References
1. Ranade VV, Chaudhari R, Gunjal PR. Trickle bed reactors:
Reactor engineering & applications. Amsterdam: Elsevier, 2011.
2. Satterfield CN. Trickle-bed reactors. AIChE J.,1975;21(2):209-228.
3. Ng K, Chu C. Trickle-bed reactors. Chem. Eng. Prog.,1987;83(11).
4. Iliuta I, Ortiz-Arroyo A, Larachi F, Grandjean BP, Wild G.
Hydrodynamics and mass transfer in trickle-bed reactors: an overview.Chem. Eng. Sci., 1999;54(21):5329-5337.
5. Gunjal PR, Kashid MN, Ranade VV, Chaudhari RV. Hydrodynamics
of trickle-bed reactors: experiments and CFD modeling. Ind. Eng.
Chem. Res., 2005;44(16):6278-6294.
6. Iliuta I, Larachi F, Al-Dahhan M. Double-slit model for
partially wetted trickle flow hydrodynamics. AIChE J.,2000;46(3):597-609.
7. Al-Dahhan MH, Larachi F, Dudukovic MP, Laurent A.
High-pressure trickle-bed reactors: a review. Ind. Eng. Chem.
Res., 1997;36(8):3292-3314.
8. Dudukovic MP, Kuzeljevic ŽV, Combest DP. Three-phase
trickle-bed reactors. Ullmann’s Encyclopedia of Industrial
Chemistry, 2014;1-40.
9. Crynes LL, Cerro RL, Abraham MA. Monolith froth reactor:
Development of a novel three-phase catalytic system. AIChE J.,1995;41(2):337-345.
10. Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T. Monoliths
as multiphase reactors: a review. AIChE J.,2004;50(11):2918-2938.
11. Jensen KF. Microreaction engineering-is small better?Chem. Eng. Sci., 2001;56(2):293-303.
12. Larachi F, Iliuta I, Belkacemi K. Catalytic wet air
oxidation with a deactivating catalyst analysis of fixed and sparged
three-phase reactors. Catalysis today, 2001;64(3-4):309-320.
13. Iliuta I, Larachi F. Catalytic wet oxidation in three-phase
moving-bed reactors: Modeling framework and simulations for on-stream
replacement of a deactivating catalyst. Ind. Eng. Chem. Res.,2012;52(1):370-383.
14. Sie S. Consequences of catalyst deactivation for process
design and operation. Appl. Catal. A: General,2001;212(1-2):129-151.
15. Li S, Wang C, Yang Y, et al. Investigation of pressure drop
in a cocurrent downflow three-phase moving bed. AIChE J.,2020:e16227.
16. Wang C, Yang Y, et al. Flow regimes in a gas-liquid-solid
three-phase moving bed. AIChE J., submitted and under review.
17. Weekman VW, Myers JE. Fluid-flow characteristics of
concurrent gas-liquid flow in packed beds. AIChE J.,1964;10(6):951-957.
18. Talmor E. Two-phase downflow through catalyst beds: Part I.
Flow maps. AIChE J., 1977;23(6):868-874.
19. Chaudhari R, Ramachandran P. Three-phase catalytic
reactors. AIChE J., 1983;26:177-201.
20. Gianetto A, Baldi G, Specchia V, Sicardi S. Hydrodynamics
and solid-liquid contacting effectiveness in trickle-bed reactors.AIChE J., 1978;24(6):1087-1104.
21. Christensen G, McGovern S, Sundaresan S. Cocurrent downflow
of air and water in a two-dimensional packed column. AIChE J.,1986;32(10):1677-1689.
22. Morsi B, Midoux N, Charpentier J. Flow patterns and some
holdup experimental data in trickle-bed reactors for foaming,
nonfoaming, and viscous organic liquids. AIChE
J., 1978;24(2):357-360.
23. Ling D, Liu P, Cheng ZM. Methanol synthesis in a
three-phase catalytic bed under nonwetted condition. AIChE J.,2017;63(1):226-237.
24. Al-Dahhan MH, Dudukovic MP. Pressure drop and liquid holdup
in high pressure trickle-bed reactors. Chem. Eng. Sci.,1994;49(24):5681-5698.
25. Larachi F, Iliuta I, Chen M, Grandjean B. Onset of pulsing
in trickle beds: evaluation of current tools and state-of-the-art
correlation. Can. J. Chem. Eng., 1999;77(4):751-758.
26. Saroha AK, Nigam K. Trickle bed reactors. Reviews in
Chem. Eng., 1996;12(3-4):207-347.
27. Horowitz G, Cukierman A, Cassanello M. Flow regime
transition in trickle beds packed with particles of different wetting
characteristics-check-up on new tools. Chem. Eng. Sci.,1997;52(21-22):3747-3755.
28. Gunjal PR, Ranade VV, Chaudhari RV. Computational study of
a single-phase flow in packed beds of spheres. AIChE J.,2005;51(2):365-378.
29. Latifi M, Rode S, Midoux N, Storck A. The use of
microelectrodes for the determination of flow regimes in a trickle-bed
reactor. Chem. Eng. Sci., 1992;47(8):1955-1961.
30. Schubert M, Kost S, Lange R, Salmi T, Haase S, Hampel U.
Maldistribution susceptibility of monolith reactors: Case study of
glucose hydrogenation performance. AIChE J.,2016;62(12):4346-4364.
31. Sederman A, Gladden L. Magnetic resonance imaging as a
quantitative probe of gas-liquid distribution and wetting efficiency in
trickle-bed reactors. Chem. Eng. Sci., 2001;56(8):2615-2628.
32. Anadon LD, Sederman AJ, Gladden LF. Mechanism of the
trickle-to-pulse flow transition in fixed-bed reactors. AIChE J.,2006;52(4):1522-1532.
33. Zhao T, Eda T, Achyut S, Haruta J, Nishio M, Takei M.
Investigation of pulsing flow regime transition and pulse
characteristics in trickle-bed reactor by electrical resistance
tomography. Chem. Eng. Sci., 2015;130:8-17.
34. Levec J, Grosser K, Carbonell R. The hysteretic behavior of
pressure drop and liquid holdup in trickle beds. AIChE J.,1988;34(6):1027-1030.
35. Sai P, Varma Y. Pressure drop in gas-liquid downflow
through packed beds. AIChE J., 1987;33(12):2027-2036.
36. Singh BK, Jain E, Buwa VV. Feasibility of Electrical
Resistance Tomography for measurements of liquid holdup distribution in
a trickle bed reactor. Chem. Eng. J., 2019;358:564-579.
37. Chou T, Worley F, Luss D. Transition to pulsed flow in
mixed-phase cocurrent downflow through a fixed bed. Ind. Eng.
Chem. Process Design and Development, 1977;16(3):424-427.
38. Saroha AK, Nandi I. Pressure drop hysteresis in trickle bed
reactors. Chem. Eng. Sci., 2008;63(12):3114-3119.
39. Sie S, Krishna R. Process development and scale up: III.
Scale-up and scale-down of trickle bed processes. Reviews in Chem.
Eng., 1998;14(3):203-252.
40. Wammes W, Mechielsen S, Westerterp K. The transition
between trickle flow and pulse flow in a cocurrent gas-liquid
trickle-bed reactor at elevated pressures. Chem. Eng. Sci.,1990;45(10):3149-3158.
41. Iliuta I, Thyrion F. Flow regimes, liquid holdups and
two-phase pressure drop for two-phase cocurrent downflow and upflow
through packed beds: air/Newtonian and non-Newtonian liquid systems.Chem. Eng. Sci., 1997; 52(21-22):4045-4053.
42. Larachi F, Laurent A, Midoux N. Experimental study of a
trickle-bed reactor operating at high pressure two-phase pressure drop
and liquid satuation. Chem. Eng. Sci., 1991;46(5-6):1233-1246.
43. Wammes W, Mechielsen S, Westerterp K. The influence of
pressure on the liquid hold-up in a cocurrent gas-liquid trickle-bed
reactor operating at low gas velocities. Chem. Eng. Sci.,1991;46(2):409-417.
44. Attou A, Ferschneider G. A two-fluid hydrodynamic model for
the transition between trickle and pulse flow in a cocurrent gas-liquid
packed-bed reactor. Chem. Eng. Sci., 2000;55(3):491-511.
45. Ng K. A model for flow regime transitions in cocurrent
down-flow trickle-bed reactors. AIChE J., 1986;32(1):115-122.
46. Grosser K, Carbonell R, Sundaresan S. Onset of pulsing in
two-phase cocurrent downflow through a packed bed. AIChE J.,1988;34(11):1850-1860.
47. Herskowitz M, Smith J. Liquid distribution in trickle-bed
reactors: Part I. Flow measurements. AIChE J.,1978;24(3):439-450.
48. Saroha AK, Nigam K, Saxena AK, Kapoor V. Liquid
distribution in trickle-bed reactors. AIChE J.,1998;44(9):2044-2052.