References
Fendt, S.-M., Buescher, J. M., Rudroff, F., Picotti, P., Zamboni, N., Sauer, U., 2010. Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Molecular Systems Biology. 6,356.
Fujitomi, K., Sanda, T., Hasunuma, T., Kondo, A., 2012. Deletion of the PHO13 gene inSaccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresource Technology. 111, 161-166.
Gietz, R. D., Schiestl, R. H., 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols. 2, 31-34.
Ha, S.-J., Galazka, J. M., Rin Kim, S., Choi, J.-H., Yang, X., Seo, J.-H., Louise Glass, N., Cate, J. H. D., Jin, Y.-S., 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences. 108, 504-509.
Ha, S.-J., Kim, S. R., Kim, H., Du, J., Cate, J. H. D., Jin, Y.-S., 2013. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae . Bioresource Technology. 149, 525-531.
Huie, M. A., Scott, E. W., Drazinic, C. M., Lopez, M. C., Hornstra, I. K., Yang, T. P., Baker, H. V., 1992. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI ofSaccharomyces cerevisiae . Molecular and Cellular Biology. 12, 2690-2700.
Jeong, D., Oh, E. J., Ko, J. K., Nam, J.-O., Park, H.-S., Jin, Y.-S., Lee, E. J., Kim, S. R., 2020. Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae . PLOS ONE. 15, e0236294.
Jin, Y.-S., Ni, H., Laplaza, J. M., Jeffries, T. W., 2003. Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Applied and Environmental Microbiology. 69, 495-503.
Kim, S. R., Ha, S.-J., Kong, I. I., Jin, Y.-S., 2012. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae . Metabolic Engineering. 14, 336-343.
Kim, S. R., Kwee, N. R., Kim, H., Jin, Y.-S., 2013a. Feasibility of xylose fermentation by engineeredSaccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3 ), xylitol dehydrogenase (XYL2 ), and xylulokinase (XYL3 ) from Scheffersomyces stipitis . FEMS Yeast Research. 13, 312-321.
Kim, S. R., Lee, K.-S., Kong, I. I., Lesmana, A., Lee, W.-H., Seo, J.-H., Kweon, D.-H., Jin, Y.-S., 2013b. Construction of an efficient xylose-fermenting diploidSaccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation. Journal of Biotechnology. 164, 105-111.
Kim, S. R., Park, Y.-C., Jin, Y.-S., Seo, J.-H., 2013c. Strain engineering of Saccharomyces cerevisiaefor enhanced xylose metabolism. Biotechnology Advances. 31,851-861.
Kim, S. R., Skerker, J. M., Kang, W., Lesmana, A., Wei, N., Arkin, A. P., Jin, Y.-S., 2013d. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae . PLOS ONE. 8, e57048.
Kim, S. R., Skerker, J. M., Kong, I. I., Kim, H., Maurer, M. J., Zhang, G.-C., Peng, D., Wei, N., Arkin, A. P., Jin, Y.-S., 2017. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metabolic Engineering. 40, 176-185.
Kim, S. R., Xu, H., Lesmana, A., Kuzmanovic, U., Au, M., Florencia, C., Oh, E. J., Zhang, G., Kim, K. H., Jin, Y.-S., 2015. Deletion of PHO13 , encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae . Applied and Environmental Microbiology. 81, 1601-1609.
Lynd, L. R., 2017. The grand challenge of cellulosic biofuels. Nature Biotechnology. 35,912-915.
Ni, H., Laplaza, J. M., Jeffries, T. W., 2007. Transposon mutagenesis to improve the growth of recombinantSaccharomyces cerevisiae on d-Xylose. Applied and Environmental Microbiology. 73, 2061-2066.
Park, H., Jeong, D., Shin, M., Kwak, S., Oh, E. J., Ko, J. K., Kim, S. R., 2020. Xylose utilization inSaccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Applied Microbiology and Biotechnology. 104, 3245-3252.
Qin, L., Dong, S., Yu, J., Ning, X., Xu, K., Zhang, S.-J., Xu, L., Li, B.-Z., Li, J., Yuan, Y.-J., Li, C., 2020. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metabolic Engineering. 61, 160-170.
Richa, A., lt, sup, gt, Shuvashish, B., Nilesh Kumar, S., and Sachin, K., 2019. Evaluating the pathway for co-fermentation of glucose and xylose for enhanced bioethanol production using flux balance analysis. Biotechnol. Bioprocess Eng. 24,924-933.
Sasaki, H., Kishimoto, T., Mizuno, T., Shinzato, T., Uemura, H., 2005. Expression of GCR1 , the transcriptional activator of glycolytic enzyme genes in the yeastSaccharomyces cerevisiae , is positively autoregulated by Gcr1p. Yeast. 22, 305-319.
Sasaki, H., Uemura, H., 2005. Influence of low glycolytic activities in gcr1 and gcr2mutants on the expression of other metabolic pathway genes inSaccharomyces cerevisiae . Yeast. 22, 111-127.
Uemura, H., Fraenkel, D. G., 1990.gcr2 , a new mutation affecting glycolytic gene expression inSaccharomyces cerevisiae . Molecular and Cellular Biology. 10, 6389-6396.
Uemura, H., Jigami, Y., 1992. Role ofGCR2 in transcriptional activation of yeast glycolytic genes. Molecular and Cellular Biology. 12, 3834-3842.
Van Vleet, J. H., Jeffries, T. W., Olsson, L., 2008. Deleting the para-nitrophenyl phosphatase (pNPPase),PHO13 , in recombinant Saccharomyces cerevisiae improves growth and ethanol production on d-xylose. Metabolic Engineering. 10, 360-369.
Xu, H., Kim, S., Sorek, H., Lee, Y., Jeong, D., Kim, J., Oh, E. J., Yun, E. J., Wemmer, D. E., Kim, K. H., Kim, S. R., Jin, Y.-S., 2016. PHO13 deletion-induced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae . Metabolic Engineering. 34, 88-96.
Ye, S., Jeong, D., Shon, J. C., Liu, K.-H., Kim, K. H., Shin, M., Kim, S. R., 2019. Deletion of PHO13improves aerobic l-arabinose fermentation in engineeredSaccharomyces cerevisiae . Journal of Industrial Microbiology & Biotechnology. 46, 1725-1731.