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Abstract. Our aim in this paper is to give a sufficient condition ensuring the
finite-time attractivity for the zero solution to semilinear functional differential

inclusions in Banach spaces, in the case where the nonlinearity function possi-

bly has superlinear growth. Our analysis is based on the semigroup theory, the
fixed point principle for condensing multi-valued maps, and local estimates of

solutions. The abstract results will be applied to a class of polytope inclusions

in C0 setting.

1. Introduction

Let (X, ‖ · ‖) be a Banach space. We consider the following problem

CDα
0 u(t) ∈ Au(t) + F (t, ut), t ∈ [0, T ], (1.1)

u(s) = ϕ(s), s ∈ [−h, 0], (1.2)

where CDα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo sense, A is a

closed linear operator in X which generates a strongly continuous semigroup W (·),
F : X → X is the function which will be specified in Section 3. The state function
u takes values in X with the history state ut ∈ Ch = C([−h, 0];X) stands for the
history of the state function up to the time t, i.e., ut(s) = u(t+ s), s ∈ [−h, 0].

Fractional differential equations have recently proved to be valuable tools in the
modeling of many phenomena in various fields of science and engineering. Subse-
quently, there has been a great deal of research on this field. Without stressing to
wide list of references, we quote here some monographs about fractional differential
equations in Euclidean spaces and Banach spaces [6, 8, 24, 38] and some of the most
notable paper in terms of existence, controlability and numerical method results
for fractional differential equations in Banach space [1, 7, 9, 19, 37, 32].

Differential inclusions (DIs) as appearing in (1.1) arise, for instance, from control
theory in which the control factor is taken in the form of feedbacks. In such control
problems, the presence of delay terms is an inherent feature. Recently, the theory
of differential variational inequalities (DVIs) has been an increasingly interesting
subject since DVIs come from various realistic problems (see [28]). In dealing with
DVIs, an effective method is converting them to DIs. These brief mentions tell us
that the study of DIs is able to range over many applications.

Problem (1.1)-(1.2) in case α = 1 (with/without retarded terms) has been stud-
ied extensively. For a complete reference to DIs in infinite dimensional spaces, we
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refer the reader to monograph [17]. In addition, there are many contributions for
semilinear DIs published in the last few years (see e.g. [2, 10, 11, 16, 18, 25, 27, 31]).
Concerning fractional DIs in infinite dimensional spaces, one can find a number of
works devoted to the questions of solvability, stability and controllability. Refer-
ences [3, 20, 26, 33, 34, 37] are the notable investigations that are close to the
problem under consideration.

An important question for systems like (1.1) is to study the finite-time behaviour
of their solutions. Up to now, there are many concepts of finite-time behaviour for
solutions. The concept of finite-time attractivity proposed in [29] is useful in control
theory. We refer to [13, 14, 30] for recent studies related to finite-time attractivity
for ordinary differential equations. For PDE, we refer some recent studies [21, 23].
All of this results are in the equation form. This is the main motivation of this
paper. More precisely, the notion we just mentioned can be adapted for (1.1) as
follows

Definition 1.1. Denote by S(ϕ) the solution set of (1.1) with respect to the initial
datum ϕ. Let u ∈ S(ϕ) be the solution of (1.1), then

(i) u is said to be attractive on [0, T ] if there exists an η > 0 such that

‖vT − uT ‖h < ‖ψ − ϕ‖h
for all ψ ∈ Bη(ϕ)\{ϕ} and v ∈ S(ψ), here and hereafter, ‖ · ‖h denote the
sup norm in Ch.

(ii) u is called exponentially attractive on [0, T ] if

lim sup
η↘0

1

η
sup

ψ∈Bη(ϕ)

sup
v∈S(ψ)

‖uT − vT ‖h < 1.

The rest of our work is organized as follows. In the next section, we recall some
notions and facts related to fractional calculus, measures of noncompactness, set-
valued analyses concluded fixed point principles for multi-valued map and show the
solvability of our problem even if the nonlinearity has superlinear growth. In Section
3, a modified concept of finite-attractivity appropriate to differential systems with
delays is introduced and the main results on the finite-time attractivity of the zero
solution are proved. Then, in Section 5, we show a special case, when F is a
single-valued function and that satysfies a Lipschitz-type condition, we prove the
finite-time attractivity of every solution. And last, we give an example for our
theoretical results in the last section.

2. Preliminaries and existence result

2.1. Fractional calculus. Let Lp(0, T ;X), p ∈ (1,+∞) be the space of X-valued
functions u defined on [0, T ] such that the function t 7→ ‖u(t)‖p is integrable. The
integrals appearing in this work will be understood in the Bochner sense. The
notation Lp(0, T ) stands for Lp(0, T ;R). Now we recall some notions in fractional
calculus (see e.g. [24, 38]).

Definition 2.1. The fractional integral of order α > 0 of a function f ∈ L1(0, T ;X)
is defined by

Iα0 f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Gamma function, provided the integral converges.
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Definition 2.2. For a function f ∈ CN ([0, T ];X), the Caputo fractional derivative
of order α ∈ (N − 1, N) is defined by

CDα
0 f(t) =

1

Γ(N − α)

∫ t

0

(t− s)N−α−1f (N)(s)ds.

Consider the equation

Dα
0 u(t) = Au(t) + f(t), (2.1)

u(0) = ξ, (2.2)

where f ∈ Lp(0, T ;X). In this note we assume that the C0-semigroup W (·) gener-
ated by A is globally bounded, i.e.

‖W (t)x‖ ≤MA‖x‖,∀t ≥ 0, x ∈ X. (2.3)

for some MA ≥ 1. By the arguments in [19] and [37], we have the following
presentation

u(t) = Sα(t)ξ +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds, t > 0, (2.4)

where

Sα(t)x =

∫ ∞
0

φα(θ)W (tαθ)xdθ, (2.5)

Pα(t)x = α

∫ ∞
0

θφα(θ)W (tαθ)xdθ, x ∈ X, (2.6)

φα(θ) =
1

π

∞∑
n=1

(−θ)n−1

(n− 1)!
Γ(nα) sin(nπα).

Let Eα,β be the Mittag-Leffler function given by

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, z ∈ R, α > 0, β > 0.

It is known that, in the case A is a bounded operator, we have (see, e.g., [19])

Sα(t) = Eα,1(tαA), Pα(t) = Eα,α(tαA),

where the series are understood in X. We have the following proposition about
properties of {Sα(t), Pα(t)}. The proof of this proposition can be found in [4] and
[32].

Proposition 2.1. We have some properties of the resolvent operators {Sα(t), Pα(t)}t≥0

as follows

a) If W (·) is a compact semigroup then Sα(t) and Pα(t) are compact for t > 0.
b) If ‖W (t)x‖ ≤M‖x‖ then

‖Sα(t)x‖ ≤M‖x‖,∀x ∈ X,

‖Pα(t)x‖ ≤ M

Γ(α)
‖x‖,∀x ∈ X.

c) If ‖W (t)x‖ ≤Me−βt‖x‖ then

‖Sα(t)x‖ ≤MEα,1(−βtα)‖x‖,∀x ∈ X,
‖Pα(t)x‖ ≤MEα,α(−βtα)‖x‖,∀x ∈ X.
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Let p > 1
α , we define the operator Qα : Lp(0, T ;X)→ C([0, T ];X) as follows:

Qα(f)(t) =

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds. (2.7)

It follows from [19] that Qα has this following important property.

Proposition 2.2. [19] Let {W (t)}t≥0 be the C0-semigroup generated by A. Then
for each bounded set Ω ⊂ Lp(0, T ;X), Qα(Ω) is an equicontinuous set in C([0, T ];X)
provided that W (t) is norm continuous for t > 0.

The main results of this paper is devoted to proving the finite-time attractivity
of solutions for problem (1.1)-(1.2), to this end, we will prove a Halanay-type in-
equality. Firstly, we prove the following lemma, which result is an improvement of
[35, Lemma 2.1].

Lemma 2.3. If the continuous function u(t) ≥ 0, ∀t ∈ R and satisfiesu(t) ≤ c1 + c2 sup
[−h,t]

u(s), t ∈ [0,+∞),

u(t) = |ψ(t)|, t ∈ [−h, 0],
(2.8)

where ψ(t) is a bounded and continuous function and h is a given positive constant
c1 ≥ 0 and 0 < c2 < 1, then we have

u(t) ≤ c1
1− c2

+ c2 sup
[−h,0]

|ψ(s)|, t ≥ 0. (2.9)

Proof. Let tn = hn, n ∈ {−1, 0, 1, 2, ...} and Mn = max
ξ∈[tn−1,tn]

u(ξ). From condition

(2.8), there exists ξ1 ∈ [0, h] such that M1 = u(ξ1) and

M1 ≤ c1 + c2 sup
[−h,ξ1]

u(ξ) ≤ c1 + c2 sup
[−h,h]

u(ξ) ≤ c1 + c2 max{M0,M1},

which implies that

M1 ≤ max
{ c1

1− c2
, c1 + c2M0

}
.

Similarly, there exists ξ2 ∈ [h, 2h] such that M2 = u(ξ2) and

M2 ≤ c1 + c2 sup
[−h,ξ2]

u(ξ) ≤ c1 + c2 sup
[−h,2h]

u(ξ) ≤ c1 + c2 max{M0,M1,M2},

which implies that

M2 ≤ max
{ c1

1− c2
, c1 + c2M0, c1 + c2M1

}
≤ max

{
c1

1− c2
, c1 + c2M0, c1 + c2 max

{ c1
1− c2

, c1 + c2M0

}}
≤ max

{ c1
1− c2

, c1 + c2M0, c1 + c1c2 + c22M0

}
.

In the same way, we get that for any n ≥ 1, there exists ξn ∈ [h(n − 1), hn] such
that Mn = u(ξn) and

Mn ≤ c1 + c2 sup
[−h,ξn]

u(ξ) ≤ c1 + c2 sup
[−h,hn]

u(ξ) ≤ c1 + c2 max{M0,M1, ...,Mn},
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which implies that

Mn ≤ max

{
c1

1− c2
, c1 + c2M0, c1

(
1∑
k=0

ck2

)
+ c22M0, ..., c1

(
n−1∑
k=0

ck2

)
+ cn2M0

}

= max

{
c1

1− c2
, c1 + c2M0, c1

1− c22
1− c2

+ c22M0, ..., c1
1− cn−1

2

1− c2
+ cn2M0

}
≤ max

{
c1

1− c2
, c1 + c2M0,

c1
1− c2

+ c22M0, ...,
c1

1− c2
+ cn2M0

}
= max

{
c1 + c2M0,

c1
1− c2

+ c22M0

}
≤ c1

1− c2
+ c2M0.

This proves the inequality (2.9). �

We are now in a position to show the Halanay-type inequality.

Lemma 2.4. Let v be a continuous and nonnegative function satisfying v(t) =
ψ(t),∀t ∈ [−h, 0], ψ ∈ C([−h, 0];R+) and

v(t) ≤MEα,1(−βtα)v0

+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)[a+ bv(s) + c sup
[−h,s]

v(τ)]ds, t ≥ 0,

for M,β, c > 0, a, b ≥ 0 such that b+ c < β. Then

v(t) ≤ β − b
β − b− c

[
Mv0+a

∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds
]
+

c

β − b
sup

[−h,0]

ψ(s)

(2.10)
for all t > 0.

Proof. We first claim that, if w ∈ C([−h,+∞);R+) satisfies

w(t) ≤ c1(t) + c2 sup
[−h,t]

w(ξ), t > 0

w(ξ) = ψ(ξ), ξ ∈ [−h, 0],

where c1(t) ≥ 0 ∀t ≥ 0, c1(·) is nondecreasing and 0 < c2 < 1, then

w(t) ≤ (1− c2)−1c1(t) + c2 sup
[−h,0]

ψ(ξ), ∀t > 0. (2.11)

The reasoning for this assertion is similar to that in Lemma 2.3. Now we put

w(t) = MEα,1(−βtα)v0+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)[a+ bv(s) + c sup
[−h,s]

v(τ)]ds

for t > 0 and w(ξ) = ψ(ξ) for ξ ∈ [−h, 0].
Using similar argument as in [22, Proposition 3], we get

w(t) ≤Mv0 + a

∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds+
c

β − b
sup

[−h,0]

ψ(s).

From [24], we have t 7→ Eα,1(−(β − b)tα) is nonincreasing and∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds =
1− Eα,1(−(β − b)tα)

β − b
.
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Thus, we apply (2.11) with

c2 =
c

β − b
, c1(t) = Mv0 + a

∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds,

to conclude that

w(t) ≤ β − b
β − b− c

[
Mv0+a

∫ t

0

(t− s)α−1Eα,α(−(β − b)(t− s)α)ds
]
+

c

β − b
sup

[−h,0]

ψ(s).

Obviously, v(t) ≤ w(t) for all t ≥ 0, so we finish the proof. �

2.2. MNC. Let E be a Banach space. We denote by 2E the collection of all subsets
of E and use the following notations

P(E) = {A ∈ 2E : A 6= ∅},
Pb(E) = {A ∈ P(E) : A is bounded},
Pc(E) = {A ∈ P(E) : A is closed},
Kv(E) = {A ∈ P(E) : A is compact and convex}.

We will use the following definition of the measure of noncompactness (see, e.g. [17]).

Definition 2.3. A function β : Pb(E)→ R+ is called a measure of noncompactness
(MNC) on E if

β(co Ω) = β(Ω) for every Ω ∈ Pb(E),

where β(co Ω) is the closure of convex hull of Ω. An MNC β is said to be:

(i) monotone if for each Ω0,Ω1 ∈ Pb(E) such that Ω0 ⊆ Ω1, we have β(Ω0) ≤
β(Ω1);

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E,Ω ∈ Pb(E);
(iii) invariant with respect to the union with a compact set, if β(K ∪Ω) = β(Ω)

for every relatively compact set K ⊂ E and Ω ∈ Pb(E);
(iv) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) +β(Ω1) for any Ω0,Ω1 ∈

Pb(E);
(v) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC satisfying all properties, is the Hausdorff MNC
χ(·), which is defined as follows

χ(Ω) = inf{ε > 0 : Ω has a finite ε− net}.

We denote by C([0;T ];E) the space of E−valued continuous functions on [0;T ]
with the norm ‖x‖ = supt∈[0;T ] ‖x(t)‖ and by L1(0, T ;E) the space of E-valued

Bochner integrable functions on [0;T ] with the norm ‖f‖ =
∫ T

0
‖f(t)‖dt.

We are now in a position to recall a basic estimate based on the Hausdorff MNC.
Let D ⊂ L1(0, T ;E). Then D is said to be integrably bounded if there exists a
function ν ∈ L1(J), J = [0, T ], such that

sup{‖ξ(t)‖ : ξ ∈ D} ≤ ν(t), for a.e. t ∈ J.

Proposition 2.5. ([4]) Let D ⊂ L1(0, T ;E) be such that

(i) D is integrably bounded,
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(ii) χ(D(t)) ≤ q(t) for a.e. t ∈ [0, T ], where q ∈ L1(0, T ). Then

χ

(∫ t

0

D(s) ds

)
≤ 4

∫ t

0

q(s) ds,

here

∫ t

0

D(s) ds =
{∫ t

0

ζ(s) ds : ζ ∈ D
}

.

We also make use of some notions of set-valued analysis. Let Y be a metric
space.

Definition 2.4. A multivalued map (multimap) F : Y → P(E) is said to be:

i) upper semicontinuous (u.s.c) if F−1(V ) = {y ∈ Y : F(y) ∩ V 6= ∅} is a
closed subset of Y for every closed set V ⊂ E;

ii) weakly upper semicontinuous (weakly u.s.c) if F−1(V ) is closed subset of Y
for all weakly closed set V ⊂ E;

iii) closed if its graph ΓF = {(y, z) : z ∈ F(y)} is a closed subset of Y × E;
iv) compact if F(Y ) is relatively compact in E;
v) quasicompact if its restriction to any compact subset A ⊂ Y is compact.

To end this subsection, we recall a fixed point principle for condensing multimaps.

Definition 2.5. A multimap F : Z ⊆ E → P(E) is said to be χ−condensing if for
any bounded set Ω ⊂ Z, the relation

χ(Ω) ≤ χ(F(Ω))

implies the relative compactness of Ω, where χ is the Hausdorff MNC on E.

The following fixed point theorem is obtained from Corollary 3.3.1 and Proposi-
tion 3.5.1 in [17]

Theorem 2.6. Let M be a bounded convex closed subset of E and F : M →
Kv(M) be a closed and χ-condensing multimap. Then Fix(F) := {x ∈ F(x)} is
nonempty and compact.

2.3. Solvability result. Concerning problem (1.1)-(1.2), we give the following as-
sumptions:

(A) The C0-semigroup {S(t)}t≥0 generated by A is norm continuous for t > 0
and globally bounded, i.e. there is M > 1 such that

‖S(t)x‖ ≤M‖x‖,∀t ≥ 0,∀x ∈ X.

(F) The multivalued nonlinearity function F : [0, T ]× Ch → Kv(X) satisfies:
(1) F (·, v) is strongly measurable for each v ∈ Ch and F (t, ·) is u.s.c. for

a.e. t ∈ [0, T ];
(2) ‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F (t, v)} ≤ m(t)Ψ(‖v‖h), for all v ∈ Ch,

where m ∈ Lp(0, T ), p > 1
α and Ψ : R+ → R+ is continuous and

nondecreasing function;
(3) if S(t) is noncompact, there exists a function k ∈ Lp(0, T ) such that

χ(F (t, B)) ≤ k(t). sup
s∈[−h,0]

χ(B(s)),

for a.e. t, s ∈ [0, T ], t ≥ s.
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For given ϕ ∈ C([−h, 0], X), we define the space

Cϕ = {v ∈ C([0, T ];X) : v(0) = ϕ(0)}

as a closed subspace of C([0, T ];X). For v ∈ Cϕ, let v[ϕ] be a function given by

v[ϕ](t) =

{
ϕ(t), t ∈ [−h, 0],

v(t), t ∈ (0, T ].

Clearly, we have

v[ϕ]t(θ) =

{
ϕ(t+ θ),−h− t < θ < −t,
v(t+ θ), θ ∈ [−t, 0].

For v ∈ Cϕ, putting

PpF (v) = {f ∈ Lp((0, T );X) : f(t) ∈ F (t, v[ϕ]t), for a.e. t ∈ [0, T ]},

we have the following property.

Proposition 2.7. Let (F)(1) − (F)(3) hold. Then PpF (u) 6= ∅ for each u ∈
C([−h, T ];X). In addition, PpF : C(J ;X) → P(L1[J ;X]) is weakly u.s.c with
weakly compact and convex values.

Proof. The proof is similar to that in [12, Theorem 1]. �

Definition 2.6. A function u : [−h, T ] → X is said to be an integral solution of
problem (1.1)-(1.2) on the interval [−h, T ] if and only if u(t) = ϕ(t) for t ∈ [−h, 0],
and

u(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Pα(t− s)f(s)ds,

for any t ∈ [0, T ], where f ∈ PpF (u).

We defined the solution operator F : Cϕ → P(Cϕ) as follows

F(u)(t) =

{
ϕ(t), t ∈ [−h, 0],

Sα(t)ϕ(0) +Qα ◦ PpF (u)(t), t ∈ [0, T ].

where Qα is defined by (2.7). It is obvious that u is a fixed point of F iff u is an
integral solution of (1.1)-(1.2) on [−h, T ].

We have the following lemma, where the prove can be found in [18].

Lemma 2.8. i) Let (F)(1) - (F)(2) hold. F (·, x) : [0, T ] ( X admits a
strongly measurable selector and F (t, ·) : Ch( X is u.s.c.

ii) Under the assumptions (A) and (F), the solution operator F is closed with
convex values.

The following theorem is a special case of [26, Theorem 3.4].

Theorem 2.9. Assume that the hypotheses (A) and (F) hold. If

4 sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Pα(t− s)‖k(s)ds < 1, (2.12)

then problem (1.1)-(1.2) has at least one integral solution.
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3. Finite-Time attractivity

In this section, we consider the finite-times exponential attractivity of the zero
solution to (1.1)-(1.2). We first give a sufficient condition in order for this property
to take place.

Concerning problem (1.1)-(1.2), we give the following assumptions:

(A*) The C0-semigroup {S(t)}t≥0 generated by A is norm continuous for t > 0
and exponentially bounded, i.e. there is M ≥ 1, β > 1 such that

‖S(t)x‖ ≤Me−βt‖x‖,∀t ≥ 0,∀x ∈ X.

(F*) The multivalued nonlinearity function F : [0, T ]× Ch → Kv(X) satisfies:
(1) F (·, v) is strongly measurable for each v ∈ Ch and F (t, ·) is u.s.c. for

a.e. t ∈ [0, T ];
(2) ‖F (t, v)‖ = sup{‖ξ‖ : ξ ∈ F(t, v)} ≤ m(t)Ψ(‖v‖h), for all v ∈ X,w ∈
Ch, where m ∈ Lp( 0, T ), p > 1

α and Ψ : R+ → R+ is locally Lipschitz

and Ψ(r) = γr + o(r) as r → 0, where γ is a nonnegative number.
(3) if S(t) is noncompact, there exists a function k ∈ Lp(J) such that

χ(F (t, B)) ≤ k(t). sup
s∈[−h,0]

χ(B(s)),

for a.e. t, s ∈ [0, T ], t ≥ s.
Note that, assumption (F*)(2) ensures Ψ(0) = 0.

Lemma 3.1. Let u ∈ S(ϕ) be a solution of (1.1)-(1.2). If

lim sup
‖ξ‖h→0

sup
v∈S(ϕ+ξ)

‖vT − uT ‖h
‖ξ‖h

< 1, (3.1)

then u is exponentially attractive on [0, T ].

Proof. We have

1

η
sup

ξ∈Bη(ϕ)

sup
v∈S(ϕ)

‖vT − uT ‖h

= sup
‖ξ‖h<η

sup
v∈S(ξ+ϕ)

‖vT − uT ‖h
‖ξ‖h

‖ξ‖h
η

≤ sup
‖ξ‖h<η

sup
v∈S(ξ+ϕ)

‖vT − uT ‖h
‖ξ‖h

.

It follows that

lim sup
η↘0

1

η
sup

ξ∈Bη(ϕ)

sup
v∈S(ξ)

‖vT − uT ‖h ≤ lim sup
‖ξ‖h→0

sup
v∈S(ϕ+ξ)

‖vT − uT ‖h
‖ξ‖h

.

From the definition of exponentially attractivity and inequality (3.1), we arrive at
the conclusion of the lemma. �

Lemma 3.2. Let (A∗) and (F∗) hold. Then

lim sup
‖ϕ‖h→0

sup
x∈S(ϕ)

‖xt‖ = 0,∀t ∈ (0, T ].
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Proof. Let ϕ ∈ Ch. By the formulation of integral solutions, we have

‖u(t)‖ ≤M‖ϕ‖h +
M

Γ(α)

∫ t

0

(t− s)α−1m(s)Ψ(‖us‖h)ds

≤M‖ϕ‖h +
M

Γ(α)

∫ t

0

(t− s)α−1m(s)Ψ(‖ϕ‖h + sup
τ∈[0,s]

‖u(τ)‖)ds.

Since the last term is nondecreasing in t and Ψ is nondecreasing, we get

sup
u∈S(ϕ)

sup
τ∈[0,t]

‖u(τ)‖ ≤M‖ϕ‖h+
M

Γ(α)

∫ t

0

(t−s)α−1m(s)Ψ(‖ϕ‖h+ sup
u∈S(ϕ)

sup
τ∈[0,s]

‖u(τ)‖)ds

(3.2)
Putting v(t) = sup

u∈S(ϕ)

sup
τ∈[0,t]

‖u(τ)‖ and passing to the limit as ‖ϕ‖h → 0, we obtain

v(t) ≤ M

Γ(α)

∫ t

0

(t− s)α−1m(s)Ψ(v(s))ds. (3.3)

Let |v|∞ = sup
t∈[0,T ]

v(t). Since Ψ is locally Lipschitz, there exist L = L(|v|∞) such

that

Ψ(v(t)) = |Ψ(v(t))−Ψ(0)| ≤ Lv(t),∀t ∈ [0, T ].

So it follows from (3.3) that

v(t) ≤ M

Γ(α)

∫ t

0

(t− s)α−1m(s)Lv(s)ds ≤ ML‖m‖
Γ(α)

∫ t

0

(t− s)α−1v(s)ds,∀t ∈ [0, T ].

Applying [36, Corollary 2], we have v = 0. The proof is complete. �

Theorem 3.3. Let (A∗) and (F∗) hold. Then the zero solution of system (1.1)-
(1.2) is exponentially attractive on [0, T ], provided that T > h,

β > M‖m‖γ (3.4)

and

βM

β −M‖m‖γ
‖ϕ(0)‖
‖ϕ‖h

+
M‖m‖γ

β
< 1. (3.5)

Proof. From (F∗), we have ∀ε > 0,∃δ > 0 such that

Ψ(r) ≤ (γ + ε)r ∀r ∈ (0, δ). (3.6)

By Lemma 4.2, we can find η > 0 such that, if ‖ϕ‖h < η and x ∈ S(ϕ) then
‖xt‖ < δ. Taking (3.6) into account, we have:

Ψ(‖xt‖) ≤ (γ + ε)‖xt‖ ∀t ∈ [0, T ], ‖ϕ‖h < η.
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Assume that v ∈ S(ϕ). If θ ∈ [−h, 0], and t = T + θ > 0, then

‖v(t)‖ ≤MEα,1(−βtα)‖ϕ(0)‖

+

∫ t

0

(t− s)α−1MEα,α(−β(t− s)α)m(s)Ψ(‖vs‖h)ds

≤MEα,1(−βtα)‖v(0)‖

+

∫ t

0

M(t− s)α−1Eα,α(−β(t− s)α)‖m‖(γ + ε)‖vs‖hds

≤MEα,1(−βtα)‖v(0)‖

+

∫ t

0

(t− s)α−1Eα,α(−β(t− s)α)M‖m‖(γ + ε) sup
[−h,s]

‖v(τ)‖ds.

If ε <
β −M‖m‖γ
M‖m‖

then we obtain β > M‖m‖(γ + ε). Thus, we apply Lemma 2.4

and get

‖v(t)‖ ≤ βM‖v(0)‖
β −M‖m‖(γ + ε)

+
M‖m‖(γ + ε)

β
sup

[−h,0]

‖ϕ(s)‖.

Therefore

‖v(t)‖
‖ϕ‖h

≤ βM

β −M‖m‖(γ + ε)

‖ϕ(0)‖
‖ϕ‖h

+
M‖m‖(γ + ε)

β

1

‖ϕ‖h
sup

[−h,0]

‖ϕ(s)‖.

Combining with (3.5), the proof is complete. �

4. Special case

In this section, we consider a special case of (1.1)-(1.2), when F is a single-valued
function, denoted by f . In this case, we will prove the attractivity for arbitrary
solution of the problem

CDα
0 u(t) = Au(t) + f(t, ut), t ∈ [0, T ], (4.1)

u(s) = ϕ(s), s ∈ [−h, 0]. (4.2)

In order to prove the attractivity of a nonzero solution, we need to replace (F∗)
by the following hypothesis on the nonlinearity.

(F]) The function f : [0, T ] × Ch → X is of Caratheodory type, i.e. f(·, v)
is strongly measurable for each v ∈ Ch and f(t, ·) is continuous for a.e.
t ∈ [0, T ]. In addition,
(1) there exist a function m ∈ Lp(0, T ;R+) and a nondecreasing, locally

Lipschitz function Ψ ∈ C(R+;R+) such that Ψ(r) = γr+o(r) as r → 0,
for some γ ≥ 0, and the following condition holds

‖f(t, v1)− f(t, v2)‖ ≤ m(t)Ψ(‖v1 − v2‖h)

for all v1, v2 ∈ Ch, and for a.e. t ∈ [0, T ];
(2) if the semigroup S(·) is non-compact, then there exists a function

k ∈ L1(0, T ;R+) such that

χ(f(t, B)) ≤ sup
θ∈[−h,0]

χ(B(θ)),

for all bounded sets B ∈ Ch.
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Theorem 4.1. Let (A∗) and (F]) hold. Moreover,

β > M‖m‖γ and
βM

β −M‖m‖γ
‖ϕ(0)‖
‖ϕ‖h

+
M‖m‖γ

β
< 1. (4.3)

Then every solution of (4.1)-(4.2) is exponentially attractive on [0, T ].

Proof. For given ϕ∗ ∈ Ch, let u∗ ∈ S(ϕ∗) be a solution of (4.1)-(4.2), we prove the
attractivity for u∗. For arbitrary u ∈ S(ϕ) with ϕ ∈ Ch, put

ϕ̃ = ϕ− ϕ∗, ũ(t) = u(t)− u∗(t), t ∈ [0, T ].

Then ũ satisfies

ũ(t) = Sα(t)ϕ̃(0) +

∫ t

0

(t− s)α−1Pα(t− s)[f(s, us)− f(s, u∗s)]ds.

By (F]), we have

‖f(s, us)− f(s, u∗s)‖ ≤ m(s)Ψ(‖ũs‖h), ∀s ∈ [0, T ].

Then, we get

‖ũ(t)‖ ≤M‖ϕ̃‖h +
M

Γ(α)

∫ t

0

(t− s)α−1m(s)Ψ(‖ũs‖h)ds.

Using the same arguments as those in the proof of Lemma 3.2 and Theorem
(3.3), one gets

lim sup
‖ϕ̃‖h→0

sup
u∈S(ϕ)

‖uT − u∗T ‖h
‖ϕ̃‖h

< 1.

Equivalently,

lim sup
‖ϕ̃‖h→0

sup
u∈S(ϕ∗+ϕ̃)

‖uT − u∗T ‖h
‖ϕ̃‖h

< 1.

The proof is complete. �

5. Application-Polytope inclusion in C0-setting

Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We consider the
following polytope fractional differential system:

∂αt u(t, x) = ∆u(t, x) + f(t, x), x ∈ Ω, t > 0, (5.1)

f(t, x) = ηf̃1(t, u(t− h, x)) + (1− η)f̃2(t, u(t− h, x)), η ∈ [0, 1] (5.2)

u(t, x) = 0, x ∈ ∂Ω, t > 0, (5.3)

u(s, x) = ϕ(x, s), x ∈ Ω, s ∈ [−h, 0], (5.4)

where f̃i : [0, T ]× R→ R, i = 1, 2, are continuous functions.
Let

X = C0(Ω) = {v ∈ C(Ω) : v = 0 on ∂Ω},
endowed with the norm ‖v‖ = sup

x∈Ω

|v(x)|.

Let A = ∆ with D(A) = {v ∈ C0(Ω) ∩ H1
0 (Ω) : ∆v ∈ C0(Ω)}, and Ch =

C([−h, 0];C0(Ω)). Then it is known that A is the generator of a compact semi-
group on X (see [5], Theorem 2.3).
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Let λ1 be the first eigenvalue of ∆ on H1
0 (Ω), that is,

λ1 = sup

{∫
Ω
|∇u|2dx∫
Ω
u2dx

: u ∈ H1
0 (Ω), u 6= 0

}
.

Following Theorem 4.2.2 of [15], we have

‖S(t)‖ ≤Me−λ1t, M = exp

(
λ1|Ω|2/n

4π

)
where |Ω| is the volume of Ω. Hence (A*) is satisfied with β = λ1 and M as above.

Assume the following on functions f̃i : R+ × R→ R, i ∈ {1; 2}
(i) f̃i(·, z) is measurable for each z ∈ R; f̃i(t, ·) is continuous for a.e. t ∈ [0, T ];

(ii) |f̃i(t, z)| ≤ m(t)|z|γ , ∀(t, z) ∈ [0, T ]×R, where γ > 1,m ∈ Lp(0, T ;R+) and

‖m‖ = sup
t∈[0,T ]

|m(t)| < λ1

γ
exp

(−λ1|Ω|2/n

4π

)
=

β

Mγ
.

Let fi : [0, T ]× Ch → X be the functions defined by

fi(t, v)(x) = f̃i(t, v(−h, x)), i ∈ {1; 2},

and F (t, v) = co{f1(t, v), f2(t, v)}. Then F : R+ × Ch → P(X) is a multimap with
closed convex values. It is easy to check that for each (t, v), F (t, v) is a bounded set
in the finite dimensional space spanned by {f1, f2}, and so F has compact values.
Now, we show that F (t, ·) is u.s.c. Let {vk} ⊂ Ch converge to v. Then by the

continuity of f̃i, we get fi(t, vk)→ fi(t, v) in X. For ε > 0, there exists n ∈ N such
that fi(t, vk) ∈ fi(t, v) + εBX ,∀k ≥ n, i ∈ {1; 2}, where BX is the unit ball in X
centered at origin. This implies F (t, vk) ⊂ F (t, v) + εBX ,∀k ≥ n, and since F has
compact values, we have upper-semicontinuity of F (t, ·). Hence (F*1) is satisfied.

Let z ∈ F (t, v), we have

|z(x)| ≤ η|f̃1(t, v(−h, x))|+ (1− η)|f̃2(t, v(−h, x))|
≤ ηm(t)|v(−h, x)|γ + (1− η)m(t)|v(−h, x)|γ

≤ m(t)|v(−h, x)|γ .

Therefore, ‖z‖ ≤ m(t)‖v(−h, ·)‖γ ≤ m(t)‖v‖γ . And thus, ‖F (t, v)‖ ≤ m(t)‖v‖γ .
This means that Ψ(r) = rγ and condition (F*2) is satisfied.

Obviously, condition (F*3) is satisfied because F has compact values.
Finally, condition (3.4) is satisfied because we have ‖m‖ < βM−1γ−1, and if

‖ϕ(0)‖
‖ϕ‖h

<
(β −M‖m‖γ)2

β2M
,

condition (3.5) is also satisfied.
Thus, we obtain the result that zero solution to problem (5.1)-(5.4) is exponen-

tially attractive on [0, T ].
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