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Abstract 16 

Classical taxonomic approaches to quantifying biodiversity can be notoriously laborious 17 

and restrictive. Instead, molecular metabarcoding is emerging as a rapid, high-18 

throughput and cost-effective tool to catalogue biodiversity. Despite the appeal of 19 

metabarcoding however, methodological and procedural biases must be understood 20 

before robust biodiversity inferences can be made. Here, we use CO1 metabarcoding to 21 

characterize marine eukaryote communities associated with the holdfasts of Ecklonia 22 

radiata, the dominant eco-engineering kelp of temperate New Zealand and Australia. To 23 

establish a standardized and reproducible community metabarcoding protocol, we 24 

examined the influence of different sample preparation, laboratory and bioinformatic 25 

steps on inferences of species richness and composition for kelp-holdfast communities. 26 

Specifically, we examined: the effect of fractioning the community into different size 27 

classes, the replicability of results across DNA extractions, PCR reactions, and 28 

sequencing. Overall, our approach identified 18 marine eukaryote Phyla in the holdfast 29 

communities. We found that size fractioning the sample before DNA extraction enabled 30 

detection of a greater diversity of taxa, especially smaller organisms. When compared 31 

with traditional morphology-based inventories of kelp-holdfast biodiversity, we found that 32 

although the taxonomic precision of our metabarcoding approach at the species and 33 

genus level was limited by the availability of reference sequences in public repositories, 34 

we recovered a greater number of operational taxonomic units, and a greater taxonomic 35 

breadth of organisms than morphological surveys. Based on our findings, we provide 36 

methodological guidelines for the use of metabarcoding as a tool for surveying and 37 

monitoring the hyperdiverse species assemblages associated with kelp-holdfasts. 38 
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Introduction 42 

DNA metabarcoding  (Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012) has 43 

revolutionized the way we characterize biodiversity (Bush et al., 2019; Stat et al., 2017) 44 

as well as the assessment of ecosystem and environmental health (Aylagas, Borja, 45 

Irigoien, & Rodríguez-Ezpeleta, 2016). DNA metabarcoding methods are now used in 46 

empirical ecology (Harms-Tuohy, Schizas, & Appeldoorn, 2016), invasion biology 47 

(Thomas et al., 2019), biomonitoring and for conservation management (Barnes & 48 

Turner, 2016). Where the study focus is a specific community, or when a bulk specimen 49 

mixture is taken from a focal environment, we refer to these approaches as community 50 

DNA metabarcoding (cDNA; Creer et al., 2016). cDNA studies use the same methods of 51 

high-throughput DNA extraction, PCR and sequencing common to all metabarcoding 52 

approaches, but aim to directly identify the taxa within the sampled community based on 53 

their DNA barcode. These cDNA studies are akin to traditional visual, morphology-based 54 

surveys in aiming to characterize the taxonomic richness of a community or species 55 

assemblage, and to infer differences in the taxonomic composition among sampled 56 

communities (Deiner et al., 2017; Taberlet, Coissac, Pompanon, Brochmann, & 57 

Willerslev, 2012).  58 

DNA-based monitoring methodologies (Baird & Hajibabaei, 2012), such as cDNA, 59 

have provided comparable results to traditional biodiversity surveys in a range of 60 

ecosystems (Deiner et al., 2017).  In contrast to morphology-based surveys however, 61 

cDNA does not depend on expert taxonomic training (Bush et al., 2019), allows higher 62 

comparability across studies (Aylagas et al., 2016; Ji et al., 2013), and it produces data 63 
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(i.e. sequence reads) that can be easily re-analyzed and re-interpreted by a secondary 64 

user. As a result, cDNA approaches often discover greater numbers of taxa within a 65 

community than has been previously described (Bush et al., 2019; Siegenthaler, 66 

Wangensteen, Benvenuto, Campos, & Mariani, 2019; Valentini et al., 2016). In the last 67 

decade, cDNA approaches have been successfully used to describe past and present 68 

biodiversity in terrestrial (Brehm et al., 2016; Dopheide et al., 2019), freshwater 69 

(Andújar, Arribas, Yu, Vogler, & Emerson, 2018; Blackman et al., 2019; Elbrecht & 70 

Leese, 2017; Hajibabaei, Porter, Wright, & Rudar, 2019), estuarine (Lobo, Shokralla, 71 

Costa, Hajibabaei, & Costa, 2017) and marine (Aylagas et al., 2016; Knowlton & Leray, 72 

2015; Zhang, Chain, Abbott, & Cristescu, 2018) environments. There is growing 73 

recognition that cDNA can help characterize and monitor the biodiversity of all of earth’s 74 

important ecosystems and assist in making informed management decisions. 75 

As an emerging tool however, before cDNA metabarcoding can be confidently 76 

applied, rigorous examination of the potential biases and artefacts of the approach must 77 

be conducted. For instance, several studies have addressed the influence of community 78 

sampling protocols (Dickie et al., 2018), and laboratory methods, such as DNA 79 

extraction procedures (Deiner et al., 2017; Lear et al., 2018), primer choice (van der 80 

Loos & Nijland, 2020) and amplification bias (Kelly, Shelton, & Gallego, 2019), as well 81 

as the level of replication at each methodological step, in producing robust, consistent 82 

and reproducible results (Ficetola et al., 2015; Nichols et al., 2020; Porter et al., 2019). 83 

Bioinformatic pipelines, which transform the sequence reads into community data, can 84 

strongly influence study results and are constantly revised and improved (Pauvert et al., 85 
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2019). Decisions within the bioinformatic pipelines, regarding the filtering of reads, 86 

processing PCR replicates, and sequencing depth have also been demonstrated to 87 

influence biodiversity estimates (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Bokulich 88 

et al., 2013; Flynn, Brown, Chain, MacIsaac, & Cristescu, 2015; Kunin, Engelbrektson, 89 

Ochman, & Hugenholtz, 2010). As a consequence, prior to using a cDNA approach in a 90 

new ecosystem or focal community, there is a recognized need for experimental 91 

examination of the potential drawbacks and biases that different steps in the overall 92 

approach might introduce (Aylagas et al., 2016; Bush et al., 2019; McGee, Robinson, & 93 

Hajibabaei, 2019).  94 

One of the most important considerations when first applying a cDNA approach in 95 

a new community, is establishing how to obtain a community DNA sample that is 96 

representative of the biodiversity present in a target community (Koziol et al., 2019). 97 

While it is common for procedural replicates and controls to be considered in the 98 

laboratory steps of cDNA, there have been few systematic examinations of the 99 

community sampling procedures on the overall estimates of biodiversity (Alberdi et al., 100 

2018; Porter et al., 2019). Replicate samples of a target community, whether it be in 101 

traditional morphology-based biodiversity assessments or cDNA approaches, only 102 

recover a subset of the community, i.e. they are not a census, and as such the 103 

magnitude of among replicate variation must be quantified (Vlek, Šporka, & Krno, 2006). 104 

cDNA approaches generate millions of sequences and are therefore potentially able to 105 

reach the asymptote of the species discovery curve with fewer replicates than traditional 106 

surveys (Bush et al., 2019). However, this benefit of a cDNA approach will depend on 107 



    6 

how representative each replicate DNA sample is of the community, and results vary 108 

among studies (Ficetola et al., 2015). It has been established that in communities where 109 

species have varying biomass, size fractioning of the community prior to DNA extraction 110 

can reduce misidentification or the omission of smaller organisms (Aylagas et al., 2016; 111 

Wangensteen, Cebrian, Palacín, & Turon, 2018). However, there has been little 112 

examination of subsequent steps in a cDNA approach, for instance, at what laboratory, 113 

or bioinformatic stage it is best to combine the different size fractions to recover 114 

representative estimates of biodiversity? Addressing the implications of these procedural 115 

decisions is important (Cowart et al., 2015); particularly, when the communities being 116 

characterized are known to support diverse taxa of varying sizes.  117 

Kelp (Laminariales) are ecosystem-engineers (Jones, 2014) responsible for 118 

supporting incredibly diverse, structurally complex and highly productive ecosystems 119 

along temperate and polar coastlines worldwide (Steneck et al., 2002). On the Great 120 

Southern Reef of Australia, it has been estimated that between 700-4000 different 121 

species of algae, invertebrates and fishes occupy these ecosystems, with high levels of 122 

endemism (between 20-60%; Bennett et al. 2016). Accordingly, when these kelp are 123 

lost, we observe dramatic declines in biodiversity and ecosystem productivity (Bennett et 124 

al., 2016; Filbee-Dexter & Scheibling, 2014; Krumhansl et al., 2016; Ling, Johnson, 125 

Frusher, & Ridgway, 2009). Importantly, kelp are sensitive to environmental changes, 126 

and the demographic responses of kelp populations to stressors ripple throughout the 127 

ecosystem (Smale, Burrows, Moore, O'Connor, & Hawkins, 2013; Teagle, Hawkins, 128 

Moore, & Smale, 2017; Vergés et al., 2014; Wernberg et al., 2016). Monitoring 129 



    7 

biodiversity changes within kelp forests using traditional survey methods is time-130 

intensive and is highly dependent on scientists having diverse taxonomic expertise. For 131 

these reasons, the monitoring of kelp forest associated biodiversity has benefited from 132 

the use of metabarcoding approaches. Specifically, the analysis of environmental 133 

(e)DNA in seawater samples to detect vertebrate taxa within kelp forest ecosystems has 134 

gained results comparable to visual surveys (Port et al., 2016); and cDNA has also been 135 

used to characterize the sessile invertebrate communities attached to cobbles beneath 136 

the kelp canopy (Shum, Barney, O’Leary, & Palumbi, 2019).  137 

The kelp holdfast is the structure which anchors the kelp to the substratum, and 138 

the complex web of haptera (root-like projections) which forms the holdfast provides a 139 

biogenically complex structure for a diversity of taxa and functional groups to colonize. 140 

Kelp holdfasts provide a logistically-convenient, biologically defined sampling unit which 141 

captures a broad diversity of marine eukaryote phyla (Anderson, Diebel, Blom, & 142 

Landers, 2005; Teagle et al., 2017). Despite the notable appeal of using kelp-holdfast 143 

assemblages as a barometer for change in this ecosystem, the large number, taxonomic 144 

diversity, and predominance of soft-bodied organisms, have precluded their use in 145 

morphological assessments of the biodiversity at the broad spatial scales necessary to 146 

monitor these ecosystems. Nonetheless, kelp-holdfasts could provide the basis for an 147 

effective cDNA approach to characterize and monitor biodiversity in kelp forest 148 

ecosystems.  149 

Here, we evaluate metabarcoding as a tool for assessing biodiversity in kelp 150 

forest ecosystems using holdfast community DNA. Our comprehensive experimental 151 
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design examines the influence of methodological steps and decisions on biodiversity 152 

estimates in these communities. Specifically, we assessed the effect of size fractioning 153 

given the disparate sizes of organisms found within holdfast communities. We examined 154 

the similarity between replicate samples of the same community to assess the 155 

representativeness of each DNA extraction replicate and each PCR amplification of a 156 

DNA extraction. Additionally, we analyzed the effect of bioinformatic decisions on final 157 

biodiversity estimates. We then compare our taxonomically assigned cDNA reads with a 158 

morphology-based, kelp-holdfast inventory from the same location to evaluate the 159 

biases and opportunities of cDNA approach. Finally, we provide a series of guidelines 160 

for community sampling, sample preparation, laboratory procedures and bioinformatic 161 

decisions for metabarcoding marine eukaryotes from kelp-holdfast assemblages for 162 

biodiversity surveys and monitoring.  163 

 164 

Materials and Methods  165 

Experimental design  166 

Our overall goal was to assess the potential shortcomings and biases introduced by 167 

different laboratory and bioinformatic procedures in the DNA metabarcoding of Ecklonia 168 

radiata holdfast-associated communities. The impact of alternative decisions and 169 

procedures on measures of taxonomic richness and community composition (hereafter 170 

‘biodiversity estimates’) were examined at different stages of the cDNA workflow 171 
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including: sample preparation, DNA extraction, PCR amplification, and bioinformatic 172 

manipulation (Fig. 1).  173 

For sample preparation, we were interested in examining differences in biodiversity 174 

estimates between the large (Lrg) and small (Sml) size fraction of the community 175 

sample. Our experimental design aimed to test the influence of manually-pooling the 176 

size fractions before DNA extraction (MPFCOM), manually-pooling the DNA extractions of 177 

the large and small fraction before PCR (MPFEXT), and manually-pooling the PCR 178 

products of the large and small fraction before sequencing (MPFPCR), as well as 179 

bioinformatically-averaging (BAF) and bioinformatically-combining (BCF) the sequence 180 

data of the large and small fraction on our biodiversity estimates (Fig. 1; for more detail 181 

on the bioinformatic procedures, see Bioinformatic analysis section below). Specifically, 182 

the contrasts we were interested in were: 183 

1) Lrg vs. Sml: Do biodiversity estimates of the large and small size fractions differ? 184 

2) BAF vs. MPFPCR : Do biodiversity estimates differ if DNA extractions of the large 185 

and small size fractions are PCRed and sequenced separately and then 186 

bioinformatically-averaged, or if the large and small size fraction are manually-187 

pooled before sequencing? 188 

3) BCF vs. MPFPCR : Do biodiversity estimates differ if DNA extractions of the large 189 

and small size fractions are PCRed and sequenced separately and then 190 

bioinformatically-combined, or if the large and small size fractions are manually-191 

pooled before sequencing? 192 
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4) BAF vs. MPFEXT : Do biodiversity estimates differ if DNA extractions of the large 193 

and small size fractions are PCRed and sequenced separately and then 194 

bioinformatically-averaged, or if the large and small size fraction are manually-195 

pooled before PCR? 196 

5) MPFEXT vs. MPFCOM : Do biodiversity estimates differ if the PCR products of the 197 

large and small size fractions are manually-pooled before PCR, or if the large and 198 

small size fraction are manually-pooled before DNA extraction? 199 

For DNA extraction, we examined differences between replicate extractions of the same 200 

community sample (ExtA and ExtB) and the influence of manually-pooling PCR products 201 

from the replicate extractions before sequencing (MPEPCR), as well as bioinformatically-202 

averaging (BAE) and bioinformatically-combining (BCE) sequence data for separately 203 

sequenced replicate extractions. Specifically, the contrasts we were interested in were: 204 

6) ExtA vs. ExtB : Do biodiversity estimates of the two extraction replicates differ? 205 

7) BAE vs.  MPEPCR : Do biodiversity estimates differ if the sequence data for the 206 

separately sequenced replicate extractions are bioinformatically-averaged, or if the 207 

PCR products of the replicate extractions are manually-pooled before sequencing? 208 

8) BCE vs. MPEPCR  : Do biodiversity estimates differ if the sequence data for the 209 

separately sequenced replicate extractions are bioinformatically-combined, or if the 210 

PCR products of the replicate extractions are manually-pooled before sequencing? 211 

For PCR amplification, we examined differences between replicate PCR products for the 212 

same extraction (PCRX and PCRY) and the influence of manually-pooling replicate PCR 213 
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products for the same extraction before sequencing (MPPPCR), as well as 214 

bioinformatically-averaging (BAP) and bioinformatically-combining (BCP) sequence data 215 

for replicate PCR products following sequencing. Specifically, the contrasts we were 216 

interested in were:  217 

9) PCRX vs. PCRY: Do biodiversity estimates from the two PCR product replicates 218 

differ? 219 

10) BAP vs. MPPPCR: Do biodiversity estimates differ if the sequence data for the 220 

separately sequenced replicate PCR products are bioinformatically-averaged, or if 221 

the PCR products of the replicate PCR product are manually-pooled before 222 

sequencing? 223 

11) BCP vs. MPPPCR  : Do biodiversity estimates differ if the sequence data for the 224 

separately sequenced replicate PCR products are bioinformatically-combined, or if 225 

the PCR products of the replicate PCR product are manually-pooled before 226 

sequencing? 227 

 228 

For the bioinformatic sample standardisation, we examined the influence of different 229 

filtering thresholds as well as the taxonomic precision of the sequence assignments 230 

(amplicon sequence variants [ASV] vs. Operational Taxonomic Units [OTU]) on our 231 

biodiversity estimates for the eleven contrasts described above (see Bioinformatic 232 

analysis section below for more detailed information).  233 
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Field sampling and processing 234 

Mature Ecklonia radiata (mean height = 35.1cm range = 15.4 – 61.6cm) were collected 235 

from Mathesons Bay, Auckland, New Zealand by carefully sliding a knife between the 236 

base of the holdfast and the rocky reef. The individual kelps were quickly placed in 237 

polyethylene bags and sealed underwater to prevent organisms from escaping and the 238 

accidental transfer of organisms among samples. An additional seawater sample was 239 

collected so that the ambient environmental DNA could be separated from the holdfast 240 

cDNA. Upon returning to the surface, samples were placed in an insulated container and 241 

transported to the laboratory. In the laboratory, each E. radiata individual was placed in 242 

a separate tray and the holdfast community separated from the kelp-holdfast using 243 

forceps. The community sample was then passed through a stacked filter unit containing 244 

a fine, 63µm Sefar Nytal® filter on the bottom and a coarse 1000µm Sefar Nytal® filter 245 

on the top. The community sample retained on the 63µm filter was considered the small 246 

size fraction (Sml) containing meio-benthic organisms and the material retained on the 247 

1000µm filter was considered the large size fraction (Lrg) containing mega- and macro-248 

benthic organisms (Rex & Etter, 2010; Wangensteen et al., 2018).  All sample 249 

processing equipment was sterilized prior to use on each holdfast by sterilizing the 250 

forceps with ethanol and flame, washing the filters and trays with soap and bleach, and 251 

by autoclaving the funnels. The two size fractions were transferred along with the mesh 252 

into individual, labelled 50mL falcon tubes and stored at -80ºC in preparation for 253 

lyophilization, more commonly known as freeze-drying. In the freeze-drying procedure, 254 

the falcon tubes containing the community samples were quickly transferred into a 255 
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Labconco FreeZone 6 bulk tray freeze-dryer with the lid off and they were subjected to a 256 

24h cycle at a condensation temperature of  -50oC and a vacuum pressure of 0.12mbar. 257 

Once the freeze-drying was completed, a sterilized 15mL falcon tube was used as a 258 

pestle to grind the sample inside the 50mL falcon tube into a fine powder. The powdered 259 

community was then weighed and stored at -80ºC until DNA extraction.  260 

Community DNA extraction and PCR  261 

Genomic DNA was extracted from a 0.20g sample of the powdered kelp-holdfast 262 

community using the DNEasy PowerSoil Extraction Kit (QIAGEN) following the specified 263 

protocol, except using UltraPure DNase/RNAase-Free Distilled Water (Thermo Fisher) in 264 

the final step rather than elution buffer. For each sample, we performed two replicate 265 

extractions (ExtA and ExtB). For each set of extractions, a negative extraction control was 266 

also included using UltraPure water. To assess the quality and quantity of the 267 

extractions, the extracted DNA was run on a 1% agarose gel and visualized using 268 

GelRed® Nucleic acid gel stain (Biotium, Inc.), and gel-based estimates confirmed using 269 

a QubitTM dsDNA br Assay Kit. The DNA concentration of all extractions was normalized 270 

to approximately 15ng/µL by diluting some samples with UltraPure DNase (the 271 

maximum required dilution was 1:10).   272 

A 313 bp fragment of the Cytochrome Oxidase I (COI) mitochondrial gene was 273 

amplified using the primers mlCOIintF-XT (Wangensteen et al., 2018) and jgHCO2198 274 

(Geller, Meyer, Parker, & Hawk, 2013), modified to include the IluminaTM overhang 275 

adaptors. Two PCR amplifications were performed for each DNA extract (PCRX and 276 
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PCRY). For the PCR, 2.5µL of the DNA template was added to a mix consisting of 277 

12.5µL of MyTaqTM Mix (Bioline, London), 1µL of each primer (10µM), 6µL of UltraPure 278 

DNase/RNAase-Free Distilled Water (Thermo Fisher) and 2µL of Bovine Serum Albumin 279 

(20mg/µL; Thermo Fisher) in a 25µL total reaction volume. We followed the Thermo-280 

cycling regime used by van der Reis, Laroche, Jeffs, and Lavery (2018) conducted in a 281 

SureCycler 8800 Thermal Cycler (Agilent Technologies, USA). For each set of PCR 282 

amplifications, a negative PCR control was also included using UltraPure water. PCR 283 

amplicons were purified by magnetic separation following the Mag-Bind® Total Pure 284 

NGS protocol (Omega, Bio-Tek). PCR products were pooled as required according to 285 

our experimental design, quantified (Qubit® 2.0 Fluorometer, Invitrogen, Carlsbad, USA) 286 

and diluted to equal concentration of between 5 and 15ng/µL. Sequencing was 287 

performed at Massey Genome Services, Massey University (Palmerston North, New 288 

Zealand) where indexing occurred using the Nextera™ DNA library Prep Kit (Illumina, 289 

California, USA) before sequencing on an Illumina MiSeq™ System (2 × 250 paired-end 290 

protocol). 291 

Bioinformatic analysis 292 

Sequence reads were analyzed and filtered using a series of quality control steps 293 

available in the bioinformatics toolkit of QIIME 2 (Bolyen et al., 2019). First, the primers 294 

were removed without mismatch tolerated using cutadapt (Martin, 2011). We used 295 

DADA2 (Callahan et al., 2016) to perform the paired-end merging (trim-left r 13, trim-left-296 

f 13, trunc-len 200), dereplication, chimera filtering (using the consensus method) and 297 

clustering of Amplicon Sequence Variants (ASV). The resulting ASV table was filtered 298 
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by a minimum abundance of reads across all samples using various thresholds to 299 

explore the effect of removing low abundance ASVs. The thresholds we examined were: 300 

no filtering, a minimum of 0.003% (Elbrecht & Leese, 2017), 0.01% (Alberdi et al., 2018) 301 

and 0.05% of the total read abundance across all samples. ASVs passing the quality 302 

control and filtering thresholds were taxonomically assigned using the 303 

MARES_COI_NOBAR reference sequence database (Arranz, Pearman, Aguirre, & 304 

Liggins, 2019). MARES is the most comprehensive COI reference database for marine 305 

eukaryotes available, and provides users the ability to retain taxa that cannot be 306 

assigned at the species level, but can be assigned at higher taxonomic levels – a 307 

desirable feature when working in communities of taxonomically diverse and potentially 308 

poorly characterized biodiversity (Arranz, Pearman, Aguirre, & Liggins, 2020). For 309 

taxonomic assignment, we first performed a BLASTn (Altschul, Gish, Miller, Myers, & 310 

Lipman, 1990) with an e-value of 1-60 for high-quality matches and max_target_seqs 311 

equal to 1. Then, we used MEGAN 6.18.3 (Huson et al., 2016), for taxonomic 312 

assignment within the NCBI taxonomy framework using the default Lowest Common 313 

Ancestor algorithm parameters. Using the decontam R package v1.4 (Davis, Proctor, 314 

Holmes, Relman, & Callahan, 2018) with the combined method, we filtered the ASV 315 

tables for contaminants found in the seawater eDNA sample as well as the extraction 316 

and PCR negative controls. Last, the ASVs were further clustered into Operational 317 

Taxonomic Units (OTUs) using VSEARCH v2.13.6 (Rognes, Flouri, Nichols, Quince, & 318 

Mahé, 2016) and a 97% similarity threshold.  319 
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Eight E. radiata holdfast communities were used in the experimental design, 320 

three of which had adequate biomass to be used in all the treatments used to construct 321 

the contrasts above (Fig. 1). This partially nested experimental design resulted in a total 322 

of 73 samples for sequencing including one seawater sample, three extraction negative 323 

controls and five PCR negative controls.  We bioinformatically-combined samples by 324 

combining the appropriate sample size fractions (BCF), extractions (BCE) or PCRs 325 

(BCP) according to our experimental design, generating 17 synthetic samples for 326 

comparison. We bioinformatically-averaged samples by adjusting the coefficients of the 327 

contrast matrix (see Statistical analysis section below for details) for the appropriate 328 

fractions (BAF), extractions (BAE) and PCRs (BAP). A total of 81 samples were used for 329 

statistical analysis examined at both the ASV- and OTU-level and for all filtering 330 

thresholds as well as sample rarefaction. We considered the trade-off of increasing the 331 

rarefaction threshold to retain a greater proportion of the sampled diversity at the 332 

expense of removing greater numbers of samples with low ASV and OTU richness, or 333 

decreasing the rarefaction threshold and retaining more samples at the expense of 334 

removing a greater proportion of the sampled diversity. Given that our experimental 335 

design focuses on treatment (sample) contrasts, we deemed it was most important to 336 

select a rarefaction threshold for each ASV and OTU table that retained the greatest 337 

number of samples (Fig. S1, Supporting information). We assessed the effect of 338 

variability introduced by the rarefaction procedure by repeating each analysis on three 339 

different rarefied datasets each started from a different random seed as well as an 340 

analysis of the non-rarefied data (Table S2, Supporting information). Two samples 341 

(MTB11_ExtA_MPPPCR and MTB20_ExtB_MPPPCR) had low sequencing depth for 342 
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unknown reasons, and these were excluded when the data were rarefied to even depth. 343 

Rarefaction was performed using the R package Phyloseq v1.28 (McMurdie & Holmes, 344 

2013).   345 

Statistical analysis 346 

We used linear models implemented in R v3.6.1 (R Core Team, 2019) to assess how 347 

our laboratory and bioinformatic decisions influenced biodiversity estimates for the 348 

holdfast communities. First, we calculated the presence or absence of each ASV or 349 

OTU in each rarefaction and filtering category for each sample. From these presence-350 

absence matrices we calculated two response variables: the observed taxonomic 351 

richness for each sample, and differences in community composition based on 352 

Jaccard’s dissimilarity between all pairwise combinations of samples. Second, due to 353 

the unbalanced and partially nested nature of our experimental design, to specifically 354 

test the eleven planned comparisons described above, we set up a dummy variable, 355 

which assigned each sample to its corresponding combination of levels for the sample 356 

preparation, DNA extraction, PCR amplification and bioinformatic steps. For example, a 357 

sample from the large fraction where the replicate DNA extractions were manually-358 

pooled before PCR amplification and then PCRed directly would have been coded as: 359 

LrgMPEPCRPCRX. This categorical dummy variable had a total of 25 levels for the 79 360 

samples considered. We then constructed a contrast matrix for the dummy variable 361 

which contained our planned independent comparisons. Each column of the contrast 362 

matrix corresponded to a particular planned comparison (see Experimental design 363 

section above), allowing us to test contrasts directly, without unnecessary subsetting 364 
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and thereby multiple testing of the same data. Samples involved in contrasts were 365 

assigned weights of either 1 or -1 depending on the levels being contrasted, except for 366 

bioinformatically-averaged samples that were assigned a weight of ±0.5 (Crawley, 367 

2012). Not all eleven contrasts were orthogonal. Non-orthogonal contrasts are 368 

analogous to collinear predictors and can produce similar statistical issues (Quinn & 369 

Keough, 2002); hence, to mitigate these issues we used the inverse of the transposed 370 

contrast matrix to calculate the fixed effects design matrix. We also used the inverse of 371 

the transposed contrast matrix for the calculation of the estimated marginal means and 372 

standard errors using the emmeans package v1.4.8 (Lenth, Singmann, Love, Buerkner, 373 

& Herve, 2018). Last, because individual kelp-holdfast communities contributed to 374 

multiple levels of the dummy variable (i.e. repeated measures), for our analysis of 375 

taxonomic richness, we specified the individual kelp identifier as a random effect in a 376 

linear mixed model fitted using the lmer function in the lme4 package v1.1 (Bates, 377 

Maechler, Bolker, & Walker, 2014). To test the statistical significance of the contrasts 378 

from the linear mixed models we used the summary function from the lmerTest package 379 

v3.1 (Kuznetsova, Brockhoff, & Christensen, 2017). For the analysis of community 380 

composition, we used the adonis2 function in the vegan package v2.6 (Oksanen et al., 381 

2007) and determined the significance of our contrasts using 999 permutations under a 382 

reduced model. While the adonis2 function does not allow fitting mixed models, to 383 

account for repeated measures we constrained permutations to only occur among 384 

samples with the same individual kelp identifier.   385 
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Comparison with morphology-based surveys  386 

To assess the performance of the cDNA approach, we compared the taxonomically 387 

assigned OTUs in the eight MPPPCR samples against a morphology-based survey 388 

conducted for nine E. radiata holdfasts collected <750m away in 2002 (Anderson et al., 389 

2005). We chose to focus on the MPPPCR samples because according to our results, this 390 

would be the preferred treatment of future samples as it retrieved similar taxonomic 391 

richness and community composition as BCP samples while minimizing the sequencing 392 

costs (see Results section below). Prior to comparison, we assessed whether the 393 

assigned taxa identified by metabarcoding were of exclusively marine or brackish origin 394 

using the wormsbyname function in worms package v0.2 (Holstein, 2018). Assigned 395 

OTUs, which were not exclusively marine, were identified using a custom R script and 396 

removed. If an OTU or morphologically identified taxa could only be confidently assigned 397 

at a high taxonomic level (i.e. identifiable only to Class or Order) the OTU or 398 

morphologically identified taxa was labelled as undefined in lower taxonomic levels. We 399 

then compared the absolute and relative number of OTUs and morphologically identified 400 

taxa for these two studies from the same geographical area synonymizing taxonomies 401 

according to the World Register of Marine Species (WoRMS) (Horton et al., 2019).   402 

 403 

Results 404 

Across our experimental design, Illumina sequencing produced 4,310,106 paired-end 405 

reads. After quality filtering (primer removal, denoise, paired-end assembly, 406 

dereplication and chimera removal) a total of 947,469 reads were retained with a modal 407 
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sequence length of 313bp and a mean sequence length of 319bp. Two kelp-holdfast 408 

community samples with less than 5,000 reads were removed for downstream analysis 409 

due to their low number of reads (MTB11_ExtA_MPPPCR and MTB20_ExtB_MPPPCR). 410 

The final dataset after removing negative controls and possible contaminants consisted 411 

of 7,234 ASVs, with an average of 14,862 reads per sample (range: 5,156-24,624). 412 

ASVs were clustered into OTUs at 97% similarity, producing 2,671 OTUs. Filtering ASVs 413 

by minimum read abundance was performed at three levels (0.003 and 0.01 and 0.05%) 414 

and the filtered reads clustered into OTUs (Table S1, Supporting information). 415 

Rarefaction curves indicated that most of the samples approached an asymptote in ASV 416 

and OTU richness, indicating that sampling effort was sufficient to produce a 417 

representative estimate of the biodiversity in the sampled community (Fig. S1, 418 

Supporting information).  419 

 420 

Sample preparation 421 

For the eight sampled communities, the larger size fraction (Lrg) had overall lower 422 

taxonomic richness than the smaller size fraction (Sml) for all ASVs and OTUs, except 423 

when read abundance was strongly filtered (0.01-0.05% of total read abundance across 424 

samples; Fig. 2, Fig. 3 and Table S2, Supporting information). However, the large size 425 

fraction had a similar taxonomic richness to the small size fraction when comparing only 426 

the taxonomically assigned ASVs and OTUs (Fig. 2, Fig. 3 and Table S2, Supporting 427 

information). Conversely, though not unexpectedly, the community composition of the 428 

two size fractions differed strongly for every rarefaction, filtering, clustering and 429 
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taxonomic assignment procedure used (Fig. 2, Fig. 4 and Table S2, Supporting 430 

information). 431 

 The bioinformatically-combined sequence reads from the separately sequenced 432 

size fractions (BCF) retrieved more taxonomic richness than manually-pooling samples 433 

before sequencing (MPFPCR) based on ASVs (Fig. 2, Fig. 3 and Table S2, Supporting 434 

information). Interestingly, the taxonomic richness of the bioinformatically-combined 435 

fractions (BCF) and the manually-pooled fractions before sequencing (MPFPCR) was 436 

similar when we clustered the ASVs into OTUs at 97% similarity, regardless of the level 437 

of filtering or if reads were taxonomically assigned (Fig. 2 and Table S2, Supporting 438 

information). The lowest taxonomic richness was found when the sequence reads of the 439 

two size fractions were bioinformatically-averaged (BAF; Fig. 2, Fig. 3 and Table S2, 440 

Supporting information). Nevertheless, although we detected differences in taxonomic 441 

richness between bioinformatically-combining and bioinformatically-averaging the two 442 

size fractions (manually or bioinformatically) we detected no significant differences in 443 

community composition among these two bioinformatic approaches (Fig. 2 and Table 444 

S2, Supporting information).  445 

Manually-pooling the large and small size fractions before DNA extraction 446 

(MPFCOM) or before PCR (MPFEXT) had little effect on estimates of taxonomic richness 447 

except when more stringent filtering was applied at the OTU-level, where manually-448 

pooling the size fractions before PCR (MPFEXT) recovered greater taxonomic richness 449 

than manually-pooling the large and small size fractions before DNA extraction 450 

(MPFCOM; Fig. 2 and Table S2, Supporting information). Conversely, we found significant 451 
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differences in community composition between the manually-pooled size fractions 452 

before DNA extraction (MPFCOM) and the manually-pooled size fractions before PCR 453 

(MPFEXT; Fig. 2 and Table S2, Supporting information). The taxonomic richness of the 454 

manually-pooled size fractions before PCR (MPFEXT) was similar to the taxonomic 455 

richness retrieved by bioinformatically-averaging the sequence data of the two size 456 

fractions (BAF; Fig. 3 and Table S2, Supporting information). Interestingly, all methods 457 

for pooling the size fractions after separately extracting the DNA of each fraction (i.e. 458 

manually-pooling extractions of the size fractions before PCR, MPFEXT; pooling PCR 459 

products of the size fractions before sequencing, MPFPCR; bioinformatically-averaging, 460 

BAF; and bioinformatically-combining, BCF; sequence data from each fraction) showed 461 

similar community composition (Fig. 2 and Table S2, Supporting information). 462 

DNA extraction 463 

The taxonomic richness of replicate extractions from the same sample (EXTA and EXTB) 464 

did not differ significantly for most of the clustering, rarefaction and filtering options we 465 

examined, except for ASVs when no filtering by minimum read abundance was applied 466 

(Fig. 2 and Table S2, Supporting information). Additionally, we found no significant 467 

differences in community composition among replicate extractions for most of the 468 

combinations of clustering, taxonomic assignment and the level of filtering (Fig. 2 and 469 

Table S2, Supporting information).  470 

Across the sampled communities, the mean taxonomic richness of the 471 

bioinformatically-averaged replicate extractions (BAE) was lower than the manually-472 

pooled extractions (MPEPCR; Fig. 3 and Table S2, Supporting information). Moreover, 473 
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when weak filtering was applied to ASVs, the bioinformatically-combined sequence 474 

reads of the extraction replicates (BCE) showed higher taxonomic richness (Table S2, 475 

Supporting information). This result suggests that ASVs and OTUs may differ among 476 

sub-samples of the same community (i.e. EXTA and EXTB). Based on this contrast 477 

alone, we cannot determine whether biases have been introduced by PCR, and/or 478 

sequencing, rather than the sub-sampling of the community. However, the community 479 

composition of the bioinformatically-averaged (BAE) and combined (BCE) replicate 480 

extractions was similar to the community composition retrieved by manually-pooling 481 

extraction replicates (MPEPCR; Fig. 2 and Table S2, Supporting information).  482 

PCR amplification 483 

Samples from the same extraction, PCRed and sequenced separately (PCRX and 484 

PCRY) differed significantly in taxonomic richness in most of our contrasts, except when 485 

applying the most stringent filtering (Fig. 2 and Table S2, Supporting information). 486 

However, the community composition of the PCR replicates did not differ significantly in 487 

any of the contrasts we examined (Fig. 2 and Table S2, Supporting information).  488 

We found no significant differences in taxonomic richness among the different 489 

strategies for pooling PCR replicates for all and assigned OTUs as well as assigned 490 

ASVs for most levels of filtering (Table S2, Supporting information). However, at the 491 

ASV-level using all reads, the highest taxonomic richness was found when 492 

bioinformatically-combining the sequence data of both size fractions (BCF), followed by 493 

manually-pooling PCR replicates (MPPPCR), and the lowest taxonomic richness was 494 

found for bioinformatically-averaging PCR replicates (BAP; Fig. 3). The community 495 
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composition of the PCR replicates did not differ significantly at either the ASV- or OTU-496 

level when only the taxonomically assigned or all reads were examined (Fig. 2 and 497 

Table S2, Supporting information).  498 

Comparison with morphology-based surveys  499 

The morphology-based survey of holdfast-associated biodiversity recorded 181 taxa 500 

belonging to 14 phyla, of which 121 taxa were identified to the species-level (Anderson 501 

et al., 2005; Fig 5). Our metabarcoding-based approach identified a total of 314 OTUs, 502 

representing 18 phyla; however, only 48 OTUs were assigned to the species-level with 503 

43 unique species identified (Fig. 5 and Table S3, Supporting information). The number 504 

of assigned OTUs (i.e. taxa) was higher at lower taxonomic ranks for morphology-based 505 

surveys and the number of undefined taxa lower (Table S3, Supporting information). 506 

However, at higher taxonomic ranks (Class, Order and Phylum) the number of assigned 507 

OTUs with the metabarcoding approach exceeded that of the morphology-based 508 

surveys (Table S3, Supporting information). 509 

The taxonomic overlap between the morphology- and metabarcoding-based 510 

survey was minimal at low taxonomic ranks, only two species and six genera were found 511 

in both survey methodologies, barely 1-3% of the total OTUs assigned to those levels 512 

(Fig. 5 and Table S3, Supporting information). The taxonomic overlap increased at 513 

higher taxonomic ranks, reaching 34% and 33% of taxa identified at the Class and 514 

Phylum level, respectively (Fig. 5). There were three Phyla found only in the visual 515 

surveys (Brachiopoda, Rhizopoda and Sipuncula), though these represented a small 516 

percentage (a combined 2.2%) of the total taxa found by the morphology-based 517 
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approach (Fig. 6). Seven Phyla were exclusively identified using metabarcoding, 518 

including microeukaryotes and fungi (Myzozoa, Ascomycota and Oomycota), 519 

Archaeplastida and Stramenopiles (Rhodophyta, Chlorophyta, Bacillariophyta and 520 

Ochrophyta) though some of these Phyla were excluded from the morphology-based 521 

surveys a priori (Fig. 6). Importantly, these microeukaryotic and fungal phyla 522 

represented 43% of the total taxa found using the metabarcoding approach (Fig. 6). 523 

Arthropods, Annelids, Porifera and Echinoderms were common in the morphology- and 524 

metabarcoding-based survey (Fig. 6). Interestingly, Molluscs and Bryozoans which were 525 

common in the morphology-based survey were scarce in metabarcoding-based survey 526 

(Fig. 6).  527 

Discussion  528 

To routinely apply DNA metabarcoding of kelp-holdfast-associated biodiversity as a kelp 529 

forest ecosystem monitoring tool, sampling and laboratory protocols must be optimized, 530 

validated and standardized (Cowart et al., 2015; Elbrecht & Leese, 2017; Pawlowski et 531 

al., 2018). Here, we present the analysis of a robust experimental design that quantifies 532 

the impacts of various practical, laboratory and bioinformatic decisions made during a 533 

cDNA approach to estimating biodiversity. Our overall aim was to highlight the 534 

opportunity for using cDNA to assess the taxonomic richness and community 535 

composition of assemblages living on and in the holdfasts of a dominant ecosystem 536 

engineering kelp, and to identify any shortcomings and biases in such an approach. Our 537 

results highlight that fractioning the community into similarly sized organisms enables 538 

detection of a wider range of taxa, and replication of community DNA extraction, as well 539 
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as replicate PCR reactions help to capture the maximum taxonomic richness within a 540 

sample. When compared with traditional morphology-based approaches to quantifying 541 

biodiversity in kelp-holdfast communities, a cDNA approach recovers higher levels of 542 

taxonomic richness and a greater breadth of phyla. Nonetheless, as described in several 543 

other systems (Gauthier et al., 2019), incomplete reference sequence databases, 544 

remain a key factor limiting the potential of cDNA approaches to biodiversity assessment 545 

in this ecosystem. Below we outline our learnings, and discuss their implications for 546 

quantifying biodiversity, providing methodological and procedural recommendations for 547 

cDNA studies of kelp-holdfast-associated biodiversity. 548 

Partitioning the kelp-holdfast community into two size fractions, corresponding to 549 

the mega- as well as macro-benthic organisms (Large [Lrg] fraction) and meio-benthic 550 

organisms (Small [Sml] fraction), allowed the detection of a wider diversity than what 551 

can be achieved without size fractioning. Within kelp-holdfasts, resident organisms vary 552 

considerably in their biomass (Anderson et al., 2005), from nematodes only micrometers 553 

in length to sponges or colonial ascidians that can dominate much of the available space 554 

within a holdfast. The composition of the community obtained when pooling the large 555 

and small size fractions after extraction, regardless of whether samples were pooled 556 

manually or bioinformatically (MPFEXT, MPFPCR, BAF and BCF), was different to that of 557 

the community characterized when both fractions were extracted together, simulating 558 

the un-fractioned sample of the same communities (MPFCOM) (Fig. 2). Higher numbers 559 

of DNA copies from larger organisms with greater biomass can hinder the detection of 560 

smaller organisms, and thus in the absence of size fractioning, higher sequencing effort 561 
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is required to detect small, low biomass organisms (Cowart et al., 2015). In our study, 562 

the smaller size fraction had greater taxonomic richness than the larger size fraction at 563 

the ASV- and OTU-level. However, because many of these ASVs and OTUs had low 564 

read abundance, after applying more stringent filtering, differences in richness between 565 

the large and small fraction disappeared. Similar to previous studies, our results suggest 566 

that without size fractioning, it may be difficult to recover the presence of small 567 

organisms in taxonomically diverse communities (Rex & Etter, 2010; Wangensteen et 568 

al., 2018).  569 

 To avoid missing taxa, previous studies have suggested that multiple extractions 570 

and amplifications of the same sample may be required (Ficetola et al., 2015). Across 571 

our study design, the mass of the community subsample was kept consistent, optimizing 572 

the ratio of sample mass to reagent volume for DNA extraction (as determined in pilot 573 

studies) and enabling the use of each community sample across several experimental 574 

treatments. Despite our efforts to homogenize the samples before subsampling, we 575 

found that although extraction replicates (EXTA vs. EXTB) had similar richness they 576 

differed in community composition. This result is consistent with previous studies on 577 

animal taxa that have also found high variability among extraction replicates (Hermans, 578 

Buckley, & Lear, 2018). In the case of kelp-holdfast community samples, the size of any 579 

subsamples used for extraction may often be too small relative to the bulk community 580 

sample to recover the full taxonomic breadth of organisms that are present (Deiner et 581 

al., 2017). Future studies may wish to trial increasing the overall mass of subsamples 582 

used in DNA extraction, to potentially gain more representative samples of the entire 583 
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community. Nonetheless, our results also highlight the value of having extraction 584 

replicates (Zhou et al., 2011).  585 

In contrast, studies focused on single phyla have shown that replicate extractions 586 

are less important than PCR replicates in minimizing variability among samples (Ficetola 587 

et al., 2015; Porter et al., 2019). PCR replicates are recommended as a procedure to 588 

reduce the PCR stochasticity and maximize the detection of taxa (Leray & Knowlton, 589 

2015). The downside of increasing the number of PCR replicates however, is the 590 

increased cost and the risk of false positives by accumulating artefactual sequences 591 

(Alberdi et al., 2018; Ficetola et al., 2015). In our study, we found that although PCR 592 

replicates are presumed to have similar biases due to primer choice and the laboratory 593 

protocols we used, inherent stochasticity in each PCR replicate slightly influenced the 594 

taxonomic richness observed, but not the community composition of replicate PCRs.  595 

Despite our efforts to rarefy samples that were bioinformatically-combined 596 

following sequencing so that they were comparable to samples that were manually-597 

pooled before sequencing, in most cases this was not sufficient to make up for the 598 

impact of increased sequencing depth. For instance, bioinformatically-combining the 599 

large and small fractions of the samples (BCF) tended to produce higher taxonomic 600 

richness than if the large and small fractions were manually-pooled before sequencing 601 

(MPFPCR), and the lowest taxonomic richness was always observed when 602 

bioinformatically-averaging the large and small fractions of the samples (BAF). Similar 603 

results were observed for other pooling strategies used for the extraction replicates, 604 

where we observed significantly higher richness when bioinformatically-combining the 605 
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extraction replicates (BCE) or manually-pooling PCRs of the replicate extractions 606 

(MPEPCR) compared with bioinformatically-averaging extraction replicates (BAE). In 607 

contrast, bioinformatically-combining PCR replicates caused little or no increase in 608 

taxonomic richness, except at the ASV-level where, again, bioinformatically-combined 609 

PCR replicates (BCP) had the highest taxonomic richness. The high similarity in the 610 

community composition of PCR replicates (discussed above) may explain why there was 611 

no increase in taxonomic richness when PCR replicates were bioinformatically-612 

combined, supporting findings of previous studies that suggest ecological inferences are 613 

influenced most by sequencing depth rather than PCR stochasticity (Smith & Peay, 614 

2014).  615 

Across our experimental design, the greatest taxonomic richness was recovered 616 

through bioinformatically-combining fractions, extractions and PCR replicates (BCF, 617 

BCE and BCP, respectively).  Procedures equivalent to our bioinformatically-combined 618 

treatment have been shown to commonly recover the highest number of species (Leray 619 

& Knowlton, 2017). Nonetheless, the risk of false positives is also increased by such 620 

additive strategies – through increased introduction and amplification of contaminants, 621 

as well as sequencing errors. For these reasons, more restrictive strategies such as 622 

removing singletons, even doubletons and tripletons (Kunin et al., 2010), and stringent 623 

filtering can be used to remove artefactual sequences at the expense of removing low 624 

abundance true positives (Elbrecht & Leese, 2017; Flynn et al., 2015; Leray & Knowlton, 625 

2017). In our case, we used a range of thresholds for the minimum read abundance 626 

filtering across samples to remove rare ASVs or OTUs that may be erroneous 627 
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sequences or artefacts. By choosing a relative read abundance across samples, ASVs 628 

which may appear in low abundance in some samples but may be present in greater 629 

abundance in other samples will be retained as they are possible true positives (Leray & 630 

Knowlton, 2017). Even using the most stringent filtering at the ASV-level, 631 

bioinformatically-combined fractions (BCF) recovered the highest diversity. Interestingly,  632 

when increasing the level of filtering, the advantage of maximizing the number of taxa 633 

detected by bioinformatically-combined extractions (BCE) and PCR replicates (BCP) 634 

disappears and estimates of richness become similar to those obtained by manually-635 

pooling replicates before sequencing (MPEPCR and MPPPCR, respectively).  636 

The chosen methodological approach for a cDNA study will differ depending on 637 

whether a study is focused on ASVs or OTUs and whether the overall richness or 638 

different measures of diversity or turnover among samples are of interest. Recently, the 639 

use of ASVs instead of OTUs has been promoted because it improves the reusability, 640 

reproducibility and comprehensiveness of sampled biodiversity (Callahan, McMurdie, & 641 

Holmes, 2017). In our study, differences in taxonomic richness between the 642 

bioinformatically-combined samples and other pooling strategies diminished when 643 

clustering ASVs into OTUs. At the ASV-level, combining the size fractions, extractions or 644 

PCRs bioinformatically after sequencing (BCF, BCE and BCP) revealed higher 645 

taxonomic richness than any other strategies for pooling samples, either by 646 

bioinformatically-averaging (BAF) or manually-pooling fractions before PCR (MPFEXT) or 647 

before sequencing (MPFPCR). However, at the OTU-level, samples manually-pooled 648 

before sequencing (MPFPCR, MPEPCR and MPPPCR) showed similar richness as 649 
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bioinformatically-combined samples (BCF, BCE and BCP) at a reduced sequencing 650 

cost. Because differences in taxonomic richness between pooled samples are no longer 651 

significant when similar sequences are collapsed into OTUs, nucleotide differences 652 

(<3%) among divergent lineages of the same species or cryptic species, appeared to 653 

drive differences observed at the ASV-level.  654 

Interestingly, the composition inferred for our kelp-holdfast communities remained 655 

similar regardless of the strategy used for pooling fractions, extractions and PCRs and 656 

were consistent across ASVs and OTUs. Therefore, it appears that multivariate 657 

descriptions of community composition, may be more robust to methodological or 658 

procedural biases than univariate biodiversity indices. If the main objective is to retrieve 659 

the greatest number of taxa possible, bioinformatically-combining the fractions after 660 

sequencing separately would be recommended (BCF), especially at the ASV-level, 661 

using moderate filtering by read abundance (e.g. 0.01%) to remove false positives. 662 

Nevertheless, if there are limits to resources or the primary interest of a study is focused 663 

at the OTU-level, pooling the PCR replicates of the extractions for the large and small 664 

fractions before sequencing (MPEPCR) would recover a similar community composition. 665 

Such an approach would minimize sequencing costs, in favor of increasing the field 666 

sampling effort, and thereby potentially the overall richness captured by the study 667 

(Porter et al., 2019). 668 

We chose to use COI as the barcode region for characterizing the kelp-holdfast 669 

community because of its substantial representation in reference sequence repositories 670 

(Porter & Hajibabaei, 2018), its broad taxonomic coverage, and it has been shown to 671 
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successfully discriminate among species (Andújar et al., 2018). However, our data and 672 

previous results suggest that reference databases are biased towards highly abundant 673 

macro-organisms (Wangensteen et al., 2018), and lack reference sequences for small 674 

and cryptic species which can also be a challenge to identify morphologically. The 675 

observed difference in taxonomic richness between bioinformatically-combined samples 676 

of the large and small fractions (BCF) and manually-pooling the large and small fractions 677 

before sequencing (MPFPCR) diminished as our reliance on taxonomic precision 678 

increased (i.e. considering only assigned ASVs and OTUs). Despite efforts to generate 679 

DNA barcodes for specific taxa and locations (Carew et al., 2017; Morinière et al., 680 

2019), DNA metabarcoding is still somewhat limited by incomplete reference databases 681 

(Curry, Gibson, Shokralla, Hajibabaei, & Baird, 2018; McGee et al., 2019). While 682 

reference databases continue to improve, taxonomy-free approaches (Apothéloz-Perret-683 

Gentil et al., 2017; Maechler, Walser, & Altermatt, 2020) enable some important 684 

biodiversity inferences, albeit without the tangible links to community function and 685 

resilience that require knowledge of species (or OTUs or ASVs) identity and ecology. 686 

Using molecular tools for biomonitoring diverse assemblages is becoming more 687 

common, often detecting higher diversity than conventional morphology-based 688 

approaches (Deiner et al., 2017). Our metabarcoding approach retrieved almost two 689 

times the number of OTUs identified using conventional morphological surveys of kelp-690 

holdfasts and had broader taxonomic coverage (Anderson et al., 2005; Shum et al., 691 

2019; Wernberg et al., 2019). Nonetheless, there were certain strengths unique to each 692 

approach. For example, a higher diversity of taxa was found using cDNA for some 693 
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groups, such as Porifera and Cnidaria, with morphological features that are not easily 694 

retained through common preservation techniques (e.g. freezing or fixation). Our cDNA 695 

approach also recovered Rhodophyta and Orchophyta, Phyla that were not considered 696 

by the morphological survey despite being important components of kelp forest 697 

communities (Shum et al., 2019). On the other hand, using the metabarcoding 698 

approach, Molluscs and Bryozoans were poorly represented relative to the morphology-699 

based survey, potentially due the strong taxonomic expertise in these groups (Anderson 700 

et al., 2005) or due to a true loss in diversity in those groups as the two studies were 701 

conducted 20 years apart. It could also be due to biases in the extraction of DNA from 702 

organisms in mixed communities (Hermans et al., 2018) or biases introduced by primer 703 

choice (van der Loos & Nijland, 2020). In this case, using alternative extraction 704 

techniques, or using a combination of primers, to target certain taxa within the holdfast 705 

more specifically may be helpful (Alberdi et al., 2018). 706 

Overall, the metabarcoding approach captured a good representation of the 707 

known kelp-holdfast diversity and proved more time- and cost-effective. For the groups 708 

considered by both survey methods, there were similar trends in the number of taxa 709 

recovered for the dominant phyla. For instance, Arthropoda, Annelida, Porifera and 710 

Echinodermata – all abundant and important taxa in kelp forest ecosystems (Anderson 711 

et al., 2005; Wernberg et al., 2019) – were common in both surveys showing a high 712 

proportion of taxa. However, there was a higher proportion of undefined taxa using the 713 

metabarcoding approach, especially at lower taxonomic ranks. The limited ability to 714 

taxonomically assign the molecular OTUs, especially at lower taxonomic ranks, again, 715 
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reflects gaps in reference sequence databases (Wangensteen et al., 2018), particularly 716 

for marine species (Arranz et al., 2020; Leray & Knowlton, 2016). Ideally, both 717 

approaches would be used in tandem to further develop an understanding of their 718 

respective strengths and weaknesses, and to provide a specimen reference collection 719 

corresponding to the sequence reference database, to help increase the ability of cDNA 720 

studies to assign taxonomic identities to sequences.  721 

The effectiveness of a biomonitoring strategy depends on the ability to detect 722 

diversity and change over time and space (Shum et al., 2019). Our study retrieved a 723 

high number of taxa within a relatively low number of samples and demonstrated the 724 

ability to distinguish among samples at small spatial scales (meters apart; Fig. 4). The 725 

holdfast has been a key focus in ecological studies because it is convenient to sample, 726 

hosts a diversity of taxa, and because kelps are susceptible to environmental change, 727 

so too are their holdfasts (Smale et al., 2013; Teagle et al., 2017; Vergés et al., 2014; 728 

Wernberg et al., 2016). One of the drawbacks in using the holdfasts for monitoring 729 

however, was the immense diversity they support, making morphological 730 

characterization of their associated biodiversity a highly intensive task. Our study 731 

reveals that community metabarcoding provides a means for the high-resolution 732 

characterization of biodiversity associated with holdfasts, thus making kelp-holdfast 733 

assemblages an accessible barometer for monitoring biodiversity change in critically 734 

important and at-risk kelp forests. By carefully dissecting procedural sources of bias and 735 

determining cost-effective and reproducible methods it shows promise that community 736 
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DNA metabarcoding could provide a standardized method for sampling the biodiversity 737 

of these hyperdiverse marine communities.  738 
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Tables and figures (with captions) 971 

 972 

Figure 1. A) Ecklonia radiata forest and associated hyperdiverse communities making 973 
up this ecosystem. The white square highlights the kelp-holdfast which was used as the 974 
focal sampling unit in our study.  B) Overview of the experimental design to investigate 975 
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the impact of alternative decisions and procedures on biodiversity estimates for kelp-976 
holdfast-associated assemblages using community DNA (cDNA) metabarcoding. 977 
Experimental treatments were considered during the sample preparation, DNA 978 
extraction and PCR amplification steps of the cDNA approach. In bold are the 979 
treatments applied to the kelp-holdfast communities which we compared in series of 980 
planned contrasts. For each DNA extraction and PCR amplification, two replicates were 981 
performed. See Experimental design section for additional details. 982 

 983 



    43 

 984 

Figure 2. Summary results for the planned contrasts used to examine differences in taxonomic richness (upper table) and 985 
community composition (lower table) as a result of different decisions taken during the cDNA approach, including: sample 986 
preparation, DNA extraction and PCR amplification. Differences were examined at the ASV- (left table) and OTU-level 987 
(right table), considering different filtering thresholds (NO: no filtering, 0.003%, 0.01% and 0.05% minimum read 988 
abundance across all samples) and including all reads and only reads taxonomically assigned to Eukaryota. Blue color 989 
intensity increases with increasing level of statistical significance (key, top left) and white denotes no statistically 990 
significant difference between treatments. A conservative approach was used to find the consensus across three random 991 
seeds of each rarefaction performed (see Table S2, Supporting information)992 
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993 
Figure 3. Mean (±SE) taxonomic richness of ASVs filtered at 0.01% minimum read abundance and considering all reads 994 
for each of the 11 planned contrasts considered at the sample preparation, DNA extraction and PCR amplification steps of 995 
cDNA approach. Dashed lines connect pairs of experimental treatments considered in each numbered contrast (see 996 
Experimental design section for details).  997 
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Figure 4. Principal coordinates of the Jaccard’s dissimilarity between the large and 999 
small fractions (shaded polygons) of the sampled kelp-holdfast assemblages. Each 1000 
holdfast sample is represented by a different colored symbol. The small size fractions 1001 
for each sample are indicated by triangles and the large fractions by circles. The labels 1002 
Lrg (large) and Sml (small) indicate the group centroids. Although among sample 1003 
differences were large, indicated by the clustering of symbols of the same color within 1004 
the PCoA space, differences between size fractions were consistent and significant. 1005 

 1006 
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1007 
Figure 5. Venn diagrams showing the number of taxa detected by each methodological 1008 
approach at different taxonomic levels. Results of cDNA metabarcoding are displayed 1009 
on the left (blue) and traditional morphology-based surveys on the right (yellow) of each 1010 
Venn diagram, with the number of taxa in common in the intersection (green).   1011 

1012 
Figure 6. Proportion of taxa identified for each phylum by each methodological 1013 
approach. DNA metabarcoding on the left (blue) and traditional morphological-based 1014 
surveys on the right (yellow). 1015 


