REFERENCES
1. De Las Rivas J, Fontanillo C. Protein–protein interaction networks:
unraveling the wiring of molecular machines within the cell. Brief
Funct Genomics . 2012;11:489-96.
2. Ozbabacan SEA, Engin HB, Gursoy A, Keskin O. Transient
protein-protein interactions. Protein Eng Des Sel .
2011;24:635-648.
3. Braun P, Gingras A-C. History of protein-protein interaction: from
egg-white to complex networks. Proteomics . 2012;12:1478-1498.
4. Torrente MP, Zee BM, Young NL, Baliban RC, LeRoy G, Floudas CA.
Proteomic Interrogation of Human Chromatin. PLoS ONE .
2011;6:e24747.
5. Zhou B-R, Bai Y. Chromatin structures condensed by linker histones.Essays Biochem . 2019; 63:75–87.
6. Kowalski A, Pałyga J. Modulation of chromatin function through linker
histone H1 variants. Biol Cell . 2016;108:1-18.
7. Fyodorov DV, Zhou B-R, Skoultchi AI, Bai Y. Emerging roles of linker
histones in regulating chromatin structure and function. Nature
Rev Mol Cell Biol . 2017;19:192-206.
8. Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and
protein-protein interactions. Biochim Biophys Acta .
2016;1859:455-461.
9. Alonso-López D, Campos-Laborie FJ, Gutiérrez MA, Lambourne L,
Calderwood MA, Vidal M, De Las Rivas J. APID database: redefining
protein–protein interaction experimental evidences and binary
interactomes. Database . 2019;1-8.
10. Oughtred R, Stark C, Breitkreutz B-J, Rust J, Boucher L, Chang C,
Kolas N, O’Donnell L, Leung G, McAdam R. The BioGRID interaction
database: 2019 update. Nucleic Acids Res . 2019;47:529-541.
11. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter
F, Campbell NH, Chavali G, Chen C, del-Toro N. The MIntAct
project—IntAct as a common curation platform for 11 molecular
interaction databases. Nucleic Acids Res. 2014;42:358-363.
12. The UniProt Consortium. UniProt: the universal protein
knowledgebase. Nucleic Acids Res . 2017;45:158–169.
13. Veres DV, Gyurkó DM, Thaler B, Szalay KZ, Fazekas D, Korcsmáros T,
Csermely P. ComPPI: a cellular compartment-specific database for
protein-protein interaction network analysis. Nucleic Acids Res .
2015;43:485-493.
14. Sahraeian SME, Luo KR, Brenner SE. SIFTER search: a web server for
accurate phylogeny-based protein function prediction. Nucleic
Acids Res . 2015;43: 141-147.
15. Yu C-S, Cheng C-W, Su W-C, Chang K-C, Huang S-W, Hwang J-K, Lu C-H.
CELLO2GO: A Web Server for Protein subCELlular LOcalization Prediction
with Functional Gene Ontology Annotation. PLoS ONE .
2014;9:e99368.
16. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo
J. g:Profiler: a web server for functional enrichment analysis and
conversions of gene lists (2019 update) Nucleic Acids Res .
2019;47:191-198.
17. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C.
STRING v11: protein-protein association networks with increased
coverage, supporting functional discovery in genome-wide experimental
datasets.Nucleic Acids Res . 2019;47:607-613.
18. Asssenov Y, Ramirez F, Schelhorn SE, Langauer T, Albrecht M.
Computing topological parameters of biological network.Bioinformatics . 2008;242:282-284.
19. Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba:
identifying hub objects and sub-networks from complex interactome.BMC Syst Biol . 2014;8 (Suppl 4):11.
20. Carlin DE, Demchak B, Pratt D, Sage E, Ideker T. Network propagation
in the cytoscape cyberinfrastructure. PLoS Comput Biol .
2017;13(10):e1005598.
21. Sanchez-Garcia R, Sorzano COS, Carazo JM, Segura J. BIPSPI: a method
for the prediction of partner-specific protein-protein interfaces.Bioinformatics . 2019;35:470-477.
22. Linding L, Jensen LJ, Diella F, Bork P, Gibson TJ, Russell RB.
Protein disorder prediction: implications for structural proteomics.Structure . 2003;11:1453-1459.
23. Taner Z, Sen R, Jernigan L, Garnier J, Kloczkowski A. GOR V server
for protein secondary structure prediction. Bioinformatics .
2005;21:2787–2788.
24. Abbasi WA, Hassan FU, Yaseen A, Minhas FUAA.
ISLAND:
In-silico prediction of proteins binding affinity using sequence
descriptors. arXiv preprint . 2017;arXiv:1711.10540.
25. Millãn-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities
and genomic distribution of somatic mammalian histone H1 subtypes.Biochim Biophys Acta . 2016;1859:510-519.
26. Izzo A, Kamieniarz-Gdula K, Ramirez F, Noureen N, Kind J, Manke T,
van Steensel B, Schneider R. The genomic landscape of the somatic linker
histone subtypes H1.1 to H1.5 in human cells. Cell Rep .
2013;3:2142-2154.
27. Millán-Ariño L, Islam ABMMK, Izquierdo-Bouldstridge A, Mayor R,
Terme J-M, Luque N, Sancho M, López-Bigas N, Jordan A. Mapping of six
somatic linker histone H1 variants in human breast cancer cells uncovers
specific features of H1.2. Nucleic Acids Res . 2014;42:4474-4493.
28. Kim J, Kim K, Punj V, Liang G, Ulmer TS, Lu W, An W. Linker histone
H1.2 establishes chromatin compaction and gene silencing through
recognition of H3K27me3. Sci Rep . 2015; 5:16714.
29. Agapito G, Guzzi PH, Cannataro M. Visualization of protein
interaction networks: problems and solutions. BMC Bioinformatics .
2013;14:S1.
30. Merico D, Gfeller D, Bader GD. How to visually interpret biological
data using networks. Nat Biotechnol . 2009;27:921-924.
31. Xia J, Benner MJ, Hancock REW. NetworkAnalyst - integrative
approaches for protein–protein interaction network analysis and visual
exploration. Nucleic Acids Res . 2014;42:167-174.
32. Celestini A, Cianfriglia M, Mastrostefano E, Palma A, Castiglione F,
Tieri P. Critical nodes reveal peculiar features of human essential
genes and protein interactome. IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA,
2019;2121-2128.
33. Almaas E. Biological impact and context of network theory. J
Exp Biol . 2007;210:1548-1558.
34. Hakes L, Pinney J, Robertson D, Lovell SC. Protein-protein
interaction networks and biology - what’s the connection?. Nat
Biotechnol . 2008;26:69-72.
35. Friedel CC, Zimmer R. Influence of degree correlations on network
structure and stability in protein-protein interaction networks.BMC Bioinformatics . 2007;8:297.
36. He X, Zhang J. Why do hubs tend to be essential in protein networks
? PLoS Genet . 2006;2(6):e88.
37. Jeong H, Mason SP, Barabasi A-L, Oltvai ZN. Lethality and centrality
in protein network. Nature . 2001;411:41-42.
38. Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy
D, Walhout AJM, Cusick ME, Roth FP, Vidal M. Evidence of dynamically
organized modularity in the yeast protein interaction network.Nature . 2004;430:88-93.
39. Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P.
Protein-protein interactions: mechanisms and modification by drugs.J Mol Recognit . 2002;15:405-422.
40. Park SH, Reyes JH, Gilbert DR, Kim JW, Kim S. Prediction of
protein-protein interaction types using association rule based
classification. BMC Bioinformatics . 2009;10:36.
41. La D, Kong M, Hoffman W, Choi YI, Kihara D. Predicting permanent and
transient protein-protein interfaces. Proteins . 2013;81:805-815.
42. De S, Krishnadev O, Srinivasan N, Rekha N. Interaction preferences
across protein-protein interfaces of obligatory and non-obligatory
components are different. BMC Struct Biol . 2005;5:15.
43. Talavera D, Robertson DL, Lovell SC. Characterization of
protein-protein interaction interfaces from a single species. PLoS
One . 2011;6(6):e21053.
44. Ansari S, Helms V. Statistical analysis of predominantly transient
protein-protein interfaces. Proteins . 2005;61:344-355.
45. Guharoy M, Chakrabarti P. Secondary structure based analysis and
classification of biological interfaces: identification of binding
motifs in protein-protein interactions. Bioinformatics .
2007;23:1909-1918.
46. Nooren IMA, Thornton JM. Structural characterization and functional
significance of transient protein-protein interactions. J Mol
Biol . 2003;325:991-1018.
47. Veresov VG. Predicting protein-protein binding affinity by in
silico docking. JSM Chem . 2016;4:1019.
48. Perkins JR, Diboun I, Dessaily BH, Lees JG, Orengo C. Transient
protein-protein interactions: structural, functional and network
properties. Structure . 2010;18:1233-1243.
49. Pancsa R, Fuxreiter M. Interactions via intrinsically disordered
regions: what kind of motifs ? IUBMB Life . 2012;64:5130-520.
50. Singh GP, Ganapathi M, Dash D. Role of intrinsic disorder in
transient interactions of hub proteins. Proteins .
2007;66:761-765.
51. Kowalski A. Abundance of intrinsic structural disorder in the
histone H1 subtypes. Comput Biol Chem . 2015;59:16-27.
52. Mészáros B, Dobson L, Fichó E, Tusnády GE, Dosztányi Z, Simon I.
Sequential, structural and functional properties of protein complexes
are defined by how folding and binding intertwine. J Mol Biol .
2019;431:4408-4428.
53. Chu X, Wang J. Specificity and affinity quantification of flexible
recognition from underlying energy landscape topography. PLoS
Comput Biol . 2014;10,:e1003782.
54. Mentes A, Magyar C, Fichó E, Simon I. Analysis of heterodimeric
”Mutual Synergistic Folding” - complexes. Int J Mol Sci .
2019;16:5136.
55. McBryant S. Lu X, Hansen JC. Multifunctionality of the linker
histones: an emerging role for protein-protein interactions. Cell
Res . 2010;20:519-528.
56. Kalashnikova AA, Winkler DD, McBryant SJ, Henderson RK, Herman JA,
DeLuca JG, Luger K, Prenni JE, Hansen JC. Linker histone H1.0 interacts
with an extensive network of proteins found in the nucleolus.Nucleic Acids Res . 2013;41:4026-4035.
57. Szerlong HJ, Herman JA, Krause CM, DeLuca JG, Skoultchi A, Winger
QA, Prenni JE, Hansen JC. Proteomic characterization of the nucleolar
linker histone H1 interaction network. J Mol Biol .
2015;427:2056-2071.
58. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL,
Bonner WM, Cande WZ, Chadwick B, Chan SWL, Cross GAM, Cui L, Dimitrov
SI, Doenceke D, Eirin-Lopez JM, Gorovsky MA, Hake SB, Hamkalo BA, Holec
S, Jacobsen SE, Kamieniarz K, Kchohbin S, Ladurner AG, Landsman D,
Latham JA, Loppin B, Malik HS, Marzluff WF, Pehrson JR, Postberg J,
Schneider R, Singh M, Smith MM, Thompson E, Torres-Padilla M-E,
Tremethick DJ, Turner BM, Waterborg JH, Wollmann H, Yelagandula R, Zhu
B, Henikoff S. A unified phylogeny-based nomenclature for histone
variants. Epigenetics & Chromatin . 2012;5:7.
59. Folador EL, Fernandez de Oliveira Junior A, Tiwari S, Jamal SB,
Ferreira FS, Barh D, Ghosh P, Ilva A, Azevedo V. In silicoprotein-protein interactions: avoiding data and methods biases over
sensitivity and specificity. Curr Protein Pep Sc .
2015;16:689-700.
60. Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential
affinity of mammalian histone H1 somatic subtypes for DNA and chromatin.BMC Biol . 2007;5:22.
61. Clausell J, Happel N, Hale TK, Doenecke D, Beato M. Histone H1
subtypes differently modulate chromatin condensation without preventing
ATP-dependent remodeling by SWI/SNF or NURF. PLoS One .
2009;4(10):e0007243.
62. Patil A, Kinoshita K, Nalamura H. Hub promiscuity in protein-protein
interaction networks. Int J Mol Sci . 2010;11:1930-1943.
63. Janin J, Bahadur RP, Chakrabarti P. Protein-protein interaction and
quaternary structure. Q Rev Biophys . 2008;41:133–180.
64. Darling AL, Uversky VN. Intrinsic disorder and posttranslational
modifications: the darker side of the biological dark matter.Front Genet . 2018;9:158.
65. Rogue A, Ponte I, Suau P. Post-translational modifications of the
intrinsically disordered terminal domains of histone H1: effects on
secondary structure and chromatin dynamics. Chromosoma. 2016;126:83-91.
Caption for figures
FIGURE 1 Schematic framework of data searching and processing
FIGURE 2 Quantitative assessment of proteins interacting with
histone H1 subtypes. On A, darkened bars shows a total number of
proteins and brightened bars shows the number of proteins individual for
a given subtype. On B, pairwise grouping of histone H1 subtypes based on
the amount of common interacting proteins
FIGURE 3 Localization of histone H1 subtypes interacting
proteins determined with the ComPPI database. Abundance of proteins was
expressed as a ratio of their amount in a given cell compartment to the
whole number of proteins interacting with a given histone H1 subtype
FIGURE 4 Functions of histone H1 subtypes interacting proteins
derived from the SIFTER database. Abundance of proteins assigned to
functional category was expressed as a ratio of their amount to the
whole number of proteins interacting with a given histone H1 subtype
FIGURE 5 Interface residues of histone H1 subtypes and their
interacting proteins predicted by BIPSPI method. In parentheses, an
amino acid side chain propensity (subscript: c – charged, p – polar
and h – hydrophobic) and its location in secondary structure
(superscript: H – helix, NR – Non-Regular) is depicted. Underlined
residues were predicted by DisEMBL tool as disordered
FIGURE 6 Features of histone H1 interacting proteins indicating
on a shared and distinct characteristic of histone H1 subtypes.
Similarities and distinctions between molecular function and biological
process were juxtaposed based on proportions of proteins frequently
associated with a given feature and having comparable networks
properties (darkened circles) versus the proteins rarely and/or
completely unrelated to a given feature and having unlike networks
properties (lightened circles), details in the text