References:
Aguirre-Gutiérrez, C. A., Holwerda, F., Goldsmith, G. R., Delgado, J., Yepez, E., Carbajal, N., Escoto-Rodríguez M., & Arredondo, J. T. (2019). The importance of dew in the water balance of a continental semiarid grassland. Journal of Arid Environments , 168, 26–35.
Alvin, K. L. (1987). Leaf anatomy of Androstachys johnsonii Prain and its functional significance. Annals of Botany , 59(5), 579–591.
Arzeee, T. (1953). Morphology and ontogeny of foliar sclereids inOlea europaea . I. Distribution and structure. American Journal of Botany , 680–687.
Bailey, I. W., & Nast, C. G. (1945). Morphology and relationships ofTrochodendron and Tetracentron , I. Stem, root, and leaf.Journal of the Arnold Arboretum , 26(2), 143–154.
Barrell, P., & Grossniklaus U. (2005). Confocal microscopy of whole ovules for analysis of reproductive development: the elongate1 mutant affects meiosis II. The Plant Journal 43, 309–320.
Benz, B. W., & Martin, C. E. (2006). Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia(Bromeliaceae). Journal of Plant Physiology , 163(6), 648–656.
Benzing, D. H. (1976). Bromeliad trichomes: structure, function, and ecological significance. Selbyana 1: 330–348.
Benzing, D. H., & Burt, K. M. (1970). Foliar permeability among twenty species of the Bromeliaceae. Bulletin of the Torrey Botanical Club , 269–279.
Benzing, D. H., Seemann, J., & Renfrow, A. (1978). The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection.American Journal of Botany , 65(3), 359–365.
Berry, Z. C., Emery, N. C., Gotsch, S. G., & Goldsmith, G. R. (2019). Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant, Cell and Environment , 42(2), 410–423.
Berry, Z. C., White, J. C., & Smith, W. K. (2014). Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiology , 34(5), 459–470.
Bickford, C. P. (2016). Ecophysiology of leaf trichomes.Functional Plant Biology , 43(9), 807–814.
Bloch, R. (1946). Differentiation and pattern in Monstera deliciosa. The idioblastic development of the trichosclereids in the air root.American Journal of Botany , 33(6), 544–551.
Boanares, D., Ferreira, B. G., Kozovits, A. R., Sousa, H. C., Isaias, R. M. S., & França, M. G. C. (2018). Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain. Plant Physiology and Biochemistry , 122, 57–64.
Boanares, D., Kozovits, A. R., Lemos‐Filho, J. P., Isaias, R. M., Solar, R. R., Duarte, A. A., Vilas-Boas T., & França, M. G. (2019). Foliar water‐uptake strategies are related to leaf water status and gas exchange in plants from a ferruginous rupestrian field. American Journal of Botany , 106 (7), 935–942.
Breshears, D. D. McDowell N.G., Goddard K.L., Dayem K.E., Martens S.N., Meyer C., & Brown K.M. (2008). Foliar absorption of intercepted rainfall improves woody plant water status most during drought.Ecology 89, 41–47.
Bickford, C. P. (2016). Ecophysiology of leaf trichomes.Functional Plant Biology , 43(9), 807–814.
Burkhardt, J., Basi, S., Pariyar, S., & Hunsche, M. (2012). Stomatal penetration by aqueous solutions–an update involving leaf surface particles. New Phytologist , 196(3), 774–787.
Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell and Environment , 27(8), 1023–1034.
Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, R., Bucci S., Feild T.S., Gleason S.M., Hacke U.G., Jacobsen A.L., Lens F., Maherali H., Martinez-Vilalta J., Mayr S., Mecuccini M., Mitchell P.J., Nardini A., Pittermann J., Pratt R.B., Sperry J.S., Westoby M., Wright I.J. & Zanne A.E.. (2012). Global convergence in the vulnerability of forests to drought. Nature491 (7426), 752 –755.
Colombo, P. M., & Rascio, N. (1977). Ruthenium red staining for electron microscopy of plant material. Journal of Ultrastructure Research , 60(2), 135–139.
Crane, C. F., & Carman, J. G. (1987). Mechanisms of apomixis inElymus rectisetus from eastern Australia and New Zealand.American Journal of Botany , 74(4), 477–496.
Dawson, T. E., & Goldsmith, G. R. (2018). The value of wet leaves.New Phytologist , 219(4), 1156–1169.
Díaz, M., & Granadillo, E. (2005). The significance of episodic rains for reproductive phenology and productivity of trees in semiarid regions of northwestern Venezuela. Trees , 19(3), 336–348.
Duursma, R. A., Blackman, C. J., Lopéz, R., Martin‐StPaul, N. K., Cochard, H., & Medlyn, B. E. (2019). On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist , 221(2), 693–705.
Eller, C. B., Lima, A. L., & Oliveira, R. S. (2013). Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (W interaceae).New Phytologist , 199, 151-162.
Eller, C. B., Lima, A. L., & Oliveira, R. S. (2016). Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytologist , 211(2), 489–501.
Ellis, M., Egelund, J., Schultz, C. J., & Bacic, A. (2010). Arabinogalactan-proteins: key regulators at the cell surface?Plant Physiology , 153, 403–419.
Evert, R. F. (2006). Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development . John Wiley & Sons.
Fahn, A. (1986). Structural and functional properties of trichomes of xeromorphic leaves. Annals of Botany , 57, 631–637.
Feder, N. E. D., & O’brien, T. P. (1968). Plant microtechnique: some principles and new methods. American Journal of Botany , 55, 123–142.
Fernández, V., Bahamonde, H. A., Javier Peguero–Pina, J., Gil-Pelegrín, E., Sancho-Knapik, D., Goldbach, H. E., Gil, L., & Eichert, T. (2017). Physico-chemical properties of plant cuticles and their functional and ecological significance. Journal of Experimental Botany , 68, 5293–5306.
Fernández, V., Sancho-Knapik, D., Guzmán, P., Peguero-Pina, J. J., Gil, L., Karabourniotis, G., Khayet, M., Fasseas, C., Heredia-Guerrero, J. A., Heredia, A., & Gil-Pelegrín, E. (2014). Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.Plant Physiology , 166, 168–180.
Foster, A. S. (1944). Structure and Development of sclereids in the petiole of Camellia japonica L. Bulletin of the Torrey Botanical Club , 71, 302–326.
Foster, A. S. (1945a). Origin and development of sclereids in the foliage leaf of Trochodendron aralioides Sieb. & Zucc.American Journal of Botany , 32, 456–468.
Foster, A. S. (1945b). The foliar sclereids of Trochodendron aralioides sieb. & zucc. Journal of the Arnold Arboretum , 26, 155–162.
Foster, A. S. (1947). Structure and ontogeny of the terminal sclereids in the leaf of Mouriria huberi Cogn. American Journal of Botany , 34(9), 501–514.
Foster, A. S. (1955a). Comparative morphology of the foliar sclereids inBoronella Baill. Journal of the Arnold Arboretum , 36, 189–198.
Foster, A. S. (1955b). Structure and ontogeny of terminal sclereids inBoronia serrulataAmerican Journal of Botany , 42, 551–560.
Foster, A. S. (1956). Plant idioblasts: remarkable examples of cell specialization. Protoplasma , 46, 184–193.
Franke, W. (1967). Mechanisms of foliar penetration of solutions.Annual Review of Plant Physiology , 18, 281–300.
Gan, L., Zhang, C., Yin, Y., Lin, Z., Huang, Y., Xiang, J., & Fu, C. (2013). Anatomical adaptations of the xerophilous medicinal plant,Capparis spinosa , to drought conditions. Horticulture, Environment, and Biotechnology , 54, 156–161.
Gardingen, P. R. V., & Grace, J. (1992). Vapour pressure deficit response of cuticular conductance in intact leaves of Fagus sylvatica L. Journal of Experimental Botany , 43, 1293–1299.
Grammatikopoulos, G., & Manetas, Y. (1994). Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance. Canadian Journal of Botany , 72, 1805–1811.
Gotsch, S. G., Asbjornsen, H., Holwerda, F., Goldsmith, G. R., Weintraub, A. E., & Dawson, T. E. (2014). Foggy days and dry nights determine crown‐level water balance in a seasonal tropical montane cloud forest. Plant, Cell and Environment , 37, 261–272.
Gouvra, E., & Grammatikopoulos, G. (2003). Beneficial effects of direct foliar water uptake on shoot water potential of five chasmophytes.Canadian Journal of Botany , 81, 1278–1284.
Heide-Jorgensen, H. S. (1990). Xeromorphic leaves of Hakea suaveolens R. Br. IV. Ontogeny, structure and function of the sclereids. Australian Journal of Botany , 38, 25–43.
Heslop-Harrison, Y., & Shivanna, K. R. (1977). The receptive surface of the angiosperm stigma. Annals of Botany , 41, 1233–1258.
Hughes, J., & McCully, M. E. (1975). The use of an optical brightener in the study of plant structure. Stain Technology, 50, 319–329.
Ito, S., Suzuki, Y., Miyamoto, K., Ueda, J., & Yamaguchi, I. (2005). AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerenchyma cells. Bioscience and Biotechnological Biochemistry , 69, 1963–1969.
Johansen, D. A. (1940). Plant Microtechnique . McGraw‐Hill Book, New York, USA.
Karabourniotis, G. (1998). Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia : a quantitative approach. Journal of Experimental Botany , 49, 739–746.
Kerstiens, G. (1996). Cuticular water permeability and its physiological significance. Journal of Experimental Botany , 47, 1813–1832.
Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences , 104, 5925–5930.
Limm, E. B., Simonin, K. A., Bothman, A. G., & Dawson, T. E. (2009). Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia , 161, 449–459.
Liu D., Tu L., Li Y., Wang L., Zhu L., & Zhang X. (2008). Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Molecular Biology Reporter 26, 98–113.
Liu, H., Shi, R., Wang, X., Pan, Y., Li, Z., Yang, X., Zhang G., & Ma, Z. (2013). Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in Sea Island cotton fibers. PloS one , 8, e70185.
Majewska-Sawka, A., & Nothnagel, E. A. (2000). The multiple roles of arabinogalactan proteins in plant development. Plant Physiology , 122, 3–10.
Colombo M.P., & Rascio N. (1977). Ruthenium red staining for electron microscopy of plant material. Journal of Ultrastructure Research , 60, 135–139.
Martin, C. E., & von Willert D.J. (2000). Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species ofCrassula from the Namib Desert in southern Africa. Plant Biology , 2, 229–242.
Mayr S., Schmid P., Laur J., Rosner S., Charra-Vaskou K., Dämon B., & Hacke U.G. (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiology , 164, 1731–1740.
Metcalfe, C. R., & Chalk, L. (1950). Anatomy of the Dicotyledons 1 & 2 . Clarendon Press. Oxford.
Nobel P.S. (2009). Physicochemical and Environmental Plant Physiology (4th edition). Elsevier Inc. New York.
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., León-Gómez C., Dawson T., Camarero Martínez J.J., Castorena M., Echeverría A., Espinosa C.I., Fajardo A., Gazol A., Isnard S., Lima R.S., Marcati C.R., Méndez-Alonzo R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences , 115(29), 7551–7556.
Ohrui, T., Nobira, H., Sakata, Y., Taji, T., Yamamoto, C., Nishida, K., Yamakawa T., Yaguchi Y., Tanekaga H., Tanaka, S. (2007). Foliar trichome-and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta , 227(1), 47–56.
Pereira, A. M., Lopes, A. L., Coimbra, S. (2016). Arabinogalactan proteins as interactors along the crosstalk between the pollen tube and the female tissues. Frontiers in plant science , 7, 1895.
Pina, A. L., Zandavalli, R. B., Oliveira, R. S., Martins, F. R., Soares, A. A. (2016). Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region. Functional Plant Biology , 43(9), 851-861.
Pisek, A., & Berger, E. (1938). Kutikuläre Transpiration und Trockenresistenz isolierter Blätter und Sprosse. Planta , 28(1), 124–155.
Rao, T. A., Mody, K. J. (1961). On terminal sclereids and tracheoid idioblasts. Proceedings of the Indian Academy of Sciences-Section B , 53(5), 257–262.
Rao, A. R., Sharma, M. (1968). The terminal sclereids and tracheids ofBruguiera gymnorhiza Blume and the cauline sclereids ofCeriops roxburghiana Arn. Proceedings of the Indian Academy of Sciences-Section B , 34(6), 267–275.
Raux, P.S., Gravelle, S. Dumais, J. (2020). Design of a unidirectional water valve in Tillandsia . Nature Communications , 11, 396, 1-7.
Rhizopoulou, S. (1990). Physiological responses of Capparis spinosa L. to drought. Journal of Plant Physiology , 136(3), 341–348.
Rhizopoulou, S., Psaras, G. K. (2003). Development and structure of drought‐tolerant leaves of the Mediterranean shrub Capparis spinosa L. Annals of Botany , 92(3), 377–383.
Schreel, J. D., Leroux, O., Goossens, W., Brodersen, C., Rubinstein, A., Steppe, K. (2020). Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): a major role for trichomes. The Plant Journal . doi.org/10.1111/tpj.14770.
Schreel, J. D., von der Crone, J. S., Kangur, O., Steppe, K. (2019). Influence of drought on foliar water uptake capacity of temperate tree species. Forests , 10(7), 562.
Schuster, A. C., Burghardt, M., Riederer, M. (2017). The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany , 68(19), 5271–5279.
Shields, L. M. (1950). Leaf xeromorphy as related to physiological and structural influences. The Botanical Review , 16(8), 399–447.
Solereder, H. (1908). Systematic Anatomy of the Dicotyledons . Oxford.
Steppe K., Vandegehuchte M.W., van de Wal B,A,E,, Hoste P., Guyot A., Lovelock C.E., Lockington D.A. (2018). Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina . Tree Physiology , 38, 979–991.
Schwendener, S. (1874). Das mechanische Prinicip im aiiatomischen Bau der Moniocotylen.
Tognetti, R. (2015). Trees harvesting the clouds: fog nets threatened by climate change. Tree Physiology , 35(9), 921–924.
Tomlinson, P. B., & Fisher, J. B. (2005). Development of non-lignified fibers in leaves of Gnetum gnemon (Gnetales). American Journal of Botany , 92, 383–389.
Tucker, S. C. (1964). The terminal idioblasts in magnoliaceous leaves.American Journal of Botany , 51, 1051–1062.
Vaadia, Y., & Waisel, Y. (1963). Water absorption by the aerial organs of plants. Physiologia Plantarum , 16, 44–51.
Vaughn, K. C., Talbot, M. J., Offler, C. E., & McCurdy, D. W. (2007). Wall ingrowths in epidermal transfer cells of Vicia fabacotyledons are modified primary walls marked by localized accumulations of arabinogalactan proteins. Plant and Cell Physiology , 48, 159–168.
Vicré, M., Lerouxel, O., Farrant, J., Lerouge, P., & Driouich, A. (2004). Composition and desiccation‐induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii .Physiologia Plantarum , 120, 229–239.
Vitarelli, N. C., Riina, R., Cassino, M. F., & Meira, R.M. S. A. (2016). Trichome-like emergences in croton of Brazilian highland rock outcrops: evidences for atmospheric water uptake. Perspectives in Plant Ecology, Evolution and Systematics , 22, 23–35.
Weathers, K. C., Ponette-González, A. G., & Dawson, T. E. (2019). Medium, vector, and connector: fog and the maintenance of ecosystems.Ecosystems , 1–13. https://doi.org/10.1007/s10021-019-00388-4
Yates, D. J., & Hutley, L. B. (1995). Foliar uptake of water by wet leaves of Sloanea woollsii , an Australian subtropical rainforest tree. Australian Journal of Botany , 43, 157–167.
Yariv J., Lis H., & Katchalski, E. (1967). Precipitation of arabic acid and some seed polysaccharides by glycosylphenylazo dyes. The Biochemical Journal 105, 1C – 2C.
Zhang, W., Hu, Y., Li, Z., Wang, P., Xu, M. (2009). Foliar sclereids in tea and its wild allies, with reference to their taxonomy.Australian Systematic Botany , 22, 286–295.