References
- https://www.meti.go.jp/policy/mono_info_service/mono/chemistry/toukei_archives.html
- Barecka MH, Skiborowski M, Gorak A, A novel approach for process
retrofitting through process intensification: Ethylene oxide case
study. Chem. Eng. Res. 2017;123:295-316
- Zhou XG, Yuan WK, Optimization of the fixed-bed reactor for ethylene
epoxidation. Chem. Eng. Process. 2005;44(10):1098-1107
- Lahiri SK, Khalfe N, PROCESS MODELING AND OPTIMIZATION OF INDUSTRIAL
ETHYLENE OXIDE REACTOR BY INTEGRATING SUPPORT VECTOR REGRESSION AND
GENETIC ALGORITHM. Can. J. Chem. Eng. 2009;87(1):118-128
- Yang XT, Xu Q, Li KY, Sagar CD, Dynamic Simulation and Optimization
for the Start-up Operation of An Ethylene Oxide Plant. Ind. Eng. Chem.
Res. 2010;49(9):4360-4371
- Rahimpour MR, Shayanmehr M, Nazari M, Modeling and Simulation of an
Industrial Ethylene Oxide (EO) Reactor Using Artificial Neural
Networks (ANN). Ind. Eng. Chem. Res. 2011;50(10):6044-6052
- Luo N, Du WL, Ye ZC, Qian F, Development of a Hybrid Model for
Industrial Ethylene Oxide Reactor. Ind. Eng. Chem. Res.
2012;51(19):6926-6932
- Nawaz Z, Heterogeneous Reactor Modeling of an Industrial Multitubular
Packed-Bed Ethylene Oxide Reactor. Chem. Eng. Technol.
2016;39(10):1845-1857
- Peschel A, Jorke A, Sundmacher K, Freund H, Optimal reaction concept
and plant wide optimization of the ethylene oxide process. Chem. Eng.
J. 2012;207:656-674
- Freguia S, Rochelle GT, Modeling of CO2 Capture by Aqueous
Monoethanolamine. AIChE J. 2003;49(7):1676-1686
- Jassim MS, Rochelle GT, Innovative absorber/stripper configurations
for CO2 capture by aqueous monoethanolamine. Ind. Eng. Chem. Res.
2006;45(8):2465-2472
- Shahriari B, Swersky K, Wang ZY, Adams RP, Freitas ND, Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceeding
of the IEEE. 2016;104(1):148-175
- http://scejcontest.chem-eng.kyushu-u.ac.jp/
- Brandmaier S, Sahlin U, Tetko IV, Oberg T, PLS-Optimal: A Stepwise
D-Optimal Design Based on Latent Variables. J. Chem. Inf. Model.
2012;52(4):975-983
- Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA,
Response surface methodology (RSM) as a tool for optimization in
analytical chemistry. Talanta. 2008;76(5):965-977
- Niktin A, Fastovets I, Shadrin D, Pukalchik M, Oseledets I, Bayesian
optimization for seed germination. Plants Methods. 2019;15:43
- Tanaka R, Iwata H, Bayesian optimization for genomic selection: a
method for discovering the best genotype among a large number of
candidates. Theor. Appl. Genet. 2018;131(1):93-105
- Pruksawan S, Lambard G, Samitsu S, Sodeyama K, Prediction and
optimization of epoxy adhesive strength from a small dataset through
active learning. STAM. 2019;20(1):1010-1021
- Seko A, Togo A, Hayashi H, Tsuda K, Chaput L, Tanaka I, Prediction of
Low-Thermal-Conductivity Compounds with First-Principles Anharmonic
Lattice-Dynamics Calculations and Bayesian Optimization. Phys. Rev.
Lett. 2015;115(20): 205901-1-5
- Overstall AM, Woods DC, Martin KJ, Bayesian prediction for physical
models with application to the optimization of the synthesis of
pharmaceutical products using chemical kinetics. Comput. Statist. Data
Anal. 2019;132:126-142
- Chen HP, Bowels S, Zhang B, Fuhlbrigge T, Controller parameter
optimization for complex industrial system with uncertainties.
Measurement and control. 2019;52(7-8):888-895
- Geng ZY, Yang F, Chen X, Wu NQ, Gaussian process based modeling and
experimental design for sensor calibration in drifting environments.
Sens. Actuators B. Chem. 2015;216:321-331
- Katakami S, Sakamoto H, Okada M, Bayesian Hyperparameter Estimation
using Gaussian Process and Bayesian Optimization. J. Phys. Soc. Jpn.
2019;88(7):2019
- Rasmussen CE, Nickisch H, Gaussian Processes for Machine Learning
(GPML) Toolbox. J. Mach. Learn. Res. 2010;11:3011-3015
- Kishio T, Kaneko H, Funatsu K, Strategic parameter search method based
on prediction errors and data density for efficient product design.
Chemometr. Intell. Lab. Syst. 2013;127:70-79
- AVEVA™ Process Simulation (formerly known as SimCentral)