References:
Artschwager, E. (1926). Anatomy of the vegetative organs of the sugar beet. Journal of Agricultural Research , 33, 143 – 176.
Babst, B. A., Karve, A. A., & Judt, T. (2013). Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.Plant & Cell Physiology, 54, 1016–1025.
Bailey, I. W., & Swamy, B. G. L. (1949). The morphology and relationships of Austrobaileya . Journal of the Arnold Arboretum, 30, 211–226.
Baillaud, L. (1962). Les mouvements d’exploration et d’enroulement des plantes volubiles. Handb Pflanzenphysiologie , 17, 635–715.
Barral, A., Gomez, B., Feild, T. S., Coiffard, C & Daviero-Gomez, V. (2013). Leaf architecture and ecophysiology of an early basal eudicot from the Early Cretaceous of Spain. Botanical Journal of the Linnean Society, 173, 594–605.
Barceló-Anguiano, M., Holbrook, N. M., Hormaza, J. I., & Losada, J. M. (2021a). Changes in ploidy affect vascular allometry and hydraulic function in Mangifera indica tres. The Plant Journal,https://doi.org/10.1111/tpj.15460.
Barceló-Anguiano, M., Hormaza, J. I., & Losada, J. M. (2021b). Conductivity of the phloem in mango (Mangifera indica L.)Horticulcture Research,https://doi.org/10.1038/s41438-021-00584-1
Behnke, H. (1986). Sieve element characters and the systematic position of Austrobaileya , Austrobaileyaceae—with comments to the distinction and definition of sieve cells and sieve-tube members.Plant Systematics and Evolution, 152, 101–121.
Brodribb, T. J., & Field, T. S. (2010). Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters 13, 175–183.
Carlquist S. (1991). Anatomy of vine and liana stems: a review and synthesis. In:Putz FE, Mooney HA, eds. The biology of vines . Cambridge: Cambridge University Press, 53–71.
Carlquist, S. (2001). Observations on the vegetative anatomy of Austrobaileya: habitat, organographic and phylogenetic conclusions.Botanical Journal of the Linnean Society , 135 (1), 1–11.
Carvalho, M. R., Losada, J. M., & Niklas, K. J. (2018). Phloem networks in leaves. Current Opinion in Plant Biology, 43, 29–35.
Carvalho, M. R., Turgeon, R., Owens, T., & Niklas, K. J. (2017a). The hydraulic architecture of Ginkgo leaves. American Journal of Botany, 104, 1285–1298.
Carvalho, M. R., Turgeon, R. Owens, T., & Niklas, K. J. (2017b). The scaling of the hydraulic architecture in poplar leaves. New Phytologist, 214, 145–157.
Chen, Y. J., Bongers, F., Zhang, J. L., Liu, J. Y. & Cao, K. F. (2014). Different biomechanical design and ecophysiological strategies in juveniles of two liana species with contrasting growth habit. American journal of botany101 (6), 925–934.
Chery, J. G., Pace, M. R., Acevedo-Rodríguez, P., Specht, C. D. & Rothfels, C. J. (2020). Modifications during early plant development promote the evolution of nature’s most complex woods. Current Biology , 30(2), 237–244.
Clerx, L. E., Rockwell, F. E., Savage, J. A., & Holbrook, N. M. (2020) Ontogenetic scaling of phloem sieve tube anatomy and hydraulic resistance with tree height in Quercus rubra . American Journal of Botany , 107, 852–863.
Darwin C. (1875). On the movements and habits of climbing plants . John Murray, London: Longman, Green.
Ewers, F. W., Fisher, J. B., & Fichtner, K. (1991). Water flux and xylem structure in vines. In: Putz FE, Mooney HA, eds. The biology of vines . Cambridge: Cambridge University Press, 127–179.
Feild, T. S., Arens, N. C. & Dawson, T. E. (2003a). The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences, 164, 129–142.
Feild, T. S., & Arens, N. C. (2005). Form, function and environments of the early angiosperms: merging extant phylogeny and ecophysiology with fossils. New Phytologist, 166(2), 383–408.
Feild, T. S., & Arens, N. C. (2007). The ecophysiology of early angiosperms. Plant, Cell & Environment, 30, 291–309.
Feild, T. S., Franks, P. J. & Sage, T. L. (2003a). Ecophysiological shade adaptation in the basal angiosperm, Austrobaileya scandens(Austrobaileyaceae). International Journal of Plant Sciences,164, 313–324.
Field, T. S., Arens, N. C., & Dawson, T. E. (2003b). The ancestral ecology of angiosperms: emerging perspectives from extant basal lineages. International Journal of Plant Sciences , 164(S3), S129–S142.
Feild, T. S., & Wilson, J. P. (2012). Evolutionary voyage of angiosperm vessel structure–function and its significance for early angiosperm success. International Journal of Plant Sciences, 173, 596–609.
Fisher, J. B., & Blanco, M. A. (2014). Gelatinous fibers and variant secondary growth related to stem undulation and contraction in a monkey ladder vine, Bauhinia glabra (Fabaceae). American Journal of Botany , 101, 608–616.
Geiger, D. R., Saunders M. A., & Cataldo D. A. (1969). Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiology, 44, 1657–1665.
Gentry, A. G. (1991). The distribution and evolution of climbing plants. In: Putz FE, Mooney HA, eds. The biology of vines . Cambridge, UK: Cambridge University Press, 3–52.
Gerwing, J. J, Farias, D. L. (2000). Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. Journal of Tropical Ecology , 16(3), 327–335.
Gleason, S., Blackman, C. J., Gleason, S. T., McCulloh, K. A., Ocheltree, T. W., & Westoby, M. (2018). Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance.New Phytologist, 218, 1360–1370.
Grimm, E., Jahnke, S., & Rothe, K. (1997). Photoassimilate translocation in the petiole of Cyclamen and Primula is independent of lateral retrieval. Journal of Experimental Botany,48, 1087–1094.
Hughes, J., & McCully, M. E. (1975) The use of an optical brightener in the study of plant structure. Stain Technology , 50, 319–329.
Isnard, S., Cobb, A. R., Holbrook, N. M., Zwieniecki, M., & Dumais, J. (2009). Tensioning the helix: A mechanism for force generation in twining plants. Proceedings of the Royal Society B: Biological Sciences, 276(1667), 2643–2650.
Isnard, S., Speck, T., Rowe, N. P. (2003). Mechanical architecture and development in Clematis : implications for canalised evolution of growth forms. New Phytologist , 158(3), 543–559.
Isnard, S., & Silk, W. K. (2009). Moving with climbing plants from Charles Darwin’s time into the 21st century. American Journal of Botany , 96, 1205–1221.
Jensen, K. H., Lee, J., Bohr, T., Bruus, H., Holbrook, N. M. & Zwieniecki, M. A. (2011). Optimality of the Münch mechanism for translocation of sugars in plants. Journal of the Royal Society Interface, 8, 1155–1165.
Jensen, K. H., Liesche, J., Bohr, T., & Schulz, A. (2012a). Universality of phloem transport in seed plants. Plant, Cell & Environment, 35, 1065–1076.
Jensen, K. H., Mullendore, D. L., Holbrook, N. M., Bohr, T., Knoblauch, M., & Bruus, H. (2012b). Modeling the hydrodynamics of phloem sieve plates. Frontiers in Plant Science, 3, 151.
Jud, N. A., Michael, D. D., Williams, S. A., Mathews, J. C., Tremaine, K. M., & Bhattacharya, J. (2018). A new fossil assemblage shows that large angiosperm trees grew in North America by the Turonian (Late Cretaceous). Science advances , 4(9), eaar8568.
Knoblauch, M., Knoblauch, J., Mullendore, D. L., Savage, J. A., Babst, B. A., Beecher, S. D., A.C. Dodgen, Jensen, K. H., & Holbrook, N. M. (2016). Testing the Münch hypothesis of long distance phloem transport in plants. eLife 5.
Knoblauch, M., Vendrell, M., de Leau, E., Paterlini, A., Knox, K., Ross-Elliot, T., Reinders, A. Brockman, S. A., Ward J., & Oparka, K. (2015). Multispectral phloem-mobile probes: properties and applications.Plant Physiology, 167, 211–1220.
Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019). Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70, 6195–6201.
Liesche, J. (2017). Sucrose transporters and plasmodesmal regulation in passive phloem loading. Journal of Integrative Plant Biology, 59, 311–321.
Liesche, J., Pace, M.R., Xu, Q., Li, Y., & Chen, S. (2017). Height‐related scaling of phloem anatomy and the evolution of sieve element end wall types in woody plants. New Phytologist, 214, 245–256.
Linskens, H. F., & Esser, K. L. (1957). über eine spezifische anfärbung der pollenschläuche im griffel und die zahl der kallosepfropfen nach selbstungund fremdung. Naturwissenschaften, 44, 16–16.
Losada, J. M., & Holbrook, N. M. (2019). Scaling of phloem hydraulic resistance in stems and leaves of the understory angiosperm shrubIllicium parviflorum . American Journal of Botany, 106, 244–259.
Mathews, S., & Donoghue, M. J. (1999). The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science, 286, 947–950.
Metcalfe, C. R. (1987). Anatomy of the dicotyledons . Ed. 2, Volume III. Magnoliales, Illiciales, and Laurales. Oxford: Clarendon Press.
McCulloh, K. A., Sperry, J. S., & Adler, F.R. (2003). Water transport in plants obeys Murray’s law. Nature, 421, 939–942.
McCulloh, K. A., Sperry, J. S., Meinzer, F. C., Lachenbruch, B., & Atala, C. (2009). Murray’s law, the ‘Yarrum’optimum, and the hydraulic architecture of compound leaves. New Phytologist 184(1), 234–244.
Moya, R., Gondaliya, A. D., & Rajput, K. S. (2017). Stem anatomy and development of interxylary phloem in Strychnos bredemeyeri(Loganiaceae). Anales de Biología , 39.
Mullendore, D. L., Windt, C.W., Van As, H., & Knoblauch, M. (2010). Sieve tube geometry in relation to phloem flow. Plant Cell, 22, 579–593.
Münch, E. (1930). Die stroffbewegungen in der pflanze . Jena, G. Fischer, Germany.
Pace, M. R., Alcantara, S., Lohmann, L.G., & Angyalossy, V. (2015). Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae).Annals of Botany, 116, 333–358.
Pace, M. R., Lohmann, L.G. & Angyalossy, V. (2011). Evolution of disparity between the regular and variant phloem in Bignonieae (Bignoniaceae). American Journal of Botany 98, 602–618.
Pace, M. R., Acevedo-Rodríguez, P., Amorim, A. M. & Angyalossy, V. (2018). Ontogeny, structure and occurrence of interxylary cambia in Malpighiaceae. Flora , 241, 46–60.
Parkinson, C. L., Adams, K.L. & Palmer, J. D. (1999). Multigene analyses identify the three earliest lineages of extant flowering plants.Current Biology 9, 1485–1491.
Petit, G., Savi, T., Consolini, M., Anfodillo, T., & Nardini, A. (2016). Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees.Tree Physiology , 36(11), 1310–1319.
Putz, F. E., Holbrook, N. M. (1992). Biomechanical studies of vines . In: The Biology of Vines. Cambridge University Press, Cambridge, UK, 73–99.
Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. M., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V., & Chase, M. W. (2000). Phylogeny of basal angiosperms: analyses of five genes from three genomes. International Journal of Plant Sciences, 161, 3–27.
Ray, D. M., & Jones, C.S. (2018). Scaling relationships and vessel packing in petioles. American Journal of Botany, 105, 667–676.
Ray, D. M. & Savage, J. A. (2020). Immunodetection of cell wall pectin galactan opens up new avenues for phloem research. Plant Physiology , 183(4), 1435–1437.
Robertson, A. G., Jang, H. F. & Seth, R.S. (1992). Three-dimensional visualization of confocal images of wood pulp fibres. Journal of Materials Science Letters 11, 1416–1418.
Ronellenfitsch, H., Liesche, J., Jensen, K. H., Holbrook, N.M., Schulz, A., & Katifori, E. (2015). Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. Proceedings of the Royal Society, B, Biological Sciences 282, 20141863.
Rowe, N. P., Isnard, S., Gallenuller, F., Speck, T. (2006). Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A, Speck T, Rowe NP, eds. Ecology and biomechanics: a mechanical approach to the ecology of animals and plants . Boca Raton, FL, USA: Taylor and Francis, 35–59.
Savage, J. A., Beecher, S., Clerx, L., Gersony, J.T., Knoblauch, J., Losada, J. M., Jensen, K.H., Knoblauch, M., & Holbrook, N. M. (2017). Maintenance of carbohydrate transport in tall trees. Nature Plants 3: 965.
Schnitzer, S. A., Mangan, S. A., Dalling, J. W., Baldeck, C. A., Hubbell, S. P., Ledo, A., Muller-Landau, H., Tobin, M. F., Aguilar, S., Brassfield, D., Hernandez, A., Lao, S., Perez, R., Valdes, O., & Rutishauser Yorke, S. (2012). Liana abundance, diversity, and distribution on Barro Colorado Island, Panama. PloS one 7(12), e52114.
Scoffoni, C., Albuquerque, C., Brodersen, C., Townes, S. V., John, G. P., Cochard, H., Buckley, T., McElrone, A. J., & Sack, L.(2017). Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist , 213(3), 1076–1092.
Silk, W. K., & Holbrook, N. M. (2005). The importance of frictional interactions in maintaining the stability of the twining habit.American Journal of Botany, 92(11), 1820–1826.
Speck T., & Rowe, N. P. (1999). A quantitative approach for analytically defining size, growth form, and habit in living and fossil plants. In: Kurmann MH, Hemsley AR, eds. The evolution of plant architecture . Kew, UK: Royal Botanic Gardens, 447–479.
Srivastava, L. M. (1970). The secondary phloem of Austrobaileya scandens . Canadian Journal of Botany , 48(2), 341–359.
Soltis, D. E.., Soltis, P. S., Endress, P., Chase, M. W., Manchester, S., Judd, W., Majure, L., & Mavrodiev, E. (2018). Phylogeny and evolution of the angiosperms: revised and updated edition . University Press, Chicago, USA.
Soltis, P. S., Soltis, D. E, & Chase, M. W. (1999). Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402, 402–404.
Torode, T. A., O’Neill, R., Marcus, S. E., Cornuault, V., Pose, S, Lauder, R. P., Kračun, S. K., Rydahl, M. G., Andersen, M. C. F., Willats, W., Braybrook, S., Townsend, B.J., Clausen, ;. H., & Knox, P. (2018). Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiology 176(2), 1547–1558.
Waisel, Y., Ilana, N., Fahn, A. (1966). Cambial activity inEucalyptus camaldulensis Dehn. II. The production of phloem and xylem elements. New Phytologist , 65(3), 319–324.
Windt, C. W., Vergeldt, F. J., De Jager, P. A., Van As, H. (2006). MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant, Cell & Environment, 29, 1715–1729.
Wyka, T. P., Oleksyn, J., Karolewski, P., & Schnitzer, S. A. (2013). Phenotypic correlates of the lianescent growth form: a review.Annals of Botany, 112, 1667–1681.