References
1. An, H.; Yang, W. M.; Maghbouli, A.; Chou, S. K.; Chua, K. J., Detailed physical properties prediction of pure methyl esters for biodiesel combustion modeling. APPLIED ENERGY 2013,102 , 647-656.
2. Evangelista, N. S.; do Carmo, F. R.; de Sant’Ana, H. B., Estimation of Physical Constants of Biodiesel-Related Fatty Acid Alkyl Esters: Normal Boiling Point, Critical Temperature, Critical Pressure, and Acentric Factor. Industrial & Engineering Chemistry Research2018, 57 (25), 8552-8565.
3. Do Carmo, F. R.; Evangelista, N. S.; Fernandes, F. A. N.; De Sant’Ana, H. B., Evaluation of Optimal Methods for Critical Properties and Acentric Factor of Biodiesel Compounds with Their Application on Soave-Redlich-Kwong and Peng-Robinson Equations of State. Journal of Chemical and Engineering Data 2015, 60 (11), 3358-3381.
4. Jahromi, S. A.; Roosta, A., Estimation of critical point, vapor pressure and heat of sublimation of pharmaceuticals and their solubility in supercritical carbon dioxide. FLUID PHASE EQUILIBRIA2019, 488 , 1-8.
5. Zhang, J. C.; Wu, X. Y.; Cao, W. L., Study on critical properties for CO2+cosolvent binary system and ternary system. CHINESE JOURNAL OF CHEMICAL ENGINEERING 2002, 10 (2), 223-227.
6. Street, C. G.; Guigard, S. E., Treatment of Oil-Based Drilling Waste Using Supercritical Carbon Dioxide. JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY 2009, 48 (6), 26-29.
7. Su, Y.; Wang, Z.; Jin, S.; Shen, W.; Ren, J.; Eden, M. R., An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures. AIChE Journal2019, 65 (9).
8. Shi, Y.; Yu, M.; Liu, J.; Yan, F.; Luo, Z.-H.; Zhou, Y.-N., Quantitative Structure–Property Relationship Model for Predicting the Propagation Rate Coefficient in Free-Radical Polymerization.Macromolecules 2022, 55 (21), 9397-9410.
9. Jia, Q.; Cui, X.; Li, L.; Wang, Q.; Liu, Y.; Xia, S.; Ma, P., Quantitative Structure-Activity Relationship for High Affinity 5-HT1A Receptor Ligands Based on Norm Indexes. J Phys Chem B2015, 119 (51), 15561-7.
10. Ghasemitabar, H.; Movagharnejad, K., Estimation of the normal boiling point of organic compounds via a new group contribution method.Fluid Phase Equilibria 2016, 411 , 13-23.
11. Yan, X.; Dong, Q.; Hong, X., Reliability analysis of group-contribution methods in predicting critical temperatures of organic compounds. Journal of Chemical and Engineering Data2003, 48 (2), 374-380.
12. Qiang, W.; Peisheng, M.; Qingzhu, J.; Shuqian, X., Position group contribution method for the prediction of critical temperatures of organic compounds. Journal of Chemical and Engineering Data2008, 53 (5), 1103-1109.
13. Sun, Y.; Sahinidis, N. V., A New Functional Group Selection Method for Group Contribution Models and Its Application in the Design of Electronics Cooling Fluids. Industrial & Engineering Chemistry Research 2021, 60 (19), 7291-7300.
14. Li, Z.; Zuo, L.; Wu, W.; Chen, L., The New Method for Correlation and Prediction of Thermophysical Properties of Fluids. Critical Temperature. Journal of Chemical & Engineering Data2017, 62 (11), 3723-3731.
15. Valderrama, J. O.; Forero, L. A.; Rojas, R. E., Extension of a group contribution method to estimate the critical properties of ionic liquids of high molecular mass. Industrial and Engineering Chemistry Research 2015, 54 (13), 3480-3487.
16. Zbogar, A.; Lopes, F. V. D. S.; Kontogeorgis, G. M., Approach suitable for screening estimation methods for critical properties of heavy compounds. Industrial and Engineering Chemistry Research2006, 45 (1), 476-480.
17. Nannoolal, Y.; Rarey, J.; Ramjugernath, D., Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution. Fluid Phase Equilibria 2007,252 (1), 1-27.
18. Espinosa, G.; Yaffe, D.; Arenas, A.; Cohen, Y.; Giralt, F., A Fuzzy ARTMAP-Based Quantitative Structure−Property Relationship (QSPR) for Predicting Physical Properties of Organic Compounds. Industrial & Engineering Chemistry Research 2001, 40 (12), 2757-2766.
19. Wen, X.; Qiang, Y., A new group contribution method for estimating critical properties of organic compounds. Industrial and Engineering Chemistry Research 2001, 40 (26), 6245-6250.
20. Daubert, T. E.; Bartakovits, R., Prediction of critical temperature and pressure of organic compounds by group contribution.Industrial and Engineering Chemistry Research 1989,28 (5), 638-641.
21. Wang, Q.; Jia, Q.; Ma, P., Position group contribution method for the prediction of critical pressure of organic compounds. Journal of Chemical and Engineering Data 2008, 53 (8), 1877-1885.
22. Otobrise, C.; Osondu Monago, K., New group contribution method for predicting the critical pressures of fatty acids and triglycerides.International Journal of Computational and Theoretical Chemistry2015, 3 (6).
23. Nikitin, E. D.; Popov, A. P.; Bogatishcheva, N. S.; Faizullin, M. Z., Critical Temperatures, Pressures, Heat Capacities, and Thermal Diffusivities of C3 to C6 Dinitriles. Journal of Chemical & Engineering Data 2022, 67 (4), 836-845.
24. Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P., The Properties of Gases and Liquids, 5th ed. McGraw-Hill Education: New York2001 .
25. Nannoolal, Y.; Rarey, J.; Ramjugernath, D., Estimation of pure component properties. Fluid Phase Equilibria 2007,252 (1-2), 1-27.
26. Sanghvi, R.; Yalkowsky, S. H., Estimation of the normal boiling point of organic compounds. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 2006, 45 (8), 2856-2861.
27. Joback, K. G. A unified approach to physical property estimation using multivariate statistical techniques. Massachusetts Institute of Technology, 1984.
28. Constantinou, L.; Gani, R., New group contribution method for estimating properties of pure compounds. AIChE Journal1994, 40 (10), 1697-1710.
29. Marrero, J.; Gani, R., Group-contribution based estimation of pure component properties. Fluid Phase Equilib. 2001,183-184 , 183-208.
30. Hukkerikar, A. S.; Sarup, B.; Ten Kate, A.; Abildskov, J.; Sin, G.; Gani, R., Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis.Fluid Phase Equilibria 2012, 321 , 25-43.
31. Rücker, C.; Rücker, G.; Meringer, M., y-Randomization and Its Variants in QSPR/QSAR. Journal of Chemical Information and Modeling 2007, 47 (6), 2345-2357.
32. National Institute of Standards and Technology (NIST).https://webbook.nist.gov/chemistry/(accessed 2022 ) .
33. Haynes, W. M., CRC handbook of chemistry and physics . CRC press: 2014.
34. Rowley, R.; Wilding, W.; Oscarson, J.; Zundel, N.; Marshall, T.; Daubert, T.; Danner, R., DIPPR® Data Compilation of Pure Compound Properties, Design. Institute for Physical Properties, AIChE, New York 2002 .