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Abstract
For regional sustainability, spatio-temporal variability of groundwater level (GWL) in tropical savanna climatic region with heavily stressed aquifers needs future projection skills by taking hydrological, geological, and climatic (HGC) controls into consideration. This study analyzed the spatio-temporal variability of quarterly GWL and the HGC controls regulating it during the 1995-2015 period over a data-scarce tropical savanna region in India. Using data mining techniques, the study evaluated land use land cover (LULC), geomorphology, lithology, topography and rainfall as HGC controls for GWL variability. The analysis revealed that this region has high intra-annual spatial variability characterized by higher GWL variability in the drier period of the year than wet period. The temporal analysis of GWL demarcated the distinct regions with highly significant rising and declining trends with magnitude ranging from -0.51 to 0.42 m/year. It was discovered that the LULC could explain the observed GWL variability at the highest degree compared to the other considered HGC controls. Subsequently, through principal component analysis (PCA) six representative components covering more than 90% of the variance in 2002 LULC dataset were used for training the random forest (RF) learning algorithm to develop four prediction models corresponding to four temporal quarters. The PCA-RF based trained prediction models showed adequate accuracy during testing using the 2005, 2010, and 2015 LULC datasets. The developed models were further used to make short- and long-term GWL predictions in the study region. The developed models can contribute to regional-scale groundwater planning and management in data-scarce tropical regions. 
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Introduction
The dependency on groundwater to meet ever increasing agricultural, domestic and industrial water demand is expected to rise substantially across the tropics in the coming decades (Jasechko et al., 2015). Moreover, during the drought events and dry period of the year, groundwater becomes a vital source of water for agricultural and domestic use (Dams et al., 2012). In this regard, it is necessary to understand the long-term spatio-temporal variability of groundwater level (GWL) and the effects of pertinent hydrological, geological, and climatological (HGC) controls at regional-scale (Zhou et al., 2016). However, developing physical-based models to understand the spatio-temporal variability at the regional-scale in highly heterogeneous geological formations, especially in the data scarce countries like India, is almost impossible. In the context, the data-driven machine learning (ML) approaches seems to be an expedient alternative to evaluate the insight of historic GWL variability and provide future prediction for sustainable management of the groundwater resource.    
Therefore, to obtain the statistics on the spatial variability of GWL at higher resolution, interpolation techniques have been adopted by many (e.g., Nikroo et al., 2010; Machiwal et al., 2012; Xiao et al., 2016). However, it is necessary to identify the most suitable interpolation method for a particular region with a particular type of available information  (Arslan, 2014; Wang et al., 2014; Xiao et al., 2016). GWL trends at different locations suggest valuable information on the change in recharge rate and the impacts of anthropogenic activity; land use land cover (LULC) changes, and climate variability. Despite continued dependency on the groundwater, very limited studies have been carried out on the temporal trend analysis of GWL in the tropical savanna regions of India (Ahmadi & Sedghamiz, 2007; Panda et al., 2007; Machiwal & Jha, 2014; Singh et al., 2015). Additionally, the past studies have not considered temporal auto-correlation existing in the GWL time series data while performing trend analysis. The modified Mann-Kendall (mMK) test improves the accuracy of the trend evaluation by considering the temporal auto-correlation existing in the time series (Hamed & Rao, 1997). 
The focus of this study is to evaluate the spatio-temporal variability of GWL and the level of dominancy of the HGC controls in explaining the observed variability at a regional-scale encompassing a number of aquifers and river basins. A few studies have investigated the effect of topography on the spatio-temporal patterns of the GWL for highland regions (Tilahun et al., 2015; Guzman et al., 2017). Very limited investigations are reported to understand the effects of different HGC controls on groundwater variability (Guzman et al., 2017). There were studies reported on the effects of different controls such as  LULC, soil texture, soil hydraulic properties, rainfall, and topography on the spatial distribution and temporal persistence of soil moisture using various techniques (Joshi & Mohanty, 2010; Baroni et al., 2013; Gaur and Mohanty, 2016). Among the various techniques reported in the literature, the entropy technique was  found to be a relatively simple tool that can incorporate both categorical as well as numerical parameters (Gaur & Mohanty 2013). Again, the Shannon’s entropy can provide the information on the spatial variability in the GWL through marginal entropy values. The aforesaid advantages of Shannon’s entropy technique enable it to be an appropriate and robust technique than other statistical ones for this study.
From the review of the past studies, it is clear that very few attempts have been made to study the spatio-temporal variability of GWL at regional-scale and the pertinent HGC controls for groundwater variability. The motivation for the present study is to investigate the dominant controls for spatio-temporal variability of GWL in a tropical region and develop ML-based prediction models for GWL using dominant HGC controls as explanatory variables for data scarce conditions like India. To the best of our knowledge, this study is the first of its kind to address the different controls of GWL variability and develop a prediction model in a tropical savanna climatic region. 
The overarching objectives of the study is to develop prediction model for GWL taking the dominant HGC control as explanatory variables using ML algorithm. To achieve the aforesaid objective, firstly the spatio-temporal variability of GWL in the study region was comprehended and the dominant HGC controls for observed spatio-temporal variability were identified using entropy approach. Among the HGC controls: LULC, geomorphology (GM), lithological structure (LS), topography (S, % slope), and quarterly cumulative rainfall (R), the degrees of the dominancy of different controls explaining GWL variability was quantified with the help of Shannon’s entropy technique. Further, the grid-wise relationship among the GWL and the features in the dominant HGC control was established using dimensionality reduction analysis and machine learning algorithms to make short- and long-term predictions of GWL in the study region with limited data. The proposed framework is a novel attempt to characterize spatio-temporal variability in GWL in tropical regions with highly heterogeneous aquifers and predict the future trends in GWL at regional level. 
Choice of HGC Controls of GWL Variability
In this study, the HGC controls for GWL variability were selected based on their influence on the infiltration capacity, infiltration opportunity time, recharge processes, and most importantly the abstraction rates. Additionally, the HGC controls were selected such that they are the indicators of hydrogeological properties of aquifers, governing the movement of water, and can fill the data gap for sustainable management of groundwater. For instance, the LULC of an area is known to affect GWL variability in numerous ways (Ilstedt et al., 2016). The areas with settlements (villages, towns, and cities) and agricultural lands are likely to consume more groundwater owing to tropical savanna climatic condition. Due to the increase in urbanization, there is a reduction in pervious surfaces, thereby causing an increase in overland flow and a decrease in infiltration and recharge rate (Zipper et al., 2018). The presence of dense forest cover, along with a shortage of rainfall can make the top surface of the soil to become hydrophobic and water-repellent (Doerr et al., 2000). Moreover, scrub forests, open forests, and barren lands with scrubs resist overland flow and promote groundwater recharge. The LULC classes such as water bodies, reservoirs, and canals enhance groundwater recharge (Fashae et al., 2014).         
Similarly, GM is an indicator of aquifer properties (Shaw et al., 2018; Sahoo & Sahoo, 2019). Structures such as pediment, residual hills, denudational hills, and structural hills do not promote infiltration and  have low hydraulic conductivity and recharge capability (Rajaveni et al., 2017). Whereas, alluvial planes, back swamps, buried channels, paleochannels, flood plains, and abandoned channels show higher infiltration rates, recharge capability, and hydraulic conductivity. Most importantly, these geomorphology classes possess higher storage volumes for groundwater, thereby affecting the GWL at a location (Ward et al., 2002). 
Lithology or study of geological units is also important as it affects the occurrence and movement of soil water (Dafny et al., 2010). Secondary porosity in the form of fractures and weathering promote groundwater seepage in rocky strata. The hard rocks have less porosity and are classified under low groundwater prospective formations (Solomon & Quiel, 2006). The fractures with connectivity to a large water body or very good outcrop yield an abundant amount of groundwater.  Limestone, quartzite, sandstone, and sandstone with shale possess high porosity. The water holding capacity, along with the transmission capacity of these formations, regulates the GWL. The alluvial plains with higher recharge potential, effective porosity, and hydraulic conductivity ensure better groundwater availability (Mendicino et al., 2008). Similarly, volcanic rocks possess huge macro pores facilitating groundwater storage and movement.   
Groundwater flow occurs from a higher potential to a lower potential, which is very much connected to the slope of the area (Condon & Maxwell, 2015). Therefore, the topography is a controlling factor in groundwater availability (Tilahun et al., 2016). At a regional-scale, groundwater recharge happens near topographic divides and discharges in valleys (Eakin, 1966). The slope factor controls groundwater movement across many spatial scales; steeper topography can be associated with deeper water table depths, more regional groundwater flow, and increased groundwater-surface water interaction (Guzman et al., 2017).
Hodgkins et al. (2017) estimated the interannual correlations between mean annual GWL and hydro-climatic variables such as annual precipitation, temperature, and streamflow to understand the factors that influence GWL in a glacial aquifer system. They observed that the groundwater level was significantly correlated with precipitation at 10.4% to 70.2% of wells in the different parts of their study region. Dawes et al. (2012) investigated that the rainfall declination over the decades, coupled with increasing water demand from a growing population has resulted in falling of GWL in south-west part of Western Australia. McCallum et al. (2010) found that the most important factor influencing annual groundwater recharge is annual rainfall. 
Study Region
Climatologically, India is divided broadly into six regions, namely tropical rainforest, tropical savanna, arid deserts, arid steppe hot, temperate warm summer, and temperate dry winter cold summer (Peel et al., 2007). In this study, the spatio-temporal variability and the pertinent dominant HGC controls in a tropical savanna region in the state of Odisha, India, are investigated (Figure 1). The study region has a geographical area of 155,707 km2 and extends from 17° 46ˈ 48ˈˈ N to 22° 31ˈ 12ˈˈ N and 81° 21ˈ 36ˈˈ E to 87° 30ˈ 00ˈˈE. (Figure 1). 
This region receives average annual rainfall ranging from 1071 to 2432 mm with an average standard deviation range of 201 to 867 during the study period [Figure 2(e)].  The preliminary analysis on rainfall shows that there is no clear trend of increase or decrease in average annual rainfall over the region. Past studies over this region also have similar conclusions (Kumar et al., 2010) and suggested that there is hardly any change in the future climate over the region (Mohan & Rajeevan, 2017). There exist eleven major river basins namely Kolab, Indumati, Nagabali, Vamsadhara, Bahuda, Rushikulya, Mahanadi, Brahmani, Baitarani, Subernarekha, and Budhabalanga, which flow eastward into the Bay of Bengal. These rivers are rainfed and are the main sources of surface water. Most of these rivers show low flow in the dry period of the year owing to the tropical savanna climatic condition. Therefore, groundwater is the mainstay for the agricultural, domestic, and industrial water use in the dry period of the year for this region. Along the coast, there are alluvial plains with unconsolidated formations (31,141 km2) in the deltas of the six major rivers namely Rushikulya, Mahanadi, Brahmani, Baitarani, Budhabalanga, and Subarnarekha. Most part of the study region (1,08,995 km2) belongs to the Pre-cambrian consolidated geological formation. Besides these there exists semi-consolidated formations of 15,541 km2 in the central and western part of the study region.    
Data Used
The study used quarterly GWL data [January quarter: January to March; April quarter: April to June; August quarter: July to September; and November quarter: October to December (Bhanja et al., 2017)] of 80 quarters at 769 observation wells in the state of Odisha monitored during the 1995 to 2015 period. The data was monitored in the month of January, May, August and November respectively to represent the corresponding quarters. This data was obtained from the Directorate of Groundwater Development (DGD), Government of Odisha, India. The GWL are measured as metre below ground level (depth to water table). For spatial variability analysis, the data were further divided into training and testing datasets (two-thirds for training and one-third for testing). The training dataset was used to model the spatial variability of GWL and to produce 1 × 1 km gridded spatial maps. Whereas the test dataset was used to compare and validate the resulting maps (Figure 1). While the training set has L features/ data points, the test set has N - L features (with N being the total number of wells in the region). These subsets were created by generating random values from a uniform [0, 1] distribution. If the random value is less than L/N, the feature is assigned to the training dataset, and otherwise, the feature is assigned to the validation dataset (Westlake, 1967).
The HGC controls for groundwater variability selected in this study were LULC, GM, LS, S, and R. The LULC for the year 2002, GM and LS maps at a scale of 1:50000 was obtained from the Odisha Space Applications Centre (ORSAC) and the LULC data for the years 2005, 2010, and 2015 were collected in the raster format with pixel size of 53 × 53 m from Natural Resources Census Project of National Remote Sensing Centre, ISRO, Government of India, Hyderabad, India. They are shown in Figures 2(a), 2(b) and 2(c) respectively. The study region has 17, 55, and 29 LULC, GM, and LS features, respectively. For the entropy analysis 2002 LULC data was used for the GWL from 1995 to 2002 and similarly, 2005 LULC for GWL from 2003 to 2005, 2010 LULC for GWL from 2006 to 2010, and 2015 LULC for GWL from 2011 to 2015 datasets. 
The digital elevation model (DEM) of the study area was extracted from the 90 m Shuttle Radar Topography Mission (SRTM) DEM processed by the Consortium for Spatial Information of the Consultative Group for International Agricultural Research (CGIAR-CSI). The slope map is generated using the elevation data [shown in Figure 2(d)]. A major portion of the region has a slope in the range of 0% to 30% and, a few patches having slope in the high range (86.5% to 289.2%) are observed in the hilly and mountainous regions. Additionally, 0.25° resolution gridded rainfall data obtained from the India Meteorology Department (IMD) were utilized for evaluating climatic control on groundwater variability [Figure 2(e); Pai et al., 2014]. It was observed from the preliminary analysis on rainfall data that the percentage of annual rainfall that occurred during monsoon (July-Sept) varies from 59.68% to 92.74% during the study period. Similarly, pre-monsoon (Apr-Jun) and post-monsoon (Oct-Dec) have a range of 2.11% to 14.19% and 3.79% to 28.11%, respectively, in the state of Odisha (Figure S1). All the HGC controls were then converted into a raster format with a pixel size of 53 × 53 m for the different analyses in the presented study.
The other variables affecting GWL, such as district-wise population density and percentage crop area, are presented in Figure 3(a and b). According to the 2011 census the total population of the state of Odisha was 41,974,218, with highest and lowest population densities were in Khurdha and Kandhamala district, respectively [Figure 3 (a)]. It was also observed that the eastern, north-eastern, and western parts of the state possess higher percentage of area under agricultural lands. 
Methodology
This section presents the data driven methods adopted in the study. Figure 4 illustrates the conceptual framework and the flow of information pertaining to the objectives of presented research. This study evaluated the spatial variability in GWL using interpolation tool. The interpolated GWL surfaces at grid size 1 × 1 km were used for all subsequent analysis in the study.   The mMK test was applied on these individual grids to examine the temporal variability in the GWL of the study region. Subsequently, the dominant HGC controls regulating the observed variability were determined using Shannon’s Entropy as a data mining tool. Lastly, the study developed GWL prediction models using the ML algorithm and the dominant HGC controls.  
Spatio-temporal Variability of GWL
Among the popular interpolation approaches, viz. Inverse Distance Weighting, Global Polynomial Interpolation, Local Polynomial Interpolation, Radial Basis Functions, Ordinary Kriging, Simple Kriging, Universal Kriging, Disjunctive Kriging, Empirical Bayesian Kriging (refer to Table S1), the best-fit interpolation model was identified. The goodness-of-fit criteria used for the aforementioned purpose were namely mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970; Mohanty et al., 2013; Sahoo et al., 2018). The equations for the calculation of these four criteria were taken from Mohanty et al., (2013). Before applying the interpolation models for evaluating the spatial variability of GWL, the entire quarterly GWL data were tested for normality using the Shapiro-Wilks, Kolmogorov-Smirnov, and Lilliefors tests (Rahman & Govindarajulu, 1997; Razali & Wah, 2011;  Yap & Sim, 2011). When the dataset was not normally-distributed, a normal score transform was applied (Goovaerts et al., 2005). 
After the generation of the continuous surfaces of GWL with a grid size 1 × 1 km over the whole study area for the corresponding quarters of different years, the grid-wise temporal trends of the GWL were evaluated using the mMK test. The trend test statistic for mMK test was obtained by Equation (1-4):
							     (1)
where, x is the GWL time series, n is the number of data points, and  j and k varies from 2 to n and 1 to n-1, respectively (Gocic & Trajkovic, 2013). A positive (negative) value of  suggests that the observations tend to be larger (smaller) than observations made previously. The variance of  is severely underestimated (overestimated) when the data is positively (negatively) autocorrelated. The modified variance calculated for a mMK test is given in Equation 2 (Hamed & Rao, 1997; Ahmadi et al., 2018; Le Brocque et al., 2018; Merabti et al., 2018) as:
							   (2)
where  is the modified variance and  is the correction factor given by the Equation 3:
				     (3)
where  is the autocorrelation function of the ranks of the observations,  i varies from 1 to n-1, and is considered as an effective number of observations to account for the autocorrelation in the rank. In cases where the sample size n is greater than 10, the standard normal variable Z is computed as:
									     (4)
In this study, positive values of Z indicate an increase in GWL with time (declining trend for GWL), and negative Z indicates a decrease in GWL (rising trend for GWL). For conducting mMK test, 1% and 5% significance levels were considered. Moreover, Sen’s slope estimator (Sen, 1968) was applied to each grid for estimating the slope of trend in the GWL associated to each grid in the different quarters of the study period to quantify the magnitude of the trend associated (Gocic & Trajkovic, 2013). This trend analysis was performed using MATLAB-R2015b software.
Dominant HGC Controls for GWL Variability
Shannon's entropy was used in the study to investigate the relative dominancy of HGC controls for explaining the spatio-temporal variability of groundwater. Entropy () for a system with a random variable V represents the uncertainty of the random variable and is expressed using Equation 5  (Brunsell, 2010; Singh & Cui, 2015; Liu et al., 2016; Sahoo et al., 2017):

                             s.t.                                  (5)	 where, pi is the probability of occurrence of Vi.
In this study, the grid-wise (1 × 1 km) quarterly GWL series were arranged in bins to obtain the marginal entropy values indicating the inherent variability in GWL of different quarters. The Scott (1979) algorithm was used for optimal binning, and the frequency histograms for each quarter of the individual years were calculated. The bin width (h) for the quarterly frequency histogram was determined using Equation 6 (Gaur & Mohanty, 2013) 
						     (6)
where, h is the bin width,  is the total number of GWL observations in each quarter, and s is the standard deviation of the quarterly GWL. The average value of h across the duration of the study was chosen as the representative bin width. The probability pi was then computed for each bin using Equation 7:
						     (7)
where,  is the number of GWL observations in the ith bin. The pi values are then substituted in Equation (5) to obtain quarterly marginal entropies.
The next step was the estimation of joint entropy I(A, B). The grid-wise GWL values were classified under different features present in the different HGC controls. The groundwater level values in one feature class () of a HGC control were paired up with the values in another feature class () under the same HGC control to form an unordered pair on a quarterly basis (for instance, a village-dense forest and open forest-dense forest pairs) of the form  where are feature classes of a control. A contingency table representing the relative frequencies fi was used to calculate the probabilities p() given in Equation (8). 
		     (8)
where, njm is the number of observations in the jth (from feature 1) and mth (from feature 2) bins. Using the estimated p() and equation (5), the joint entropy value was estimated. 
The GWL information is likely to mislead the analysis on dominant HGC controls due to differences in elevation at different locations in the study region. Therefore, to remove the effects of spatial heterogeneity in elevation, the analysis was performed for GWL anomalies. In order to compute the GWL anomaly, the mean GWL value was subtracted from the individual data grids. To the best of the authors’ knowledge, this is the first attempt to evaluate the effects of HGC controls on the groundwater variability using Shannon's entropy  in a tropical savanna climatic condition.  
Prediction of GWL using the Dominant HGC Control 
The relationship between the dominant HGC controls and the GWL were established using the dimensionality reduction analysis (using principal component analysis; Noori et al., 2011) and ML algorithm for the prediction of GWL (Araya & Ghezzehei, 2019). Since data scarcity is being a prevailing constraint for development of accurate prediction models through physical based models, an attempt was made to develop GWL prediction model using data mining techniques. Three ML algorithms, namely K-Nearest Neighbours (KNN), Support Vector Regression (SVR) with Radial basis function kernel, and Random Forest (RF), were evaluated for their performance for predicting the GWL. Interested readers can find the detailed descriptions about the models in Van Looy et al. (2017). The three algorithms considered in this study were executed in the Weka Version 3.8.3 environment (Reutemann et al., 2009; Pandey et al., 2016; Ramcharan et al., 2017). The ‘IBk’ package of Weka executed the KNN (Ivanciuc, 2008), whereas the ‘SMOreg’ package of Weka with radial basic function kernel was used to execute SVR (Elbisy, 2015; Meenal & Selvakumar, 2018). Similarly, the RF was implemented using the ‘RandomForest’ package in Weka with meta-learner as bagging with 100 iterations (Breiman, 2001; Khoshgoftaar et al., 2007; Pandey et al., 2016). The models were evaluated using average RMSE, MAE, and R2 through tenfold cross-validation with five repetitions at a 95% confidence level (Ghanbarian et al., 2015). The Weka executed the cross-validation algorithm during model training and produced average scores of cross-validation along with the ten sets of predictors, observed GWL and predicted GWL. Subsequently, the observed and predicted GWL were evaluated for obtaining the average RMSE, MAE, and R2 scores using MATLAB-R2015b software for further verification of scores produced by Weka. Depending on the scores obtained the best performing ML algorithm was selected and was used to develop the prediction model for GWL. An additional description on the prediction model training and test is presented in the Section 6.3.3.
Results and Discussion
Spatio-temporal Variability of GWL
The results of normality tests, using histogram analysis, Shapiro-Wilk, Kolmogorov-Smirnov, and Lilliefors tests, conducted on GWL data corresponding to January, April, and November series indicated that these were normally distributed during the study period. The null hypothesis of normal distribution was rejected in the case of the August quarterly data. Therefore, the normal score transfer technique was applied to the August dataset to obtain normally distributed data.  Subsequently, the spatial variability of GWL of Odisha was investigated using various deterministic and geostatistical models (Table S1). The models were used to generate continuous surfaces of the GWL over the study area using the training dataset. The performance of the models was tested using testing dataset.
From the goodness-of-fit statistics presented in Table S2, it is clear that the IDW model outperformed the other interpolation tools. Thus, continuous surface maps of GWL were generated using the IDW technique with 1 × 1 km grid size and were used for the subsequent analysis. As an example, the generated maps for different quarters of the year 2015 are presented in Figure 5. It is clearly observed from Figure 5 (c) that in the August quarter, major portion of the area of the study region (more than 90%) was having GWL less than 6 m (shallow) while the minimum, maximum and mean levels being 0.06 m, 11.62 m and 2.59 m, respectively. The locations with deeper GWL (more than 6 m) were scattered over the entire study region. Beyond the August quarter, there was an increase in the total area with deeper GWL. The percentage of area having GWL less than 6 m decreased approximately by 10% in the November quarter [Figure 5 (d)]. In November, the mean GWL was observed to be 3.65 m with a minimum and maximum of 0.21 m and 11.64 m, respectively. A similar trend was observed in the January quarter with an increase in the areas of deeper GWL. Total areas with GWL deeper than 6 m was further increased in the April quarter, accounting for 40% of the total geographical area of the study region. The mean GWL was 5.55 m with maximum GWL increased to 15 m in the April quarter. The major portion of the northern and central parts of Odisha was found to have GWL beyond 7.5 m in this period. It is observed that the study area receives about 59% to 92% of the annual rainfall (Figure S1) during the months of June to September (Mall et al., 2007). The results obtained from our analysis show a strong correlation with the annual rainfall distribution pattern. Following the withdrawal of the monsoon, agriculture in most parts of Odisha depends on groundwater. Therefore, an increased abstraction rate may be causing the lowering of GWL in the study region. 
The spatial variability maps generated through IDW for four quarters of the years were investigated for temporal changes in GWL. Maps were prepared at 5-year interval, i.e., for the years 1995, 2000, 2005, 2010, and 2015 (Figure 6). Spatial maps for the other years can be found in Figure S2 to S5. It is evident that in the eastern, northern, north-western regions and parts of the south-central region of Odisha, there is an overall increase in depth to water table with time. In contrast, in the south and southwest parts of the region, a reverse trend is observed. The temporal variation observed in different parts of Odisha were further analyzed through the trend analysis. This analysis improves the understanding of the spatio-temporal variability of GWL and enables decision making at different levels for the planning and management of water resource. 
The modified Mann-Kendall test conducted at 154826 (1 × 1 km) grids determined the regions with no trend, declining trend (increasing depth to water table), and rising trend (decreasing depth to water table) in the study region, and are shown in Figure 7 (a-d). As described in the methodology section, the test was conducted at two significance levels, i.e., at 1% and 5%. At each level of significance, the percentage area having no trend is presented in Table 2. Furthermore, the grids possessing trend at both the significance levels were classified as highly significant (at α = 0.01) and significant (at α = 0.05). Subsequently, the Sen’s slope values obtained at each grid, indicating the magnitude of the slope of the trend line, were overlaid by the polygons representing the level of significance as highly significant or significant (Figure 7).   
In the August quarter, the maximum percentage of the study region had no trend followed by November, January, and April quarter (Table 1). It is evident from the Figure 7 that in the eastern, north-eastern and northern parts of the study region, there exists significant (purple polygons) and highly significant (red polygons) declining trend in GWL. Also, the north-west part of Odisha has a similar trend in the water table. It was also observed that few locations in the south and central part of the study region show a significant decline in GWL. In the drier period of the year (April), large areas with significant to highly significant GWL declining trend at the highest rate of 0.42 m/year were seen in the eastern, northern and north-western part of the study region [Figure 7 (b)]. On the contrary, in the central, southern, and south-western parts, there were large areas with a significant rising trend of GWL at a highest rate of 0.51 m/year. The highest rate of declining trends (both significant and highly significant) of GWL in the April quarter was followed by the November quarter with values 0.24 m/year. Similarly, the second highest rate of rising trend was observed to be 0.25 m/year in November quarter. The highest percentage of area with significant declining or rising trend was also observed in the April quarter. These observations suggest an alarming situation necessitating the requirement for proper planning and management of the groundwater resource. The findings of this analysis can also help in further evaluation of possible causes for the trend, possibly due to the recharge or extraction of groundwater, and the HGC controls regulating the physical processes. 
Further, the district-wise population density and the percentage crop area in the state of Odisha and the spatio-temporal trends of GWL were correlated. A higher population and crop area density generally lead to a higher groundwater extraction rate to meet the water demand, which was found to be one of the possible causes for GWL decline. Figure 3 (a) and Figure 7 reveal that the districts are having population density greater than 76 persons/km2 have a higher percentage of the grids with significantly declining GWL trend, specifically in the districts in the east, north and north-west parts of the state. Comparing the percentage crop area (Figure 3 (b)) and GWL trend (Figure 7), it was observed that the districts having crop area higher than 29.49% have majority of the grids with a significantly declining GWL trend. In contrast, the districts with lesser population and lower crop area have a major portion with significantly rising GWL. 
Dominant HGC Controls of GWL Variability
The Shannon entropy-based analysis was performed in two steps: (1) computation of marginal entropy for understanding the inherent variability in the GWL, and (2) computation of joint entropy to determine the level of influence possessed by HGC controls for the spatio-temporal variability in GWL. The information an entropy analysis generates is that the dataset having lower marginal entropy would have lower variability and vice versa. Similarly, the HGC factor on which the lower entropy classification was based would be the greater dominant HGC control in terms of influencing the GWL variability.
The marginal entropy was computed for 154826 grids (1×1 km) during the 1995-2015 period. The results of marginal entropy for different quarters are presented in Figure 8. It was observed that the entropy values are higher for the deeper mean GWL, indicating higher variability in this range and vice versa. The highest mean marginal entropy value of 3.38 was obtained for the April quarter followed by January (3.34), November (3.24), and August (3.04) quarter (Figure 8), which indicates the corresponding level of variability associated with the datasets in those quarters. In April and January, entropy values were greater than 3.1 in most of the years. Hence, it is inferred that with increased depth to water table below the ground surface, evident in the pre-monsoon and post-monsoon periods, the variability in the GWL is the maximum. It was also observed that the quarters with normally distributed GWL data had higher entropy values and higher variability, which is at par with the findings by Cover and Thomas (2012). Spatial variability analysis presented in Section 6.1 and results from marginal entropy analysis were in close agreement in describing the degree of variability in GWL. 
The joint entropy values (Mean ± SD) estimated from the GWL anomaly data are presented in Table 2. From the joint entropy values, it was observed that in the drier period of the year (pre-monsoon, April quarter), the entropy values for the region were higher in magnitude for all classification categories as compared to that in January, November and August quarters. Out of the HGC controls taken into consideration, the LULC factor has the lowest entropy values in all the quarters (Table 2). Since the LULC factor is having the lowest entropy values irrespective of the quarters, it best explains the variability in the GWL patterns in the study region as a dominant HGC control. Whereas, the topographical control (S)-based classification gave the maximum entropy value followed by R, GM, and LS in decreasing order. Since S was found to have the lowest dominance in explaining the GWL variability, it was discarded for further analysis. As stated earlier, LULC and LS have a direct influence on groundwater recharge, abstraction rate, storage, and transmissivity, and thereby regulate the groundwater variability at a higher degree. Moreover, the joint entropy values obtained through this analysis also confirmed the dominance of these two controls. The joint entropy values for GM were also in the higher range (Table 2), signifying the poorer performance as compared to LULC and LS for explaining the GWL variability.  The time series of joint entropy values corresponding to LULC, LS, GM, and R is presented in Figure 9. It is evident from Figure 9 that LULC, with the lowest joint entropy values throughout the study period, is the most dominant among the HGC controls. Again, the correlation of district-wise population density and percentage crop area with the temporal variability presented above also endorse the conclusion of LULC to be the most dominating HGC control. 
Past studies revealed that rainfall possess a direct impact on groundwater recharge. Therefore, the joint entropy values for the rainfall were compared with the hydro-geological control-based entropy values. It was observed that in August quarter the entropy value associated to R is highest among the dominant HGC controls. The magnitude of entropy value for R in August quarter is almost double as that of LULC. This essentially signifies the poor performance of R compared to LULC in explaining the variability in GWL in August quarter, though the major portion of study region receives around 90% of annual average rainfall during this period. The climatic control has a similar influence as that of the LS factor in the January quarter, whereas, in the April quarter, it was as important as the GM factor (Figure 9). Moreover, as presented in Figure S1 and Section 4, during January, April, and November quarters the majority of the study region receive a total rainfall around 10% of the annual average rainfall owing to tropical savanna climatic condition. The entropy results associated to R during these three quarters have shown slightly lower values (Table 2), which indicated that the lower R (sometimes very much negligible amount in different grids) could explain the higher range of variability in GWL of these quarters. These results suggested that R could very poorly capture the variability associated to GWL in tropical savanna climatic region. These findings also suggested that the higher range of GWL variability happening during these three quarters are due to the abstraction of groundwater, which essentially indicated that LULC is the dominant control for GWL variability in these quarters. 
The correlation coefficient (r) between the mean GWL and joint entropy values of LULC in corresponding years were determined (Figure 10). It was observed that the August quarter had the highest correlation (r = 0.91), followed by January, November, and April with “r” values to be 0.83, 0.8, and 0.5, respectively. It is observed from Figure 10 that the correlation between the joint entropy values under LULC based classification and GWL decreased for deeper GWL. It can be inferred from above results that the LULC was consistently able to explain the variability associated to GWL of August, November, and January quarters in study period, whereas, it showed slightly poor performance for April quarter. 
Prediction of GWL using the Dominant HGC Controls
An attempt was made to develop the prediction models for GWL using dominant HGC controls in data scare conditions of the tropical savanna region in India. It was observed from the previous discussion that out of the five HGC controls taken into consideration only LULC and LS could reasonably explain the variability associated to GWL during the study period. In addition, one of the major objective of this study was to develop a GWL prediction model with minimum data while maintaining acceptable accuracy. It is always being challenging to obtain high resolution LS information for different regions. Therefore, LULC being the most dominant HGC control and easily available for different regions, this study puts an effort to develop the prediction models considering LULC as the primary explanatory variable. We developed the models considering the relationship of GWL in a particular grid and the area under the LULC features in that 1×1 km grid. In this process, four relationships were developed for four quarters using machine-learning algorithms to predict the short and long term GWL in the study region. The proposed prediction models for future GWL could deliver an outlook for future groundwater resource utilization in this study region to the stakeholders. 
LULC changes in the Study Region
The LULC being a dynamic parameter, to predict the GWL the transition of LULC features for the time steps 2002 to 2005, 2005 to 2010, 2010 to 2015, and 2002 to 2015 were determined using first-order Markov Chain model (Rozario et al., 2017; Hamad et al., 2018). Table 3 presents the 17 LULC classes in the study region. 
The Markov chain transition probabilities obtained for the LULC classes for the 2002 to 2015 time step is presented in Tables 4. The transition probabilities for other three time steps are presented in Table S3 to S5. The results revealed that from 2002 to 2005 period, there were significant transitions of all the LULC classes except the littoral forest, with a transition probability of 0.83 (Table S3). During this period, the transition of L4 to L11 happened with a transition probability of 100%. During the 2002 to 2005 period, dense forest, scrublands, and shifting cultivation lands had transitioned to open forest class. Moreover, the L2 in the year 2005 had shown a large increment with the transitions from L12, L7, L6, L5, and L3 with probabilities of 0.33, 0.41, 0.52, 0.38, and 0.44 respectively.
During 2005 to 2010, most of the LULC classes retained their state as in 2005 or had undergone minimum transition except Kharif crop area, rabi crop area, summer crop area, and shifting cultivation areas (Table S4). However, during the 2010 to 2015 period, transitions of states were observed to be similar to that during 2002 to 2005 with minor differences in the ranges of probability values (Table S3 and S5). Subsequently, it was noticed that the transitions of states that happened during the whole analysis period (2002 to 2015) were similar to the other period with closer probability values to that of 2002 to 2005 (Table 4). Hence, it was inferred that for the prediction of future LULC, the transition probability values of 2002 to 2015 (for 14 years) was used. Thus, the LULC features for the year 2028 (short term) and 2041 (long term) in the distant future were predicted using the LULC of 2015 and 2028 as the initial states, respectively. Similar methodology was followed by Yang et al., 2019 for prediction of future LULC in North China.
Principal Component Analysis  
The principal component analysis (PCA) aims at reducing the dimensionality of a dataset consisting of a large number of correlated variables while preserving maximum possible variability present in the dataset (Joshi & Mohanty, 2010; Noori et al., 2011). Before developing the prediction models, the dimensionality of the LULC data was reduced using PCA. The area under the LULC features in each (154826) grid corresponding to the GWL were systematically arranged for the year 2002, 2005, 2010, 2015, 2028, and 2041. Again, the attributes in the matrix created for all six years were normalized before the application of PCA to them. PCA was applied to the 154826 instances in 2002 LULC data with 17 features (L1 to L17), and the representative principal components (PCs) were selected, preserving a minimum of 90% variance present in the dataset. In the process, six PCs were selected, covering 91.57% variance and were used for the prediction model development (Figure 11). Moreover, keeping the number of PCs to be constant (as six) for the model testing and prediction years, the variance covered by the selected PCs are presented in Figure 11. 
PCA-ML algorithms for GWL prediction   
The prediction models were developed using the transferred variables obtained for selected six PCs through PCA analysis on LULC, and the GWL. The ML algorithm was trained using the selected six PCs for four quarters of 2002 and the corresponding GWL at 154826 of 1 × 1 km grids for those four quarters as independent training datasets. This essentially means that the learning algorithm was trained using 154826 instances. Before selecting the ML algorithm, the performance of the three popular algorithms, i.e., the SVR with RBF kernel, KNN, and RF, were tested for four different quarters of the 2002 dataset. The model performance is presented in Table 5, which presents the average RMSE, MAE, and R2 values obtained through 10-fold cross validation for three algorithms in different quarters of 2002 obtained through tenfold cross-validation. It is evident from the statistical parameters that the RF-based models had better performances than the other two. Therefore, the RF algorithm was selected to be the learning algorithm for the reported study.  
The developed ML models for four different quarters using the 2002 dataset were further tested using the corresponding PCs for four quarters of 2005, 2010, and 2015. The model performance is shown in Table 6, and it is observed that the developed four models possessed acceptable accuracy during the testing period. 
Since there exists hardly any change in future climate in the study region (Mohan & Rajeevan, 2017), the study put an effort to predict GWL for the years 2028 (medium term) and 2042 (long term) using projected LULC for corresponding years. The developed models corresponding to the four quarters with 2002 datasets were then used to predict the grid wise GWL for the year 2028 in January, April, August, and November quarters. The generated maps of GWL in the four quarters are presented in Figure 12. 
The predicted GWL was then compared with the corresponding grid-wise GWL in the year 2015 [Figure 12(second column)]. The positive (+ ve) change corresponds to the declination of GWL below ground level with respect to 2015 and vice versa. It was clearly detectible that the variation in GWL observed during 2015 to 2028 was similar to the trend observed during 1995 to 2015. There were several patches with depletion of GWL by a maximum value of 5.87 m with respect to 2015, which is an alarming situation for decision-makers and planners. Similarly, the patches with rising trend were matching with the negative change areas with a maximum rise of 7.14 m from the water level in the year 2015.
From the overall results obtained, it could be inferred that the developed RF models were capable of predicting the GWL with limited data of LULC for the study region with reasonable accuracy. The predicted GWL for the year 2041 as long-term prediction and the corresponding changes in different quarters with respect to 2028 GWL is presented in Figure S6. The adopted approach has performed well for the tropical savanna region of India and can be successfully adopted in similar hydro-climatic conditions. 
Conclusions 
A novel data-driven framework was developed for addressing the spatio-temporal variability of groundwater that is a major source of water for rain-fed tropical regions to cope with surface water scarcity. Identifying the dominant HGC controls among LULC, GM, LS, S, and R facilitated prediction of future GWL, and presents us with potential for water resource management in densely populated tropical regions.  Large spatial variability in GWL was observed in the region and indicated an intra-annual unevenness pertaining to the tropical savanna climatic condition showing shallower water table at more than 90% of the areas in the August quarter followed by depletion in water in the drier periods. In the drier period of the year (April), the rate of decline was observed to be the highest (0.42 m/year). In contrast, the significant rising trend at a maximum rate of 0.51 m/year was observed in the central, southern, and south-western parts of study area. Moreover, the significant declining trend observed in the eastern, north-eastern, northern part, and a few patches in the north-west and south parts of the study region were indicating the alarming situation and warranting for appropriate management actions to make the groundwater resources sustainable.
The marginal entropy analysis conducted on the quarterly GWL also gave similar conclusions drawn in the spatial analysis section. The marginal entropy values indicated that the shallower GWL (August) has the lowest spatial variability, whereas the April quarter with deeper GWL has the highest degree of variability. While evaluating the effect of HGC controls such as LULC, GM, LS, S, and R on the observed spatio-temporal variability of the GWL, it was concluded that LULC patterns could explain the maximum variability in the GWL in the study region. 
Further, relationships were established among the most dominant and easily available HGC control (LULC) and GWL to predict the short and long-term GWL variability in the study region under data scarce conditions. The developed PCA-ML algorithm-based prediction models had reasonable accuracy in predicting the GWL with limited data of LULC for the study region. The formulated approach can assist the scientific community and decision-makers in attaining groundwater sustainability in the data scarce regions. 
Data Availability Statement
The authors do not have ownership on the datasets like groundwater level, rainfall, and other hydro-geological datasets used in this study. Therefore, we are not in a position to share these datasets. Moreover, the data can be obtained from the respective agencies mentioned by payment for research and academic use.
References
Ahmadi, F., Nazeri Tahroudi, M., Mirabbasi, R., Khalili, K., & Jhajharia, D. (2018). Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteorological Applications, 25(2), 314–321. https://doi.org/10.1002/met.1694
Ahmadi, S. H., & Sedghamiz, A. (2007). Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129(1–3), 277–294. https://doi.org/10.1007/s10661-006-9361-z
Araya, S. N., & Ghezzehei, T. A. (2019). Using Machine Learning for Prediction of Saturated Hydraulic Conductivity and Its Sensitivity to Soil Structural Perturbations. Water Resources Research. https://doi.org/10.1029/2018WR024357
Arslan, H. (2014). Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods. Environmental Monitoring and Assessment, 186(8), 5123–5134. https://doi.org/10.1007/s10661-014-3764-z
Baroni, G., Ortuani, B., Facchi, A., & Gandolfi, C. (2013). Journ al of Hydrology The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. Journal of Hydrology, 489, 148–159. https://doi.org/10.1016/j.jhydrol.2013.03.007
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Brunsell, N. A. (2010). A multiscale information theory approach to assess spatial-temporal variability of daily precipitation. Journal of Hydrology, 385(1–4), 165–172. https://doi.org/10.1016/j.jhydrol.2010.02.016
Condon, L. E., & Maxwell, R. M. (2015). Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resources Research, 51, 6602– 6621. https://doi.org/10.1002/2014WR016774
Cover, T. M., & Thomas, J. A. (2012). Elements of information theory (Second Edi). John Wiley & Sons.
Dafny, E., Burg, A., & Gvirtzman, H. (2010). Effects of Karst and geological structure on groundwater flow: The case of Yarqon-Taninim Aquifer, Israel. Journal of Hydrology, 389(3–4), 260–275. https://doi.org/10.1016/j.jhydrol.2010.05.038
Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., & Batelaan, O. (2012). Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 16(5), 1517–1531. https://doi.org/10.5194/hess-16-1517-2012
Dawes, W., Ali, R., Varma, S., Emelyanova, I., Hodgson, G., & McFarlane, D. (2012). Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrology and Earth System Sciences, 16(8), 2709–2722. https://doi.org/10.5194/hess-16-2709-2012
Doerr, S. H., Shakesby, R. A., & Walsh, Rpd. (2000). Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1–4), 33–65.
Eakin, T. E. (1966). A regional interbasin groundwater system in the White River Area, southeastern Nevada. Water Resources Research, 2(2), 251–271. https://doi.org/10.1029/WR002i002p00251
Elbisy, M. S. (2015). Support Vector Machine and Regression Analysis to Predict the Field Hydraulic Conductivity of Sandy Soil. KSCE Journal of Civil Engineering, 19(7), 2307–2316. https://doi.org/10.1007/s12205-015-0210-x
Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: an integrated GIS and remote sensing approach. Applied Water Science, 4(1), 19–38.
Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in bioinformatics using Weka. BIOINFORMATICS, 20(15), 2479–2481. https://doi.org/10.1093/bioinformatics/bth261
Gaur, N., & Mohanty, B. P. (2013). Evolution of physical controls for soil moisture in humid and subhumid watersheds. Water Resources Research, 49(3), 1244–1258. https://doi.org/10.1002/wrcr.20069
Ghanbarian, B., Taslimitehrani, V., Dong, G., & Pachepsky, Y. A. (2015). Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity. Journal of Hydrology, 528, 127–137. https://doi.org/10.1016/j.jhydrol.2015.06.024
Gocic, M., & Trajkovic, S. (2013). Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100, 172–182. https://doi.org/https://doi.org/10.1016/j.gloplacha.2012.10.014
Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41(7), 1–19. https://doi.org/10.1029/2004WR003705
Guzman, C. D., Tilahun, S. A., Dagnew, D. C., Zimale, F. A., Zegeye, A. D., Boll, J., … Steenhuis, T. S. (2017). Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls. Journal of Hydrology, 555, 420–434. https://doi.org/10.1016/j.jhydrol.2017.09.060
Hamed, K. H., & Rao, A. R. (1997). A trend test for autocorrelated data. Environmental and Hydrologic Engineering Report CE-EHE-97-7, School of Civil Engineering, Purdue University, West Lafayette, IN, 47906.
Hodgkins, G. A., Dudley, R. W., Nielsen, M. G., Renard, B., & Qi, S. L. (2017). Groundwater-level trends in the U . S . glacial aquifer system , 1964 – 2013. 553, 289–303. https://doi.org/10.1016/j.jhydrol.2017.07.055
Ilstedt, U., Tobella, A. B., Bazié, H. R., Bayala, J., Verbeeten, E., & Nyberg, G. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Nature Publishing Group, 6(February), 1–12. https://doi.org/10.1038/srep21930
Ivanciuc, O. (2008). Weka Machine Learning for Predicting the Phospholipidosis Inducing Potential. Current Topics in Medicinal Chemistry, 8, 1691–1709.
Jasechko, S., Taylor, R. G., Wada Y, W. D. and B. M. F. P., Al, R. A. S. et, J,  de W. M. and S., Al, T. R. G. et, … Kottek M, G. J. B. C. R. B. and R. F. (2015). Intensive rainfall recharges tropical groundwaters. Environmental Research Letters, 10(12), 124015. https://doi.org/10.1088/1748-9326/10/12/124015
Joshi, C., & Mohanty, B. P. (2010). Physical controls of near-surface soil moisture across varying spatial scales in an agricultural landscape during SMEX02. Water Resources Research, 46(12), 1–21. https://doi.org/10.1029/2010WR009152
Khoshgoftaar, T. M., Golawala, M., & Hulse, J. V. (2007). An Empirical Study of Learning from Imbalanced Data Using Random Forest. 19th IEEE International Conference on Tools with Artificial Intelligence(ICTAI 2007), 2, 310–317. https://doi.org/10.1109/ICTAI.2007.46
Kumar, V., Jain, S. K., & Singh, Y. (2010). Analyse des tendances pluviométriques de long terme en Inde. Hydrological Sciences Journal, 55(4), 484–496. https://doi.org/10.1080/02626667.2010.481373
Le Brocque, A. F., Kath, J., & Reardon-Smith, K. (2018). Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. Journal of Hydrology, 561(April), 976–986. https://doi.org/10.1016/j.jhydrol.2018.04.059
Liu, D., Wang, D., Wang, Y., Wu, J., Singh, V. P., Zeng, X., … Gu, S. (2016). Entropy of hydrological systems under small samples: Uncertainty and variability. Journal of Hydrology, 532, 163–176. https://doi.org/10.1016/j.jhydrol.2015.11.019
Machiwal, D., & Jha, M. K. (2014). Characterizing rainfall-groundwater dynamics in a hard-rock aquifer system using time series, geographic information system and geostatistical modelling. Hydrological Processes, 28(5), 2824–2843. https://doi.org/10.1002/hyp.9816
Machiwal, D., Mishra, A., Jha, M. K., Sharma, A., & Sisodia, S. S. (2012). Modeling Short-Term Spatial and Temporal Variability of Groundwater Level Using Geostatistics and GIS. Natural Resources Research, 21(1), 117–136. https://doi.org/10.1007/s11053-011-9167-8
Mall, R. K., R., B., & S.N., P. (2007). Water resources in India and impact of climate change. Jalvigyan Sameeksha, 22, 157–176.
McCallum, J. L., Crosbie, R. S., Walker, G. R., & Dawes, W. R. (2010). Impacts of climate change on groundwater in Australia: A sensitivity analysis of recharge. Hydrogeology Journal, 18(7), 1625–1638. https://doi.org/10.1007/s10040-010-0624-y
Meenal, R., & Selvakumar, A. I. (2018). Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renewable Energy, 121, 324–343. https://doi.org/https://doi.org/10.1016/j.renene.2017.12.005
Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a mediterranean climate. Journal of Hydrology, 357(3–4), 282–302. https://doi.org/10.1016/j.jhydrol.2008.05.005
Merabti, A., Martins, D. S., Mohamed, M., & S., P. L. (2018). Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales. Water Resources Management, 32, 1087–1100. https://doi.org/https://doi.org/10.1007/s11269-017-1856-6
Mohan, T. S., & Rajeevan, M. (2017). Past and future trends of hydroclimatic intensity over the Indian monsoon region. Journal of Geophysical Research, 122(2), 896–909. https://doi.org/10.1002/2016JD025301
Mohanty, S., Jha, M. K., Kumar, A., & Panda, D. K. (2013). Comparative evaluation of numerical model and artificial neural network for simulating groundwater flow in Kathajodi – Surua Inter-basin of Odisha , India. 495, 38–51.
Nikroo, L., Kompani-Zare, M., Sepaskhah, A. R., & Fallah Shamsi, S. R. (2010). Groundwater depth and elevation interpolation by kriging methods in Mohr Basin of Fars province in Iran. Environmental Monitoring and Assessment, 166(1–4), 387–407. https://doi.org/10.1007/s10661-009-1010-x
Noori, R., Karbassi, A. R., Moghaddamnia, A., Han, D., Zokaei-Ashtiani, M. H., Farokhnia, A., & Gousheh, M. G. (2011). Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401(3–4), 177–189. https://doi.org/10.1016/j.jhydrol.2011.02.021
Pai, D. S., Sridhar, L., Rajeevan, M., Sreejith, O. P., Satbhai, N. S., & Mukhopadhyay, B. (2014). Development of a new high spatial resolution (0.25° × 0.25°) long period (1901-2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65(1), 1–18.
Panda, D. K., Mishra, A., Jena, S. K., James, B. K., & Kumar, A. (2007). The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. Journal of Hydrology, 343(3–4), 140–153. https://doi.org/10.1016/j.jhydrol.2007.06.007
Pandey, A. K., Rajpoot, D. S., & Rajpoot, D. S. (2016). A comparative study of classification techniques by utilizing WEKA. 2016 International Conference on Signal Processing and Communication (ICSC), 219–224. https://doi.org/10.1109/ICSPCom.2016.7980579
Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the K¨oppen-Geiger climate classificatio. Hydrol. Earth Syst. Sci., 11(4), 1633–1644. https://doi.org/10.1097/00041433-200208000-00008
Rahman, M. M., & Govindarajulu, Z. (1997). A modification of the test of Shapiro and Wilk for normality. Journal of Applied Statistics, 24(2), 219–236. https://doi.org/10.1080/02664769723828
Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7(3), 1377–1389. https://doi.org/10.1007/s13201-015-0327-6
Ramcharan, A., Hengl, T., Beaudette, D., & Wills, S. (2018). A soil bulk density pedotransfer function based on machine learning: A case study with the ncss soil characterization database. Soil Science Society of America Journal, 81(6), 1279–1287. https://doi.org/10.2136/sssaj2016.12.0421
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk , Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. https://doi.org/doi:10.1515/bile-2015-0008
Reutemann, G. H. B. P. P., Hall, I. H. W. M., Frank, E., & Witten, I. H. (2009). The weka data mining software: An update. SIGKDD Explorations, 11(1), 10–18.
Rozario, P. F., Oduor, P., Kotchman, L., & Kangas, M. (2017). Transition Modeling of Land-Use Dynamics in the Pipestem Creek, North Dakota, USA. Journal of Geoscience and Environment Protection, 05(03), 182–201. https://doi.org/10.4236/gep.2017.53013
Sahoo, S, Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research RESEARCH, 53, 3878–3895. https://doi.org/10.1002/2016WR019933
Sahoo, Soumyaranjan, & Bhabagrahi, S. (2019). A geomorphology ‐ based integrated stream – aquifer interaction model for semi ‐ gauged catchments. Hydrological Processes, 33(January), 1362–1377. https://doi.org/10.1002/hyp.13406
Sahoo, Soumyaranjan, Sahoo, B., & Panda, S. N. (2018). Hillslope-storage Boussinesq model for simulating subsurface water storage dynamics in scantily-gauged catchments. Advances in Water Resources, 121(November 2017), 219–234.
Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610.
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423.
Shaw, A., Das, P., Layek, M. K., Chakraborty, M., Jamal, M. S., Sengupta, P., … Mukherjee, A. (2018). Exploration of Groundwater-Enriched Aquifers of Central Gangetic Basin, India Using Geomorphic Signatures BT  - Groundwater of South Asia (A. Mukherjee, ed.). https://doi.org/10.1007/978-981-10-3889-1_8
Singh, A., Sharma, C. S., Jeyaseelan, A. T., & Chowdary, V. M. (2015). Spatio – temporal analysis of groundwater resources in Jalandhar district of Punjab state , India. Sustainable Water Resources Management, 1(3), 293–304. https://doi.org/10.1007/s40899-015-0022-7
Singh, V. P., & Cui, H. (2015). Entropy Theory for Groundwater Modeling. Journal of Groundwater Research, 3(December), 1–12.
Solomon, S., & Quiel, F. (2006). Erratum: Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea (Hydrogeology Journal (2006) (729-741) 10.1007/s10040-005-0477-y)). Hydrogeology Journal, 14(6), 1029–1041. https://doi.org/10.1007/s10040-006-0096-2
Soumendra N. Bhanja, Matthew Rodell, Bailing Li,  and A. M. (2017). NASA Public Access. J Hydrol (Amst)., 544(2), 428–437. https://doi.org/10.1016/j.jhydrol.2016.11.052
Sreekanth, P. D., Geethanjali, N., Sreedevi, P., Ahmed, S., Ravi Kumar, N., & Kamala Jayanthi, P. D. (2009). Forecasting groundwater level using artificial neural networks. In Current Science (Vol. 96).
Tilahun, S. A., Ayana, E. K., Guzman, C. D., Dagnew, D. C., Zegeye, A. D., Tebebu, T. Y., … Steenhuis, T. S. (2016). Revisiting storm runoff processes in the upper Blue Nile basin: The Debre Mawi watershed. Catena, 143, 47–56. https://doi.org/10.1016/j.catena.2016.03.029
Tilahun, S. A., Guzman, C. D., Zegeye, A. D., Dagnew, D. C., Collick, A. S., Yitaferu, B., & Steenhuis, T. S. (2015). Distributed discharge and sediment concentration predictions in the sub-humid Ethiopian highlands: The Debre Mawi watershed. Hydrological Processes, 29(7), 1817–1828. https://doi.org/10.1002/hyp.10298
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., … Harry, V. (2017). Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 55, 1199–1256. https://doi.org/10.1002/2017RG000581
Wang, S., Huang, G. H., Lin, Q. G., Li, Z., Zhang, H., & Fan, Y. R. (2014). Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada. International Journal of Climatology, 34(14), 3745–3751. https://doi.org/10.1002/joc.3941
Ward, J. V., Tockner, K., Arscott, D. B., & Claret, C. (2002). Riverine landscape diversity. Freshwater Biology, 47(4), 517–539. https://doi.org/10.1046/j.1365-2427.2002.00893.x
Westlake, W. J. (1967). A Uniform Random Number Generator Based on the Combination of Two Congruential Generators. Journal of the ACM, 14(2), 337–340. https://doi.org/10.1145/321386.321396
Xiao, Y., Gu, X., Yin, S., Shao, J., Cui, Y., Zhang, Q., & Niu, Y. (2016). Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2073-0
Yang, W., Long, D., & Bai, P. (2019). Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology, 570(May 2018), 201–219. https://doi.org/10.1016/j.jhydrol.2018.12.055
Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. https://doi.org/10.1080/00949655.2010.520163
Zhou, Y., Xiao, W., Wang, J., Zhao, Y., Huang, Y., Tian, J., & Chen, Y. (2016). Evaluating Spatiotemporal Variation of Groundwater Depth/Level in Beijing Plain, a Groundwater-Fed Area from 2001 to 2010. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/8714209
Zipper, S. C., Motew, M., Booth, E. G., Chen, X., Qiu, J., Kucharik, C. J., … Loheide, S. P. (2018). Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 565(August), 106–122. https://doi.org/10.1016/j.jhydrol.2018.08.022.







Figure Captions
Figure 1. Map of the study region (Odisha, India) with locations of DGD observation wells. The red circles show the training dataset, whereas green circles show the testing dataset.
Figure 2. Maps showing HGC controls over Odisha: (a) LULC of the year 2005, (b) GM, (c) LS, (d) S, and (e) R (average annual rainfall in mm during 1995 to 2015).
Figure 3. District wise (a) population density of the study region (2011 census data; source: online library of Office of the Registrar General and Census Commissioner, Ministry of Home Affairs, Government of India) and (b) percentage crop area map of the study region (source: Directorate of Agriculture and Food Production, Department of Agriculture, Government of Odisha, India).
Figure 4. Framework of the reported study: module (a) analyses the spatio-temporal variability of GWL after evaluating the basic statistics prerequisite for application of interpolation tools and modified Mann-Kendall test; module (b) evaluates the ability of different HGC controls to explain the observed variability in GWL; and module (c) develops prediction models for short and long-term prediction of GWL in data scarce condition. 
Figure 5. Spatial variability of quarterly GWL in the year 2015: (a) January, (b) April, (c) August, and (d) November.
Figure 6. Maps showing spatio-temporal variability in GWL. The rows in the figure show the years in five-year interval, and the four columns correspond to four different quarters.
Figure 7. Results of trend analysis and Sen’s slope over the study region in different quarters: (a) January, (b) April, (c) August, and (d) November. The purple and red polygons represent the existence of significant to highly significant trend in GWL in that portion of the study region, respectively. 
Figure 8. Marginal entropy values versus the mean GWL in different quarters of the year.
Figure 9. The time series of joint entropy values for LULC, LS, GM, and R classification scheme during the study period: (a) January, (b) April, (c) August, and (d) November. JE_LULC: joint entropy values for LULC; JE_GM: joint entropy values for GM; JE_LS: joint entropy values for LS; and JE_Rainfall: joint entropy values for R.
Figure 10. Time series of joint entropy values corresponding to LULC versus the mean GWL (in m) for different quarters of the year at 95% level of confidence.
Figure 11. Scree plot of the percent variance explained by different PCs in model development (2002) and model testing years (2005, 2010, and 2015), short term future (2028), and long term future (2041). The black box in each % variance versus PCs plots represents the selected six PCs and the variance covered by them in each of these years. 
Figure 12. The first column of this figure presents the predicted GWL for the year 2028 with rows showing different quarters, and the second column shows the change in GWL with respect to 2015 in corresponding quarters. 






21

image1.wmf

oleObject1.bin

