 

regular	 information	 to	 offer	 insights	 into	 the	 effects	 of	 current	management	 actions	 and	 co-392 

occurrences	such	as	environmental	changes.	To	this	end,	we	recommend	using	Nb	to	track	year-393 

to-year	changes	in	the	effective	number	of	breeders	as	a	timely	assessment	of	population	status	394 

over	time.	As	in	this	study,	future	tissue	samples	for	Nb	monitoring	could	be	obtained	as	part	of	395 

existing	bather	protection	programs	(i.e.	SMART	drumlines,	see	Tate	et	al.,	2019).	396 

In	 this	 study,	 we	 used	 two	 genetic	 marker	 types	 (SNPs	 and	 microsatellites)	 and	 two	397 

estimators	(LD	and	SA)	to	estimate	Nb.	Both	estimators	showed	more	precision	and	power	when	398 
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SNPs	were	used	to	estimate	Nb	compared	to	microsatellites,	and	we	therefore	recommend	the	399 

use	of	SNPs	for	the	future	monitoring	of	the	EAP.	Although	𝑁𝑏(𝐿𝐷)	estimated	from	both	SNP	and	400 

microsatellite	were	 comparable,	 and	 results	 reflected	 those	 reported	 in	 previous	 studies	 (eg.	401 

Beebee,	2009),	here	microsatellite	loci	were	unable	to	estimate	upper	CIs	for	age-cohorts	without	402 

significant	sampling	effort	(>	50	samples).	Of	note,	estimates	of	𝑁𝑏(𝐿𝐷MNOP)	were	consistently	403 

higher	 than	 the	 equivalent	 estimates	 of	 𝑁𝑏(𝑆𝐴MNOP).	 This	 may	 be	 attributed	 to	 the	404 

overestimation	of	sibship	dyads,	which	can	be	expected	to	decrease	estimates	of	𝑁𝑏	(Table	1).	405 

This	 has	 been	 noted	 in	 previous	 studies	 (Ackerman	 et	 al.,	 2017;	 Wang,	 2009)	 which	 have	406 

demonstrated	that	false	sibships	(type	I	errors)	occur	with	a	higher	frequency	compared	to	false	407 

non-sibships	(type	II	errors)	when	either	genetic	information	or	true	sibship	within	a	sample	is	408 

insufficient	(i.e.	few	loci,	low	polymorphism,	small	sample	size	relative	to	total	population	size,	409 

low	inclusion	of	siblings).	𝑁𝑏	estimated	using	SNPs	differed	between	methods	such	that	𝑁𝑏(𝐿𝐷)	410 

was	 lower	compared	to	𝑁𝑏(𝑆𝐴),	although	differences	were	not	significant	having	overlapping	411 

CIs.	𝑁𝑏(𝐿𝐷)	estimated	using	SNPs	showed	those	cohorts	with	 larger	numbers	of	samples	(i.e.	412 

2013)	provided	more	precise	estimates,	a	result	expected	given	genetic	methods	for	estimating	413 

contemporary	effective	size	depend	on	signals	that	are	proportional	to	1 𝑁𝑒	(Waples,	Antao,	&	414 

Luikart,	2014;	Waples	et	al.,	2018).			415 

Monitoring	 studies	 are	 often	 focused	 on	 the	 number	 of	 individuals	 in	 a	 population,	416 

however	the	relationship	between	effective	size	and	population	size	(i.e.	𝑁𝑒 𝑁𝑎 ,𝑁𝑏 𝑁𝑎)	can	417 

also	be	useful	for	examining	how	different	ecological	factors	influence	genetic	variation	(Nunney,	418 

1996).	In	this	study,	the	ratio	of	Nb/Na	was	approximately	1/3	for	a	single	reproductive	cycle.	This	419 
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is	comparable	to	ratios	inferred	for	other	Carcharhinidae,	including	C.	plumbeus	(sandbar	shark)	420 

in	Delaware	Bay,	North	Atlantic,	which	ranges	between	0.50(95%CI	0.45)	and	0.63(95%CI	0.57)	421 

(Portnoy,	McDowell,	McCandless,	Musick,	&	Graves,	2009).	𝑁𝑏	can	be	expected	to	be	reduced	422 

relative	to	𝑁𝑎	if	females	with	high	fecundity	skip	reproductive	cycles	after	giving	birth,	resulting	423 

in	different	females	breeding	in	different	cycles	(Waples	&	Anato,	2014).	This	should	decrease	424 

both	lifetime	𝑉𝑘	and	𝑁𝑏,	while	increasing	𝑁𝑒.	The	ratio	reported	herein	appears	to	be	consistent	425 

with	expectations	for	the	breeding	behaviour	of	C.	carcharias,	suspected	to	undergo	intermittent	426 

breeding	(Bruce,	2008).	Observations	suggest	the	gestation	period	of	C.	carcharias	females	may	427 

approach	18	months	from	fertilization	to	parturition	(Bruce,	2008;	Mollet,	Cliff,	Pratt,	&	Stevens,	428 

2000),	resulting	in	the	unavailability	of	a	portion	of	adult	females	to	produce	offspring	each	cycle.		429 

Neutral	genetic	variation	is	lost	at	a	rate	of	1 2𝑁𝑒	per	generation	(Wright,	1931)	such	430 

that	even	numerically	large	populations	can	be	at	genetic	risk	if	𝑁𝑒	is	small	(Waples	et	al.,	2018).	431 

Although	important,	due	to	sampling	restriction	(i.e.	difficulty	sampling	across	a	generation	as	432 

required	by	estimators)	and	uncertainty	of	breeding	histories,	we	could	not	estimate	𝑁𝑒	directly	433 

nor	did	we	consider	the	 linear	relationship	between	𝑁𝑏	and	𝑁𝑒	which	requires	either	true	or	434 

estimated	-.
-8
		to	be	quantified	(Waples	et	al.,	2013).	Instead,	using	simulations,	we	show	𝑁𝑏 >435 

𝑁𝑒	using	life-history	information	for	white	shark,	and	that	𝑁𝑏 >> 𝑁𝑒	 if	 intermittent	breeding	436 

were	 occurring.	 This	 aligns	 with	 expectations,	 where	 a	 small	 number	 of	 offspring,	 delayed	437 

maturation,	intermittent	breeding	and	low	lifetime	variance	in	fecundity	all	act	to	increase	𝑁𝑒	438 

relative	to	𝑁𝑏	or	𝑁	(Waples	&	Antao,	2014).	This	is	important	as	it	suggests	the	study	population	439 

in	the	EAP	at	least	exceeds	the	inbreeding	avoidance	goal	(𝑁𝑒	≥	100)	(Frankham,	Bradshaw,	&	440 
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Brook,	2014).	However,	 in	relation	to	the	 long-term	viable	population	benchmark,	𝑁𝑒	≥	1000	441 

(Frankham	et	al.,	2014)	our	results	are	less	certain.	We	suggest	any	genetic	effects	of	a	recently	442 

and	 significantly	 reduced	 population	 size	 in	 the	 EAP,	 such	 as	 a	 decline	 in	 𝑁𝑒	 or	 loss	 of	443 

heterozygosity,	may	not	be	fully	realised	until	adequate	benchmark	studies	can	be	completed	(i.e.	444 

historical	 or	 ancient	DNA).	However,	 genetic	 bottlenecks	 in	white	 sharks	have	been	 recorded	445 

elsewhere	(O’Leary	et	al.,	2015).	Our	results	emphasise	the	importance	of	continued	monitoring,	446 

improved	 protections,	 and	 interventions	 to	 reduce	 mortality.	 Indeed,	 the	 vulnerability	 of	447 

chondrichthyan	fishes	to	exploitation	has	been	comprehensively	documented	(Hutchings,	Myers,	448 

García,	Lucifora,	&	Kuparinen,	2012)	and	relative	to	other	marine	fish,	the	intrinsic	capacity	for	449 

population	increase	and	rebound	potential	 in	white	shark	 is	 low	(Cortés,	2002)	(i.e.	 long-lived,	450 

late	age	to	maturity,	high	juvenile	survival).	In	addition,	shark	species	often	travel	large	distances	451 

and	use	different	habitats	throughout	their	 lives	 (Fujioka	&	Halpin,	2014),	where	they	may	be	452 

vulnerable	 to	 environmental	 changes	 (density,	 food	 availability,	 climate,	 illegal	 fishing).	453 

Regrettably,	mortalities	continue	to	occur	in	the	EAP	driven	by	action	taken	to	mitigate	human-454 

shark	interactions.	During	the	years	2018-2019,	fifty-one	bather-protection	nets	were	distributed	455 

across	 seven	 regions	 of	 NSW	 (Australia).	 Catches	 of	white	 shark	 and	 other	 shark	 species	 are	456 

increasing	year-on-year	(Dalton	&	Peddemors,	2019),	which	in	some	cases	are	lethal	for	sharks	457 

despite	catch-and-release	programs	(Roff	et	al.,	2018).	The	recent	modelling	of	the	recovery	of	458 

the	North	West	Atlantic	white	shark	population	provides	a	useful	principal	in	this	regard;	“every	459 

fish	counts”	(Bowlby	&	Gibson,	2020,	p.9).	460 
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	Conclusion	461 

We	have	used	genetic	data	to	estimate	the	size	of	the	effective	breeding	population	(𝑁𝑏)	462 

over	four	consecutive	years	(2010	to	2013)	for	white	sharks	the	in	an	east-Australian	New	Zealand	463 

population,	 representing	 an	 indirect	 measure	 of	 reproductive	 effort	 over	 a	 relatively	 short	464 

temporal	period.	Our	results	suggest	𝑁𝑏	has	remained	stable	over	four	years	and	agrees	with	465 

previous	studies	that	report	stability	of	population	size	in	the	EAP.	However,	longer	time	series	of	466 

data	are	needed	to	determine	the	efficacy	of	past	and	present	management	and	conservation	467 

actions	 on	 the	 genetic	 constitution	 of	 the	 population.	 In	 this	 study,	Nb	 estimates	were	more	468 

precise	using	data	from	SNP	rather	than	microsatellite	loci	and	estimates	from	two	single-sample	469 

genetic	estimators	were	equivalent.	 	We	 suggest	 future	monitoring	using	Nb	 should	 continue	470 

given	the	availability	of	non-lethal	tissue	samples	from	bather	protection	programs,	the	ease	of	471 

genomic	data	collection	and	analyses	and	the	complementary	nature	of	Nb	and	Na	estimates.	472 
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Figures	739 

	740 
Figure	1.	Map	of	sampling	locations,	where	247	EAP	samples	(open	circles)	were	collected	along	741 

the	NSW	coast	and	used	to	determine	Nb.	742 
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Table	 1.	 A	 comparison	 of	 empirical	 annual	 effective	 size	 (𝑁𝑏)	determined	 from	 genetic	 data	743 

(microsatellites	 -	MSAT	 and	 single-nucleotide	 polymorphisms	 -	 SNP)	 using	 either	 the	 linkage-744 

disequilibrium	𝑁𝑏(LD)	or	sibship	assignment	𝑁𝑏(SA)	method	per	year-of-birth-cohort	 for	 the	745 

EAP	of	C.carcharias.	Lower	and	upper	confidence	intervals	in	braces	(lower	CI-upper	CI)	and	the	746 

number	of	samples	used	to	make	the	estimate	(n)	is	reported.	The	standard	deviation	(±SD)	is	747 

reported	for	the	combined	estimate	of	𝑁𝑏 𝑁𝑏 𝐿𝐷 + 𝑆𝐴 ,	and	the	number	of	full	and	half-sibling	748 

pairs	are	reported	in	square	braces	[full-sib,	half-sib	in	square	brackets].	749 

	 	 2010	 2011	 2012	 2013	
MSAT	 n	 21	 33	 39	 54	

	 𝑁𝑏]^	 ∞	
(82.5-∞)	

263.9	
(51.4-∞)	

128.7	
(43.1−∞)	

112.6	
(49.3-12934.9)	

	 𝑁𝑏NO	 33	
(18,74)[7,56]	

49	
(30,84)[3,95]	

51	
(36-88)[5,97]	

62	
(41,96)[17,137]	

SNP	 n	 29	 42	 52	 63	
	 𝑁𝑏]^	 193.2	

(91	-	∞)	
195.1	

(104.2-952.9)	
165.6	

(104.2-359.6)	
208.5	

(116.4-712.7)	
	 𝑁𝑏NO	 271	

(136-1430)[2,2]	
344	

(204-923)[4,4]	
241	

(157-399)[8,6]	
289	

(200-461)[8,10]	
	 Nb(LD	+	

SA)(±SD)	
-	
	

233.2(±69.5)	
	

206.1(±45.9)	
	

252.0(±46.7)	
	

	 𝑁𝑏 𝑁𝑎†	 -	 0.31	 0.27	 0.34	

†	The	ratio	Nb/Ne	determined	using	combined	estimate,	where	Na	represents	the	adult	750 
population	size,	estimated	for	the	year	2017	(Bruce	et	al.,	2018)	751 
	752 

	753 

	754 

	755 

	756 
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Appendix	A	757 
		758 
Inverse-variance	weighted	mean	method	and	worked	example	759 
	760 
This	is	a	worked	example	using	data	from	the	cohort	2013.	This	weighted	mean	will	give	the	761 
lowest	variance	of	any	weighted	mean	of	the	values.	As	with	nearly	all	Ne	calculations	the	762 
harmonic	mean	must	be	used	as	the	real	quantities	of	interest	is	proportional	to	1/Ne.	763 
	764 
Values	765 
	766 
LDNe:	208.5	767 
COLONY:	289	768 
Sample	Size:	63	769 
	770 

The	Variances	771 
Unfortunately,	neither	COLONY	or	NeEstimator	(Do	et	al.,	2014;	Jones	&	Wang,	2010)	provides	772 
the	raw	variance	figures	required,	however	these	can	be	approximated	by	working	backwards	773 
from	the	provided	confidence	intervals.		774 
	775 

COLONY	776 
Colony	generates	95%	confidence	intervals	using	the	following	formula[cite]:	777 

𝐶𝐼:	
1
2𝑁8

± 1.96 𝑉∗,	778 

where	V*	is	the	variance	of	the	estimate	of	1/2𝑁8.	Knowing	the	upper	and	lower	bounds	of	this	779 
confidence	interval,	we	can	estimate	V*	as,	780 

𝑉∗ =
2𝐿∗ −	1 𝑁8

3.92

7

,	781 

or,	782 

𝑉∗ ≈
1
𝐿 	−	

1
𝑁8

4

7

.	783 

Where	L*	and	L	are	the	lower	confidence	bounds	in	terms	of	1/2𝑁8 	and	𝑁8	respectively.	An	784 
identical	argument	follows	for	the	upper	bounds.		However,	we	desire	the	variance	of	𝑁8,	which	785 
we	can	approximate	using	a	first	order	Taylor	expansion.	That	is,		786 
𝑉𝑎𝑟 𝑓 𝑋 ≈ (𝑓h𝐸 𝑋 )7𝑉𝑎𝑟[𝑋].	Substituting	in	our	particular	case,	787 
	788 

𝑉𝑎𝑟 𝑁8 ≈
−4
2
𝑁87	

7

𝑉∗,	789 
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𝑉𝑎𝑟 𝑁8 ≈
−4
2
𝑁87	

7 1
𝐿 	−	

1
𝑁8

4

7

,	790 

𝑉𝑎𝑟 𝑁8 ≈
1
4
𝑁8 l 1

𝐿 	−	
1
𝑁8

7
.	791 

We	also	have		792 

𝑉𝑎𝑟 𝑁8 ≈
1
4
𝑁8 l 1

𝑈 	−	
1
𝑁8

7
	793 

via	the	upper	bound.	These	are	now	in	terms	of	known	values	and	we	can	estimate	𝑉𝑎𝑟 𝑁8 .		794 
	795 

Ne	 U	 L	 𝑽𝒂𝒓 𝑵𝒆 .	
289	 -	 200	 4134.811506	
289	 461	 -	 2906.636596	

Mean	 3520.724051	

Ne	Estimator	796 
	797 
Similar	to	COLONY	Ne	Estimator	does	not	provide	raw	variances,	and	we	need	to	work	in	terms	798 
of	the	confidence	intervals	for	 𝑟7 − 𝑑𝑟𝑖𝑓𝑡 	which	we	will	call	here	r*.	The	drift	term	is	799 
approximately	1 𝑆,	where	S	is	the	sample	size.	The	95%	confidence	interval	for	r*	is	explicitly	800 
normal	in	the	case	of	the	jackknife	confidence	interval	(Jones,	Ovenden,	&	Wang,	2016).	Thus,	801 
V*,	the	variance	of	r*	is	approximated	by	802 
	803 
	804 

𝑉∗ ≈
𝑈∗ −	𝑟∗	

2

7

≈ 	
𝐿∗ −	𝑟∗	

2

7

,	805 

	806 
where	U	and	L	are	the	upper	and	lower	bounds	provided	for	r*.	However,	again,	we	wish	to	807 
have	the	variance	in	terms	of	𝑁8.	Using	the	same	approach	as	for	COLONY,	we	will	approximate	808 
this	using	𝑉𝑎𝑟 𝑓 𝑋 ≈ (𝑓h𝐸 𝑋 )7𝑉𝑎𝑟 𝑋 .	The	true	function	used	to	calculate	Ne	using	r*	can	be	809 
found	in	Table	1	in	Waples	&	Do	(2008),	here	we	use	the	simpler	original	form	(Equation	1	in	810 
Jones	et	al	2016	and	others)	as	our	𝑓 𝑋 	for	this	estimate,	that	is		811 

𝑁8 = 	1 3(𝑟7 − 𝑑𝑟𝑖𝑓𝑡) = 	
1
3(𝑟∗).	812 

	813 
Working	as	before,	814 

𝑉𝑎𝑟 𝑁8 ≈
−1

3(𝑟∗)7
	
7

𝑉∗	815 

𝑉𝑎𝑟 𝑁8 ≈
1
4

1
(𝑟∗)l

1
9
𝐿∗ −	𝑟∗ 7	816 
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𝑉𝑎𝑟 𝑁8 ≈
1
36

1
(𝑟∗)l

𝐿∗ −	𝑟∗ 7 ≈
1
36

1
(𝑟∗)l

𝑈∗ −	𝑟∗ 7	817 

	818 
	819 
However,	we	still	need	to	obtain	𝑈∗	and	𝐿∗	the	upper	and	lower	confidence	bounds	for	r*.	This	820 
can	be	achieved	by	inverting	the	function	of	r*	and	S	from	Table	1	in	Waples	&	Do	(2008).	In	this	821 
particular	case	we	cannot	use	the	simple	approximation.	In	our	case	the	inverted	function	is	822 
	823 

𝑟∗ = 	
−69𝑆7 +	 10000𝑆l𝑁87 + 4761𝑆l − 248400𝑆?𝑁8 + 1800𝑆𝑁87

1800𝑆7𝑁87
	− 1 𝑆.	824 

	825 
	826 

Ne	 CI	Bound	(Ne)	 CI	Bound	(𝑟∗)	 𝑉𝑎𝑟 𝑁8 	

208.5	 116.4	 0.000368638	 6523.337897	
208.5	 712.7	 6.05919E-05	 10252.64749	

Mean	 8387.992693	
Weighted	Mean	and	Final	Variance	827 
	828 
Now	we	follow	the	formula	the	weighted	harmonic	mean,		829 

𝑥 = 	
1

𝑤v
1
𝑥vv

,	830 

where	the	weights,	𝑤v,	sum	to	1.	In	this	case	we	need	to	normalise	the	inverse-variances	to	sum	831 
to	1.	832 
	833 

Ne	 Method	 Variance	 Inverse	
Variance	

Normalised	
Inverse	Variance	

Weight	

𝟏
𝑵𝒆

	

289	 COLONY	 3520.724051	 0.000284032	 0.704357394	 0.003460208	
208.5	 LD	 8387.992693	 0.000119218	 0.295642606	 0.004796163	

	834 
	835 
The	final	mean	estimate	is:		836 
	837 

=
L.xLl?yx?zl	∙	L.LL?l|L7L} ~ L.7zy|l7|L|	∙	L.LLlxz|=|?	

=	259.3917339	838 

	839 
	840 

		841 
The	COLONY	estimate	has	a	lower	variance	and	thus	contributes	around	2/3	of	the	final	842 
estimate	(70.4%).		843 
 844 
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