References:
Artschwager, E. (1926). Anatomy of the vegetative organs of the sugar
beet. Journal of Agricultural Research , 33, 143 – 176.
Babst, B. A., Karve, A. A., & Judt, T. (2013). Radio-metabolite
analysis of carbon-11 biochemical partitioning to non-structural
carbohydrates for integrated metabolism and transport studies.Plant & Cell Physiology, 54, 1016–1025.
Bailey, I. W., & Swamy, B. G. L. (1949). The morphology and
relationships of Austrobaileya . Journal of the Arnold
Arboretum, 30, 211–226.
Baillaud, L. (1962). Les mouvements d’exploration et d’enroulement des
plantes volubiles. Handb Pflanzenphysiologie , 17, 635–715.
Barral, A., Gomez, B., Feild, T. S., Coiffard, C & Daviero-Gomez, V.
(2013). Leaf architecture and ecophysiology of an early basal eudicot
from the Early Cretaceous of Spain. Botanical Journal of the
Linnean Society, 173, 594–605.
Barceló-Anguiano, M., Holbrook, N. M., Hormaza, J. I., & Losada, J. M.
(2021a). Changes in ploidy affect vascular allometry and hydraulic
function in Mangifera indica tres. The Plant Journal,https://doi.org/10.1111/tpj.15460.
Barceló-Anguiano, M., Hormaza, J. I., & Losada, J. M. (2021b).
Conductivity of the phloem in mango (Mangifera indica L.)Horticulcture Research,https://doi.org/10.1038/s41438-021-00584-1
Behnke, H. (1986). Sieve element characters and the systematic position
of Austrobaileya , Austrobaileyaceae—with comments to the
distinction and definition of sieve cells and sieve-tube members.Plant Systematics and Evolution, 152, 101–121.
Brodribb, T. J., & Field, T. S. (2010). Leaf hydraulic evolution led a
surge in leaf photosynthetic capacity during early angiosperm
diversification. Ecology Letters 13, 175–183.
Carlquist S. (1991). Anatomy of vine and liana stems: a review and
synthesis. In:Putz FE, Mooney HA, eds. The biology of vines .
Cambridge: Cambridge University Press, 53–71.
Carlquist, S. (2001). Observations on the vegetative anatomy of
Austrobaileya: habitat, organographic and phylogenetic conclusions.Botanical Journal of the Linnean Society , 135 (1), 1–11.
Carvalho, M. R., Losada, J. M., & Niklas, K. J. (2018). Phloem networks
in leaves. Current Opinion in Plant Biology, 43, 29–35.
Carvalho, M. R., Turgeon, R., Owens, T., & Niklas, K. J. (2017a). The
hydraulic architecture of Ginkgo leaves. American Journal
of Botany, 104, 1285–1298.
Carvalho, M. R., Turgeon, R. Owens, T., & Niklas, K. J. (2017b). The
scaling of the hydraulic architecture in poplar leaves. New
Phytologist, 214, 145–157.
Chen, Y. J., Bongers, F., Zhang, J. L., Liu, J. Y. & Cao, K. F. (2014).
Different biomechanical design and ecophysiological strategies in
juveniles of two liana species with contrasting growth
habit. American journal of botany , 101 (6), 925–934.
Chery, J. G., Pace, M. R., Acevedo-Rodríguez, P., Specht, C. D. &
Rothfels, C. J. (2020). Modifications during early plant development
promote the evolution of nature’s most complex woods. Current
Biology , 30(2), 237–244.
Clerx, L. E., Rockwell, F. E., Savage, J. A., & Holbrook, N. M. (2020)
Ontogenetic scaling of phloem sieve tube anatomy and hydraulic
resistance with tree height in Quercus rubra . American
Journal of Botany , 107, 852–863.
Darwin C. (1875). On the movements and habits of climbing plants .
John Murray, London: Longman, Green.
Ewers, F. W., Fisher, J. B., & Fichtner, K. (1991). Water flux and
xylem structure in vines. In: Putz FE, Mooney HA, eds. The biology
of vines . Cambridge: Cambridge University Press, 127–179.
Feild, T. S., Arens, N. C. & Dawson, T. E. (2003a). The ancestral
ecology of angiosperms: emerging perspectives from extant basal
lineages. International Journal of Plant Sciences, 164, 129–142.
Feild, T. S., & Arens, N. C. (2005). Form, function and environments of
the early angiosperms: merging extant phylogeny and ecophysiology with
fossils. New Phytologist, 166(2), 383–408.
Feild, T. S., & Arens, N. C. (2007). The ecophysiology of early
angiosperms. Plant, Cell & Environment, 30, 291–309.
Feild, T. S., Franks, P. J. & Sage, T. L. (2003a). Ecophysiological
shade adaptation in the basal angiosperm, Austrobaileya scandens(Austrobaileyaceae). International Journal of Plant Sciences,164, 313–324.
Field, T. S., Arens, N. C., & Dawson, T. E. (2003b). The ancestral
ecology of angiosperms: emerging perspectives from extant basal
lineages. International Journal of Plant Sciences , 164(S3),
S129–S142.
Feild, T. S., & Wilson, J. P. (2012). Evolutionary voyage of angiosperm
vessel structure–function and its significance for early angiosperm
success. International Journal of Plant Sciences, 173, 596–609.
Fisher, J. B., & Blanco, M. A. (2014). Gelatinous fibers and variant
secondary growth related to stem undulation and contraction in a monkey
ladder vine, Bauhinia glabra (Fabaceae). American Journal
of Botany , 101, 608–616.
Geiger, D. R., Saunders M. A., & Cataldo D. A. (1969). Translocation
and accumulation of translocate in the sugar beet petiole. Plant
Physiology, 44, 1657–1665.
Gentry, A. G. (1991). The distribution and evolution of climbing plants.
In: Putz FE, Mooney HA, eds. The biology of vines . Cambridge, UK:
Cambridge University Press, 3–52.
Gerwing, J. J, Farias, D. L. (2000). Integrating liana abundance and
forest stature into an estimate of total aboveground biomass for an
eastern Amazonian forest. Journal of Tropical Ecology , 16(3),
327–335.
Gleason, S., Blackman, C. J., Gleason, S. T., McCulloh, K. A.,
Ocheltree, T. W., & Westoby, M. (2018). Vessel scaling in evergreen
angiosperm leaves conforms with Murray’s law and area-filling
assumptions: implications for plant size, leaf size and cold tolerance.New Phytologist, 218, 1360–1370.
Grimm, E., Jahnke, S., & Rothe, K. (1997). Photoassimilate
translocation in the petiole of Cyclamen and Primula is
independent of lateral retrieval. Journal of Experimental Botany,48, 1087–1094.
Hughes, J., & McCully, M. E. (1975) The use of an optical brightener in
the study of plant structure. Stain Technology , 50, 319–329.
Isnard, S., Cobb, A. R., Holbrook, N. M., Zwieniecki, M., & Dumais, J.
(2009). Tensioning the helix: A mechanism for force generation in
twining plants. Proceedings of the Royal Society B: Biological Sciences,
276(1667), 2643–2650.
Isnard, S., Speck, T., Rowe, N. P. (2003). Mechanical architecture and
development in Clematis : implications for canalised evolution of
growth forms. New Phytologist , 158(3), 543–559.
Isnard, S., & Silk, W. K. (2009). Moving with climbing plants from
Charles Darwin’s time into the 21st century. American Journal of
Botany , 96, 1205–1221.
Jensen, K. H., Lee, J., Bohr, T., Bruus, H., Holbrook, N. M. &
Zwieniecki, M. A. (2011). Optimality of the Münch mechanism for
translocation of sugars in plants. Journal of the Royal Society
Interface, 8, 1155–1165.
Jensen, K. H., Liesche, J., Bohr, T., & Schulz, A. (2012a).
Universality of phloem transport in seed plants. Plant, Cell &
Environment, 35, 1065–1076.
Jensen, K. H., Mullendore, D. L., Holbrook, N. M., Bohr, T., Knoblauch,
M., & Bruus, H. (2012b). Modeling the hydrodynamics of phloem sieve
plates. Frontiers in Plant Science, 3, 151.
Jud, N. A., Michael, D. D., Williams, S. A., Mathews, J. C., Tremaine,
K. M., & Bhattacharya, J. (2018). A new fossil assemblage shows that
large angiosperm trees grew in North America by the Turonian (Late
Cretaceous). Science advances , 4(9), eaar8568.
Knoblauch, M., Knoblauch, J., Mullendore, D. L., Savage, J. A., Babst,
B. A., Beecher, S. D., A.C. Dodgen, Jensen, K. H., & Holbrook, N. M.
(2016). Testing the Münch hypothesis of long distance phloem transport
in plants. eLife 5.
Knoblauch, M., Vendrell, M., de Leau, E., Paterlini, A., Knox, K.,
Ross-Elliot, T., Reinders, A. Brockman, S. A., Ward J., & Oparka, K.
(2015). Multispectral phloem-mobile probes: properties and applications.Plant Physiology, 167, 211–1220.
Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019).
Axial anatomy of the leaf midrib provides new insights into the
hydraulic architecture and cavitation patterns of Acer
pseudoplatanus leaves. Journal of Experimental Botany, 70,
6195–6201.
Liesche, J. (2017). Sucrose transporters and plasmodesmal regulation in
passive phloem loading. Journal of Integrative Plant Biology, 59,
311–321.
Liesche, J., Pace, M.R., Xu, Q., Li, Y., & Chen, S. (2017).
Height‐related scaling of phloem anatomy and the evolution of sieve
element end wall types in woody plants. New Phytologist, 214,
245–256.
Linskens, H. F., & Esser, K. L. (1957). über eine spezifische anfärbung
der pollenschläuche im griffel und die zahl der kallosepfropfen nach
selbstungund fremdung. Naturwissenschaften, 44, 16–16.
Losada, J. M., & Holbrook, N. M. (2019). Scaling of phloem hydraulic
resistance in stems and leaves of the understory angiosperm shrubIllicium parviflorum . American Journal of Botany, 106, 244–259.
Mathews, S., & Donoghue, M. J. (1999). The root of angiosperm phylogeny
inferred from duplicate phytochrome genes. Science, 286,
947–950.
Metcalfe, C. R. (1987). Anatomy of the dicotyledons . Ed. 2,
Volume III. Magnoliales, Illiciales, and Laurales. Oxford: Clarendon
Press.
McCulloh, K. A., Sperry, J. S., & Adler, F.R. (2003). Water transport
in plants obeys Murray’s law. Nature, 421, 939–942.
McCulloh, K. A., Sperry, J. S., Meinzer, F. C., Lachenbruch, B., &
Atala, C. (2009). Murray’s law, the ‘Yarrum’optimum, and the hydraulic
architecture of compound leaves. New Phytologist 184(1),
234–244.
Moya, R., Gondaliya, A. D., & Rajput, K. S. (2017). Stem anatomy and
development of interxylary phloem in Strychnos bredemeyeri(Loganiaceae). Anales de Biología , 39.
Mullendore, D. L., Windt, C.W., Van As, H., & Knoblauch, M. (2010).
Sieve tube geometry in relation to phloem flow. Plant Cell, 22,
579–593.
Münch, E. (1930). Die stroffbewegungen in der pflanze . Jena, G.
Fischer, Germany.
Pace, M. R., Alcantara, S., Lohmann, L.G., & Angyalossy, V. (2015).
Secondary phloem diversity and evolution in Bignonieae (Bignoniaceae).Annals of Botany, 116, 333–358.
Pace, M. R., Lohmann, L.G. & Angyalossy, V. (2011). Evolution of
disparity between the regular and variant phloem in Bignonieae
(Bignoniaceae). American Journal of Botany 98, 602–618.
Pace, M. R., Acevedo-Rodríguez, P., Amorim, A. M. & Angyalossy, V.
(2018). Ontogeny, structure and occurrence of interxylary cambia in
Malpighiaceae. Flora , 241, 46–60.
Parkinson, C. L., Adams, K.L. & Palmer, J. D. (1999). Multigene
analyses identify the three earliest lineages of extant flowering plants.Current Biology 9, 1485–1491.
Petit, G., Savi, T., Consolini, M., Anfodillo, T., & Nardini, A.
(2016). Interplay of growth rate and xylem plasticity for optimal
coordination of carbon and hydraulic economies in Fraxinus ornus trees.Tree Physiology , 36(11), 1310–1319.
Putz, F. E., Holbrook, N. M. (1992). Biomechanical studies of
vines . In: The Biology of Vines. Cambridge University Press, Cambridge,
UK, 73–99.
Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P.
M., Zanis, M., Zimmer, E. A., Chen, Z., Savolainen, V., & Chase, M. W.
(2000). Phylogeny of basal angiosperms: analyses of five genes from three
genomes. International Journal of Plant Sciences, 161, 3–27.
Ray, D. M., & Jones, C.S. (2018). Scaling relationships and vessel
packing in petioles. American Journal of Botany, 105, 667–676.
Ray, D. M. & Savage, J. A. (2020). Immunodetection of cell wall pectin
galactan opens up new avenues for phloem research. Plant
Physiology , 183(4), 1435–1437.
Robertson, A. G., Jang, H. F. & Seth, R.S. (1992). Three-dimensional
visualization of confocal images of wood pulp fibres. Journal of
Materials Science Letters 11, 1416–1418.
Ronellenfitsch, H., Liesche, J., Jensen, K. H., Holbrook, N.M., Schulz,
A., & Katifori, E. (2015). Scaling of phloem structure and optimality
of photoassimilate transport in conifer needles. Proceedings of
the Royal Society, B, Biological Sciences 282, 20141863.
Rowe, N. P., Isnard, S., Gallenuller, F., Speck, T. (2006). Diversity of
mechanical architectures in climbing plants: an ecological perspective.
In: Herrel A, Speck T, Rowe NP, eds. Ecology and biomechanics: a
mechanical approach to the ecology of animals and plants . Boca Raton,
FL, USA: Taylor and Francis, 35–59.
Savage, J. A., Beecher, S., Clerx, L., Gersony, J.T., Knoblauch, J.,
Losada, J. M., Jensen, K.H., Knoblauch, M., & Holbrook, N. M. (2017).
Maintenance of carbohydrate transport in tall trees. Nature
Plants 3: 965.
Schnitzer, S. A., Mangan, S. A., Dalling, J. W., Baldeck, C. A.,
Hubbell, S. P., Ledo, A., Muller-Landau, H., Tobin, M. F., Aguilar, S.,
Brassfield, D., Hernandez, A., Lao, S., Perez, R., Valdes, O., &
Rutishauser Yorke, S. (2012). Liana abundance, diversity, and
distribution on Barro Colorado Island, Panama. PloS one 7(12),
e52114.
Scoffoni, C., Albuquerque, C., Brodersen, C., Townes, S. V., John, G.
P., Cochard, H., Buckley, T., McElrone, A. J., & Sack, L.(2017). Leaf
vein xylem conduit diameter influences susceptibility to embolism and
hydraulic decline. New Phytologist , 213(3), 1076–1092.
Silk, W. K., & Holbrook, N. M. (2005). The importance of frictional
interactions in maintaining the stability of the twining habit.American Journal of Botany, 92(11), 1820–1826.
Speck T., & Rowe, N. P. (1999). A quantitative approach for
analytically defining size, growth form, and habit in living and fossil
plants. In: Kurmann MH, Hemsley AR, eds. The evolution of plant
architecture . Kew, UK: Royal Botanic Gardens, 447–479.
Srivastava, L. M. (1970). The secondary phloem of Austrobaileya
scandens . Canadian Journal of Botany , 48(2), 341–359.
Soltis, D. E.., Soltis, P. S., Endress, P., Chase, M. W., Manchester,
S., Judd, W., Majure, L., & Mavrodiev, E. (2018). Phylogeny and
evolution of the angiosperms: revised and updated edition . University
Press, Chicago, USA.
Soltis, P. S., Soltis, D. E, & Chase, M. W. (1999). Angiosperm
phylogeny inferred from multiple genes as a tool for comparative
biology. Nature, 402, 402–404.
Torode, T. A., O’Neill, R., Marcus, S. E., Cornuault, V., Pose, S,
Lauder, R. P., Kračun, S. K., Rydahl, M. G., Andersen, M. C. F.,
Willats, W., Braybrook, S., Townsend, B.J., Clausen, ;. H., & Knox, P.
(2018). Branched pectic galactan in phloem-sieve-element cell walls:
implications for cell mechanics. Plant Physiology 176(2),
1547–1558.
Waisel, Y., Ilana, N., Fahn, A. (1966). Cambial activity inEucalyptus camaldulensis Dehn. II. The production of phloem and
xylem elements. New Phytologist , 65(3), 319–324.
Windt, C. W., Vergeldt, F. J., De Jager, P. A., Van As, H. (2006). MRI
of long-distance water transport: a comparison of the phloem and xylem
flow characteristics and dynamics in poplar, castor bean, tomato and
tobacco. Plant, Cell & Environment, 29, 1715–1729.
Wyka, T. P., Oleksyn, J., Karolewski, P., & Schnitzer, S. A. (2013).
Phenotypic correlates of the lianescent growth form: a review.Annals of Botany, 112, 1667–1681.