References
[1] Dorrell G, Díaz V. Siemens Gamesa’s flagship 14 MW turbine to power 1.4 GW Sofia offshore wind power project in the UK. Siemens Gamesa Renew Energy 2020.
[2] Johnston B, Foley A, Doran J, Littler T. Levelised cost of energy, A challenge for offshore wind. Renew Energy 2020;160:876–85. https://doi.org/https://doi.org/10.1016/j.renene.2020.06.030.
[3] Sharifzadeh M, Lubiano-Walochik H, Shah N. Integrated renewable electricity generation considering uncertainties: The UK roadmap to 50% power generation from wind and solar energies. Renew Sustain Energy Rev 2017;72:385–98. https://doi.org/https://doi.org/10.1016/j.rser.2017.01.069.
[4] Barutha P, Nahvi A, Cai B, Jeong HD, Sritharan S. Evaluating commercial feasibility of a new tall wind tower design concept using a stochastic levelized cost of energy model. J Clean Prod 2019;240:118001. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118001.
[5] MacPhee DW, Beyene A. Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor. Energy 2015;90:1055–65. https://doi.org/https://doi.org/10.1016/j.energy.2015.08.016.
[6] Regodeseves PG, Morros CS. Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake. Energy 2020;202:117674. https://doi.org/https://doi.org/10.1016/j.energy.2020.117674.
[7] Jin Q, Li VC. Structural and durability assessment of ECC/concrete dual-layer system for tall wind turbine towers. Eng Struct 2019;196:109338. https://doi.org/https://doi.org/10.1016/j.engstruct.2019.109338.
[8] Yadav KK, Gerasimidis S. Imperfection insensitive thin cylindrical shells for next generation wind turbine towers. J Constr Steel Res 2020;172:106228. https://doi.org/https://doi.org/10.1016/j.jcsr.2020.106228.
[9] Lin K, Xiao S, Zhou A, Liu H. Experimental study on long-term performance of monopile-supported wind turbines (MWTs) in sand by using wind tunnel. Renew Energy 2020;159:1199–214. https://doi.org/https://doi.org/10.1016/j.renene.2020.06.034.
[10] Ma H, Yang J. A novel hybrid monopile foundation for offshore wind turbines. Ocean Eng 2020;198:106963. https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.106963.
[11] Long L, Mai QA, Morato PG, Sørensen JD, Thöns S. Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures. Renew Energy 2020;159:1036–46. https://doi.org/https://doi.org/10.1016/j.renene.2020.06.038.
[12] Farrar CR, Worden K. Structural Health Monitoring: A Machine Learning Perspective. Struct Heal Monit A Mach Learn Perspect 2012. https://doi.org/10.1002/9781118443118.
[13] Jacob A, Mehmanparast A, D’Urzo R, Kelleher J. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments. Int J Fatigue 2019;128. https://doi.org/10.1016/j.ijfatigue.2019.105196.
[14] Mehmanparast A, Brennan F, Tavares I. Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results. Mater Des 2017. https://doi.org/10.1016/j.matdes.2016.10.070.
[15] Mehmanparast A, Taylor J, Brennan F, Tavares I. Experimental investigation of mechanical and fracture properties of offshore wind monopile weldments: SLIC interlaboratory test results. Fatigue Fract Eng Mater Struct 2018;41:2485–501. https://doi.org/10.1111/ffe.12850.
[16] Arany L, Bhattacharya S, Macdonald J, Hogan SJ. Design of monopiles for offshore wind turbines in 10 steps. Soil Dyn Earthq Eng 2017;92:126–52. https://doi.org/https://doi.org/10.1016/j.soildyn.2016.09.024.
[17] Biswal R, Mehmanparast A. Fatigue damage analysis of offshore wind turbine monopile weldments. Procedia Struct. Integr., 2019. https://doi.org/10.1016/j.prostr.2019.08.086.
[18] Bocher M, Mehmanparast A, Braithwaite J, Shafiee M. New shape function solutions for fracture mechanics analysis of offshore wind turbine monopile foundations. Ocean Eng 2018;160:264–75. https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.04.073.
[19] Kolios A, Wang L, Mehmanparast A, Brennan F. Determination of stress concentration factors in offshore wind welded structures through a hybrid experimental and numerical approach. Ocean Eng 2019;178:38–47. https://doi.org/https://doi.org/10.1016/j.oceaneng.2019.02.073.
[20] Jacob A, Oliveira J, Mehmanparast A, Hosseinzadeh F, Kelleher J, Berto F. Residual stress measurements in offshore wind monopile weldments using neutron diffraction technique and contour method. Theor Appl Fract Mech 2018. https://doi.org/10.1016/j.tafmec.2018.06.001.
[21] Yeter B, Garbatov Y, Guedes Soares C. Numerical and experimental study of the ultimate strength of a monopile structure. Eng Struct 2019;194:290–9. https://doi.org/https://doi.org/10.1016/j.engstruct.2019.05.074.
[22] Mai QA, Weijtjens W, Devriendt C, Morato PG, Rigo P, Sørensen JD. Prediction of remaining fatigue life of welded joints in wind turbine support structures considering strain measurement and a joint distribution of oceanographic data. Mar Struct 2019;66:307–22. https://doi.org/https://doi.org/10.1016/j.marstruc.2019.05.002.
[23] Ambühl S, Kofoed JP, Sørensen JD. Determination of wave model uncertainties used for probabilistic reliability assessments of wave energy devices. Proc Int Offshore Polar Eng Conf 2014;2:508–15.
[24] Moghaddam BT, Hamedany AM, Taylor J, Mehmanparast A, Brennan F, Davies CM, et al. Structural integrity assessment of floating offshore wind turbine support structures. Ocean Eng 2020;208:107487. https://doi.org/10.1016/j.oceaneng.2020.107487.
[25] Igwemezie V, Mehmanparast A, Kolios A. Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective. Mar Struct 2018. https://doi.org/10.1016/j.marstruc.2018.06.008.
[26] Igwemezie V, Mehmanparast A. Waveform and frequency effects on corrosion-fatigue crack growth behaviour in modern marine steels. Int J Fatigue 2020;134:105484. https://doi.org/10.1016/j.ijfatigue.2020.105484.
[27] Modulus T, Modulus C, Rates S. Strain-Controlled Fatigue Testing 1. ASTM Stand E606 2013;92:1–16. https://doi.org/10.1520/E0606-04E01.Copyright.
[28] Zhao D, Han N, Goh E, Cater J, Reinecke A. Offshore wind turbine aerodynamics modelling and measurements. Wind Turbines Aerodyn Energy Harvest 2019:373–400. https://doi.org/10.1016/b978-0-12-817135-6.00005-3.
[29] ASTM E1049. Standard practices for cycle counting in fatigue analysis. ASTM Stand 2017;85:1–10. https://doi.org/10.1520/E1049-85R17.2.
[30] Hansen MO. Chapter 6:The classical blade element momentum method. 3rd ed. Taylor Francis Group; 2015. https://doi.org/10.1049/ip-a-1.1983.0080.
[31] Models for metals subjected to cyclic loading. Abaqus Anal. User’s Guid., vol. 6.14, Dassault Systèmes; 2014.
[32] Norske Veritas D. RECOMMENDED PRACTICE DET NORSKE VERITAS AS Fatigue Design of Offshore Steel Structures. 2011.