Ya-dong Gao

and 14 more

There has been an important change in the clinical characteristics and immune profile of COVID-19 patients during the pandemic thanks to the extensive vaccination programs. Here, we highlight recent studies on COVID-19, from the clinical and immunological characteristics to the protective and risk factors for severity and mortality of COVID-19. The efficacy COVID-19 vaccines and potential allergic reactions after administration are also discussed. The occurrence of new variants of concerns such as Omicron BA.2, BA.4 and BA.5 and the global administration of COVID-19 vaccines have changed the clinical scenario of COVID-19. Multisystem inflammatory syndrome in children (MIS-C) has been identified as an important cause of death of children with COVID-19. Perturbations in immunity of T cells, B cells, and mast cells, as well as autoantibodies and metabolic reprogramming may contribute to the long-term symptoms of COVID-19. Atopic diseases, such as allergic asthma and rhinitis, have been shown to be associated with a lower susceptibility and better outcomes of COVID-19. At the beginning of pandemic, EAACI developed guidelines that provided timely information for the management of allergic diseases and preventive measures to reduce transmission in the allergic clinics. The global distribution of COVID-19 vaccines and emerging SARS-CoV-2 variants with reduced pathogenic potential dramatically decreased the morbidity, severity, and mortality of COVID-19. Nevertheless, breakthrough infection remains a challenge for disease control. Hypersensitivity reactions (HSR) to COVID-19 vaccines are low compared to other vaccines, and these were addressed in EAACI statements that provided indications for the management of allergic reactions, including anaphylaxis to COVID-19 vaccines. We have gained a depth knowledge and experience in the over 2 years since the start of the pandemic, and yet a full eradication of SARS-CoV-2 is not on the horizon. Novel strategies are warranted to prevent severe disease in high-risk groups, the development of MIS-C and long COVID.

Debbie Maurer

and 19 more

Background: The impact of physical activity (PA) on immune response is a hot topic in exercise immunology, but studies involving asthmatic children are scarce. We examine the level of PA and TV attendance (TVA) in asthmatic children to assess the role on asthma control and immune response to various stimulants. Methods: Weekly PA and daily TVA were obtained from questionnaires at inclusion of the PreDicta study. PBMC cultures were stimulated with phytohemagglutinin (PHA), R848, poly I:C and zymosan. Cytokines were measured and quantified in cell culture supernatants using luminometric multiplex immunofluorescence beads-based assay. Results: Asthmatic preschoolers showed significantly more TVA than their healthy peers (58.6% vs. 41.5% 1-3h daily and only 25.7% vs. 47.2% ≤ 1h daily). Poor asthma control was associated with less frequent PA (75% no or occasional activity in uncontrolled vs. 20% in controlled asthma; 25% ≥ 3x weekly vs. 62%). Asthmatics with increased PA exhibited elevated cytokine levels in response to stimulants, suggesting a readiness of circulating immune cells for type-1, -2 and -17 cytokine release compared to low-PA and high-TVA subjects. Low PA and high TVA were associated with increased proinflammatory cytokines. Proinflammatory cytokines were correlating with each other in in-vitro immune responses of asthmatic children, but not healthy controls. Conclusion: Asthmatic children show more sedentary behavior than healthy subjects, while poor asthma control leads to a decrease in PA. Asthmatic children profit from exercise, as elevated cytokine levels in stimulated conditions indicate an immune system prepared for a strong response in case of infection.