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Key Points:

• The concept of “water security” (WS) is hard to operationalize due to its
intrinsic complexity.

• Data gathering is not an end in itself but to strengthen the relationship
between the data-information-stakeholders nexus.

• We propose a framework to help practitioners to design effective and sys-
temic Data Gathering Strategies for Water Security.

Abstract

At the international level, the term “water security” (WS) has gained increasing
attention in recent decades. At the operational level, WS is assessed using tools
that define the concept using a variety of dimensions and sub-dimensions, with
qualitative and quantitative indicators and parameters. The breadth of tools
and concepts is an obstacle to the operationalization of the concept of water se-
curity (WS). Clearly we need a range of diverse data to evaluate water security
(WS). However, there are several barriers to designing an optimal Data Gather-
ing Strategy (DGS). Such a strategy must strike a balance between a wide range
of competing and overlapping data requirements and characteristics including:
resources, information, and impact. The conceptual aim of the framework can
be summarised as shifting the focus of the DGS from a “data to information
approach” to a “data to action approach”. The specific aims of this paper are
to: identify the key issues that should be addressed in designing a Data Gath-
ering Strategy for Water Security (DGSxWS); communicate the key issues with
a clear conceptual framework; and suggest approaches and activities that could
help water practitioners in dealing with the issues identified.
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1 Introduction
1.1 Water Security: a complex concept

In recent decades, the term “Water Security” (WS) has become commonplace at
the international level. The World Economic Forum (WEF) recently described
WS as “the gossamer that links together the web of food, energy, climate, and
human challenges that the world faces over the next two decades” (WEF, 2019).
The breadth of water security, its interconnectedness, and interdependencies,
creates a complex system that militates against a simple one-size-fits- all defi-
nition (GWP, 2014). Consequently, and perhaps necessarily, the term WS has
generated different framings, definitions, tools, indicators, and requirements.

Though several definitions of WS exist (e.g. Gain et al., 2016; Garrick and Hall,
2014; GWP, 2014; Lautze and Manthrithilake, 2012; Staddon and James, 2014;
Tarlock and Wouters, 2009), they generally revolve around four main themes:
water availability to human and ecosystems, human vulnerability to hazard, hu-
man needs and sustainability (Cook and Bakker, 2012), and thematic attributes
e.g. quantity, quality, ecosystems, risk, policy, resilience, global change etc.
(Gerlak et al., 2018).

The different elements contributing to WS definitions mean WS can be seen as
a standalone system or in relation to others (food, economic, political security
etc.). As a result, definitions create a complex web (see Figure 1). Some themes
are shared with others (for example, sufficient availability of water quantity
and quality), while still others are only included in some definitions (such as
affordability or energy needs). According to Figure 1, the different framings
given to the WS concepts in literature can be seen at L2 in relation to L3.
Whereas L4 identifies the aim that WS wants to achieve in terms of activities,
population, and environment. Some definitions refer to the external context or
to a particular condition (L5).

Different frameworks are used to approach the WS concept: scarcity, risk, se-
curity, and development (Hoekstra et al., 2018; Mason and Calow, 2012). One
consequence of this diversity is that the WS concept is also connected to dif-
ferent types of (in)securities: food, energy, infrastructure, geo-political (Cook
and Bakker, 2012) . This diversity can be seen as a strength, by offering a
broad spectrum of possibilities, but also as a weakness by creating an excess of
information that decreases the usability of the concept.

2



Figure 1. Visualisation of six of the most used definitions of WS ac-
cording to interrelations and main aims/activities. The figure shows
the framing given to WS (L2-L3) in order to support and satisfy a
particular area of human society (L4) with a given condition (L5).

1.2 From conceptualization to operationalization

At an operational level, WS is assessed using tools that define the concept
using dimensions and sub-dimensions (Gerlak et al., 2018; Plummer et al., 2012;
Brown and Matlock, 2011) that rely on qualitative and quantitative indicators -
and hence data (Lehtonen, 2015). Tools have been created for specific aspects of
WS such as scarcity (e.g Brown and Matlock, 2011), freshwater (e.g. Norman et
al., 2013), urban environments (e.g. Hoekstra et al., 2018), specific geographies
such as small islands (e.g. Holding and Allen, 2016), different geographical
scales, and different water domains (e.g. Octavianti and Staddon, 2021).

A systematic review on water vulnerability assessment tools (Plummer et al.,
2012) reported a variety of indices (~50) that differed on geographical scale,
on the number and type of dimensions and subdimensions considered (water
resources, economics, institutions, social, physical environment), and on the
number of indicators. Overall, 710 indicators were identified and grouped into
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five dimensions and 22 sub-dimensions. All these layers (conceptual framing,
definition, dimensions, indicators, parameters) form a complex framework sur-
rounding WS. To better understand the structure of a typical WS index, a tree
diagram was used to break down WS dimensions into sub-dimensions, indica-
tors, and - finally - parameters that could be measured. Figure 2 illustrates how
the concept is defined across several dimensions. Dimensions are then divided
into sub-dimensions that are assessed using one or multiple indicators. Indica-
tors require single or multiple parameters to be defined. Finally, parameters
may need one of several datasets to be compiled.

Figure 2: Typical structure of a WS index (in this case from Mason
2012) where the WS concept is defined across several dimensions.

This wide range of indicator possibilities is an obstacle for the operationalization
of the concept of “water security” (WS). A large-scale survey of water practi-
tioners in Canada on the use of WS assessment tools (Norman et al., 2011)
found a number of different shortcomings, most alarmingly the lack of agree-
ment on the definition of WS. They also found that monitoring and assessment
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is practised, but only a limited number of available indicators are used: 38%
of the participants chose not to use the available tools due to difficulties and
fragmentation (the main reason being tools were too specific to a region or a
timeframe). In addition, the authors found other gaps such as the lack of cen-
tralised data and consistency, the low emphasis on governance in achieving WS
(often not included in assessment tools), and the inadequate consideration given
to the importance of non-state stakeholders in the governance of water systems.

1.3 The importance of data

Data is the foundation of WS assessment tools. The need for “high quality,
accessible, timely and reliable disaggregated data” has been stressed and em-
phasised by the 2030 Sustainable Development Agenda (UN, 2018) and by
the UN Deputy Secretary-General Eliasson who called data the “lifeblood of
decision-making and the raw material for accountability” (UN-Water, 2016).
The need for accessible data has been acknowledged on various occasions (UN-
Water, 2010; UN-HLPW, 2017) but data gaps still exist (Schmidt-Traub et
al., 2017; W.H.O./U.N.I.C.E.F., 2019; WHO, 2019; UN-Water, 2010), particu-
larly in water insecure countries (Grey et al., 2013); naturally, this influences
decision-making (York and Bamberger, 2020).

Different WS assessment tools have different data requirements. Octavianti and
Staddon (2021) proposed a classification of data into two clusters. The first clus-
ter, defined as experiential scale-based metrics, is associated with social sciences
and was identified as aiming at, “Capturing water insecurity experiences, iden-
tifying vulnerable, water insecure groups and evaluating water interventions”.
The data requirements for this cluster are typically based on household and in-
dividual surveys. The second cluster, defined as resource-based metrics, adopts
an engineering and natural-science approach, aimed at, “Improving water secu-
rity, identifying mitigation targets, allocation of funding and raising awareness
(benchmarking)”. Data for this cluster are based more on secondary data from
governmental agencies (see Interface A below).

1.4 WS as a system of systems

A systems strategy for Data Gathering Strategy for WS (DGSxWS) is essential
if that data is to serve its purpose and to connect stakeholders (through the
data) to actions that improve WS (Checkland and Poulter, 2006), and thus give
a purpose to the data. Data not only informs a WS system, but it also defines it,
arguably as the first step in a systems approach by being a means of “finding out
about the problematical situation and the characteristics of the intervention to
improve it” (Checkland and Poulter, 2006). The data gathered to represent WS
in a given basin are therefore representative of WS problems. Existing systemic
indicators attempt to measure a ‘level’ of WS (as demonstrated in Dickson et
al., (2016)), but do not provide the space for system lens to evaluate how the
interconnections between elements of data gathering could be improved or better
connected with stakeholders. These connections are needed if WS questions are
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to be linked to WS solutions and have a positive impact for those involved in
the system.

Data gathering is not an end in itself. Data, and thus the DGSxWS, should form
the basis for decisions that improve WS. DGSxWS should strengthen the linkage
between data-information-stakeholders-positive impact. To achieve such a goal,
several barriers need to be addressed including: insufficient data, unsuitable
solutions to localised problems, limited community involvement, and trade-offs
between available resources, information, and impact. An integrated systems
approach to data gathering is crucial to overcoming and addressing some of
these barriers. A whole systems approach to the gathering and role of data in
informing water security can enable an understanding of the ‘whole contextual
water security picture’. Therefore, enabling the practitioner to better expose
gaps and linkages between data and impact by observing an incomplete picture.

By a systems perspective, we mean the understanding that the emergent be-
haviour of water security is created by the aggregations and interactions within
a system of systems - data associated with WS, which thus inherits the same
trait. The systems are bound by the flow of water, and a systems perspective
is required to understand the intersection of various data sub-systems (Hipel et
al., 2013).

Using this system lens, we must observe two main qualities for WS data. First,
the nestedness between elements and groups of elements. This is demonstrated
by the levels of dimensions, sub-dimensions, indicators, and parameters in ex-
isting data gathering frameworks (see Figure 2). However, the system lens
understands this ’breaking down’ process as a formation of nestedness within
the WS system, based more on the dynamics of emergent behaviours than the
components of definitions. This aids the understanding of the role of data in
the WS system.

Second, the connections and interactions with other elements. It is important
to recognise the links between our data and how the data components of WS
phenomenon do not sit alone in disciplinary silos. This can take the form of
successful data sharing, but also encourages interdisciplinarity when assessing
the data associated with WS components (Figure 3).
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Figure 3: Conceptual diagram showing WS as an integrative system
(light blue circle) that includes several subsystems (yellow, red and
brown clusters).

An example of this is the socio-ecological framework for data analysis, supported
by the understanding that environmental problems are at their root - almost
invariably social problems (World Bank, 2002). These considerations suggest
that water systems should be understood through human-nature linkages incor-
porating ecological, economic, cultural, and physical systems (Bogardi et al.,
2012).

Socio-ecological systems are characterised by a systemic vision of the ecological
and the social components, its structure, and functioning and emergent proper-
ties across spatial and temporal scales. This view supports a global architecture
based on systems thinking (Grey et al., 2013) that not only considers information
internal to the water system, but also external factors(Briscoe, 2009; Octavianti
and Staddon, 2021). Hipel et al., (2013) observe that systems methodologies and
techniques are important for addressing complex water problems that involve
nature, technology, and society. However, we must look beyond this for WS,
and include other interconnected subsystems with natural, social, and economic
elements.

1.4 Aims

We present a framework to guide practitioners through the intrinsic complexity
of gathering data for WS by fulfilling the following aims:

• Identify the key issues that a Data Gathering Strategy for Water Security
(DGSxWS) must address.
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• Document the key challenges and opportunities for each issue.

• Help researchers and practitioners in WS to itemise and categorise those
challenges and opportunities for better planning and monitoring.

• Suggest activities, approaches, and references that can support the opera-
tionalization of the framework.

2 Proposed Interfaces of the DGSxWS

To avoid the “data rich but information poor syndrome” (Ward et al., 1986),
data needs to be strongly linked to information requirements by a coherent
purpose, collection method, and good communication. For information to be
considered ‘useful’, it needs to have three necessary characteristics: credibility,
legitimacy, and salience (Cash et al., 2005). Where:

• Credibility is the creation of authoritative, believable, and trusted infor-
mation;

• Legitimacy is as how “fair” an information producing process is and
whether it considers appropriate values, concerns, and perspectives of
different actors;

• Salience is how relevant is to decision making bodies or the public.

To attain these characteristics, five relevant areas were identified and conceptu-
alised as “interfaces”. The first three (interfaces A,B,C) support the creation
of credible data. Interface A relates to the existing “data-scape” because a
DGSxWS must engage with existing knowledge gaps, using, and building upon,
existing data. Interface B relates to the observed environment and seeks to de-
scribe the physical environment with data that has sufficient quality, robustness
and certainty. Interface C relates to project resources and the need to optimise
those resources while gathering, editing, and communicating data.

Salience is created by identifying which information is relevant. This is achieved
by integrating the DGSxWS with the socio-economic context (Interface D)
and existing stakeholders (Interface E). Legitimacy of information is conferred
through the relationship between data, data practitioners/managers, and the
communities present in the study area. This is explored in the interface with
stakeholders (interface E), which aims to bring essential socio-cultural knowl-
edge into the DGS.

The following sections give a concise overview of the five interfaces by underlin-
ing key concepts that need to be addressed and presenting essential references for
an initial understanding of the most relevant issues. More specific suggestions
on activities that could be conducted throughout the data gathering process are
provided in Table 1.
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2.1 Interface with the existing data-scape

WS data has social, economic, and environmental components which, together,
characterise the physical environment (Figure 4). Data varies in spatial scale
from global to national level down to regional, municipal, urban, or basin level.
The last two scales are the most popular in water research (Octavianti and
Staddon, 2021). Primary data is collected “first hand” and is contrasted with
secondary data, which is reused from existing resources, previous studies, or
both (Hox and Boeije, 2005; NERC, 2021). This division between primary
and secondary data applies to any type of socio-economic and environmental
analysis, as well as qualitative and quantitative datasets.

Examples of secondary data might include water volumes stored in reservoirs,
daily water treatment capacity, the percentage of households with access to tap
water supply, number of serious flooding events per year, economic loss due
to water pollution and so on. Such secondary data has been used to develop
WS indices at the urban scale (Jensen and Wu, 2018). Data inaccessibility is a
common problem, with secondary data retrieved from governmental and institu-
tional agencies. Data inaccessibility hinders the assessment of data quality and
water risk trends from historical data-series (Hering et al., 2010; Jensen and Wu,
2018). Conversely, when primary data is collected and preserved following the
FAIR guiding principles (FAIR: Findable, Accessible Interoperable, Reusable
(Wilkinson et al., 2016)) then it becomes easier to capture the variability and
uncertainty of the data. The Water Quality Portal (Read et al., 2017) is a good
example of the FAIR guiding principles. This resource includes millions of open-
to-the-public water-related data, retrieved from multiple resources, that indicate
the water quality life-cycle of lakes in the United States (US). Even with existing
regulations for storing/sharing data in an open manner, there is still the need
for seamless exchange of data and data harmonisation with existing datasets.
Due to the absence of such regulated procedures, WS data development has lost
its importance, hence data cannot easily be reused and interpreted.

Scientists collect data for research, for industry (including the water industry),
and in collaboration with stakeholders at great expense of both time and re-
sources. However, the studies are preserved and retrievable in journals and
project reports where the data is seldom published and open for others to use.
Unless the data is collected and published by government agencies, most of it
is lost. There is however some good practice: in geosciences, for example, there
are well-established websites for storing and sharing data such as OneGeology
(One-Geology, 2021), the US Geoscience Information Network (US-GIN, 2021),
and the Ocean Observatories Initiative (NSF, 2021). Nevertheless, there is the
need for open data websites in WS (and more generally). Open data has an im-
portant role to play in WS and sustainable development. An alternative to this
problem is the use of blockchain based methods, together with the FAIR guiding
principles (Pincheira et al., 2020; Zhang et al., 2019; Farnaghi and Mansourian,
2020; Ren et al., 2019).
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Primary data can be divided into two categories, in-situ (i.e. sensed in place
(Teillet et al., 2002)) and remotely sensed data (i.e. observed from a great dis-
tance (Teillet et al., 2002)) depending on how it was collected. In-situ point
sampling is the traditional method for monitoring water quality, river flows, dis-
charge, water depth and so on. Point sampling typically requires either manual
observations using portable devices (Acharya et al., 2020) from shoreline or boat,
or automatic observations from permanently installed stations (Glasgow et al.,
2004) at discrete locations with high temporal frequency (Soares and do Carmo
Calijuri, 2021). In-situ data collection can be labour-intensive, relatively costly
(e.g. maintenance costs due to damaged permanent stations (Soares and do
Carmo Calijuri, 2021)) and can provide limited spatial resolution. There is also
a risk to human health when operating in polluted environments (Lally et al.,
2019). By contrast, remote sensing Earth Observations (EO) can provide high
spatio-temporal resolution for national, regional, and basin level using freely-
available satellite optical and radar imagery (e.g. Chawla et al., 2020) and even
for local lake spatial level using unmanned aerial systems (UAS) (e.g. Lally
et al., 2019). However, in-situ observations are typically required to calibrate,
model, and validate remote sensing EO data.

Who physically collects observations is important. Conventionally, a profes-
sional acquires the data and such professionals are assumed to be reliable trust-
worthy analysts. With the advance of citizen science over the last decade, am-
ateurs and non-experts from local communities have contributed in the various
steps of the data cycle. Their contributions can range from collection to anal-
ysis, to interpretation (Bonney 2014). Previous studies have demonstrated the
advantages of citizen science in: capturing data during episodic flooding events
(Starkey 2017), gathering water-related data over data-poor regions especially in
the Global South (Walker 2020), and collecting information related to previous
years, where historical data might be missing.

Due to the multidimensional aspect of the proposed DGSxWS framework, an
optimal data-scape could include the integration of in-situ/remotely sensed and
citizen/expert - generated data and capture the synergies between these different
sources. A recent comprehensive review (Sagan et al., 2020) demonstrated the
potential of combining water quality sampling observations with freely-available
satellite imagery alongside advanced deep learning approaches to predict water
pollution events. The evolution of cloud computing services alongside open-
source methodologies (e.g. Google Earth Engine (GEE) (Gorelick et al., 2017),
Open Data Cube (Dhu et al., 2017)) with open data and “analysis ready data”
(Dwyer et al., 2018) is very important. These advances have facilitated the cost
efficient use of neural networks and EO data to analyse historical time series
and to predict future scenarios (Hoeser et al., 2020). For instance, (Krause et
al., 2021) investigated the use of Open Data Cube for Australia to estimate
the water quantity of open water bodies using archival Landsat products since
1987. Similarly, Malthus et al, (2019) estimated algae bloom status by calculat-
ing chlorophyll and total suspended matter concentrations exploiting “analysis
ready data” from Landsat over water bodies across the entire Australia. Both
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sets of findings have been integrated into the Digital Earth Australia’s (DEA,
2018) platform to support stakeholders and decision making. In addition (Tiwari
et al., 2020) demonstrated the potential of the GEE cloud computing platform
for mapping flood extent in Kerala, India by exploiting radar satellite imagery
accessed close to the time of the flooding event.

GEE and Open Data Cube platforms can handle Big Data volumes and offer
multiple low level python scripts (e.g. CEOS, 2021) for retrieving, processing,
analysing, and visualising multi-modal and multi-temporal satellite image series,
tailored to several applications related to SDG 6 (Rizvi et al., 2020; Mubea et
al., 2020), land cover changes (Liu et al., 2021), water quality (Malthus et al.,
2019), water quantity (Krause et al., 2021), flooding (Tiwari et al., 2020) and
many others.

Figure 4: the figure shows how activities in the different interfaces
could be carried out in order to strengthen the linkage between phys-
ical environment > data collection > production of information >
stakeholder awareness > positive change > updated physical envi-
ronment. These activities form a continuous cycle of transformation
that may be repeated several times.

2.2 Interface with the existing data-scape

The quality of data gathering is a key aspect of data credibility. We recommend
adopting a risk approach to WS (Grey et al., 2013; Garrick and Hall, 2014; Hall
and Borgomeo, 2013). Such an approach is grounded in the idea that water
users are usually more concerned with their needs not being satisfied and this
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concern can easily be framed as the risk of noncompliance with regard to a
given threshold. Water-security risks can then be broadly categorised into four
groups: risk of shortage, of excess, of inadequate quality, and undermining the
resilience of the system (GWP, 2014). This approach also promotes dialogue
across disciplines and institutions (World Bank, 2014; W.E.F., 2019) since risk
concepts (hazard, vulnerability, exposure, mitigation, management, prevention)
are commonly used by experts and communities and will favour stakeholder
engagement. In addition, adopting a risk-based approach allows the conversion
of different water security related phenomena into concepts such as probability
of risk and odds ratio. This enables the comparison of such phenomena to
different mitigation scenarios and or international guidelines as in the case of
WHO ones.

When the purpose is to conduct water risk assessments, it is important to agree
on clear definitions of hazards, consequences, and uncertainties. Since risk as-
sessments are used to inform decision makers about measures for risk, a basic
question about the quality of such assessments is the degree to which these are
able to adequately characterise the risk. The two main challenges to a valid risk
assessment are uncertainty and ambiguity (Aven, 2019).

2.2.1 Minimising uncertainty Uncertainty has different and distinct com-
ponents, such as statistical variation, measurement errors, ignorance and inde-
terminacy (van Asselt, 2000). Such components have one thing in common: they
reduce confidence in the estimated cause and effect chain(s) of risks (Renn et al.,
2020). If complexity cannot be resolved by scientific methods and the available
data, uncertainty increases (Renn et al., 2020). But even simple relationships
may be associated with high uncertainty if either the knowledge base is missing
or the effects are indeterminate due to the stochastic (randomly structured) na-
ture of the functional relationships (Renn et al., 2020). One example is extreme
weather events such as heavy rain and storms. As they are extreme and rare
and a result of dynamic physical processes, their magnitude and consequences
are uncertain. Looking at the past, i.e. relying on historical weather data,
can lead to erroneous risk assessment. In cases like these, a focus on scenarios
and resilience is advisable and decision makers should decide on what level of
resilience they are able to adopt (Renn et al., 2011).

It is essential for data collection to be clearly linked to an objective, otherwise
data may not necessarily translate into information. Rose and Smith (1992)
observed that data is often gathered without a clear statement on how it is to
be evaluated. The lack of attention to this aspect creates a situation where
errors in the sampling strategy tend to dominate other types of errors related
to analytical measurements (Zhang and Zhang, 2012) and ultimately produce
different results (Abbatangelo et al., 2019; Olsen et al., 2012; Wang et al., 2015).
Additional causes of gross and systematic errors and uncertainty include: the
inadequacy of observations, the density of the network, its dissemination, the
quality assurance, and calibration (Wheater, 2000). It is more difficult to turn
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data into valuable information (Ward et al., 1986) if it is inaccurate, of poor
quality, or non-comparable (Milliman and Farnsworth, 2011).

A well-designed sampling strategy can also help minimise uncertainty. Sev-
eral decisions can affect the final results such as sample location (Alilou et
al., 2019), parameters, number of samples (Merrington and Sprang, 2013), fre-
quency (Anttila et al., 2012), and location of laboratories (Wright et al., 2014).
There is excellent literature on this topic covering: network design, statistical
tools, parameters, and frequency of sampling (Sanders et al., 1983; Strobl and
Robillard, 2008; Ward et al., 1990; Zhang and Zhang, 2012), and the optimiza-
tion for data poor contexts (Taylor et al., 2018). The dynamic characteristics
of the WS system should also be considered. Most WS indices do not account
for the temporal dimension. Ignoring time may lead to a misinterpretation of
the data and a failure to consider system dynamics. Incorporating time would
allow the description of WS not as a static snapshot but as a trajectory (Wa-
gener et al., 2010; Srinivasan et al., 2012) with the possibility of identifying
trends (Doeffinger et al., 2020; Srinivasan et al., 2012). Assessment tools should
take full advantage of information technologies (IT) using dynamic datasets and
real-time data.

2.2.2 Minimising ambiguity Ambiguity denotes the variability of (legiti-
mate) interpretations based on identical observations or data assessments and
questions their impact according to different values and perspectives (Renn et al.,
2011). Ambiguities may be minor or negligible when characterising the physical
dimension of water security due to stronger scientific background supporting the
information used for hazard identification. However, important ambiguities can
emerge in the process of establishing the impacts of such hazards and defining
actions to manage the associated risks.

Expert judgements may be a useful tool for combating ambiguity caused by the
limitations of poorly defined data (it may be scarce, uncertain, and insufficient)
and the difficulties of using hard data to describe events in complex systems.
To reduce ambiguity in such judgements, events must be precisely defined. Fur-
thermore, more evidence may still be required to identify whether uncertainties
from global risk assessments can be lowered by reducing the scale and focusing
more on local risks.

2.3 Interface with the available project resources

Water security (WS), whether addressed in terms of water risk assessment, miti-
gation strategies, solutions development, or research settings, is typically under-
taken in the context of projects. There is a strong correlation between data and
projects. Data and knowledge management play an essential role in a projects’
success (Ekambaram et al., 2018). Project management approaches and tech-
niques are widely considered as good practices in data gathering (Corti et al.,
2019). Consequently, the classical project constraints - time, cost, and quality
(Dobson, 2004) - are extended to the data gathering process (Figure 5). There-
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fore, it is crucial to have a dynamic and data-centric interface managing the
available project resources.

Figure 5. The trade-offs that are necessary in a project when dealing
with the triple constraint of time, quality and cost. Since the three
optimal goals (high quality, quickness and low cost) are not achievable
all together, project managers need to decide what is the best balance
between the constraints.
Like projects, data gathering requires different resources, such as: money, peo-
ple, material, equipment, and technology (Sholarin and Awange, 2015). The
type and size of resources required depends on the scope (contextual and ge-
ographical) and scale of data gathered. Naturally, resource limitation signifi-
cantly affects the quantity and quality of data and thus may limit knowledge
and understanding (Docherty et al., 2020). A lack of resources may also limit
the uptake of tools (Norman et al., 2011). A survey of water managers in 57
countries found that financial resources, together with data transfer, were the
main factors limiting data collection (Kirschke et al., 2020). This is to be ex-
pected due to the extended impacts of limited budgets on the other types of
resources.

Since WS is essential for global sustainable development (Gain et al., 2016),
international collaborations have long been established to overcome resource
limitations. Despite significant achievements in the fields of capacity upscal-
ing, sustainable infrastructure, and technological advances, we still cannot meet
the required financial investments to achieve the availability and sustainable
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management of water and sanitation for all (in alignment with SDG6). These
investments are estimated to cost $1.04 trillion globally every year until 2030
(Strong et al., 2020). For instance, the cost of producing SDGs monitoring data
in 77 International Development Association (IDA)-eligible countries was esti-
mated at 1 billion US Dollars (USD) per year over a 15-year period, including
$134M-$173M for national survey programmes, $320M for censuses, and $114M
for geospatial and hydrological monitoring data (Espey et al., 2015).

These numbers make it clear that a comprehensive and achievable data gener-
ation strategy must, inevitably, align with the resources available within the
project. Effective project planning based on resources’ optimal allocation is a
key for the success of projects (including data gathering projects) (Roel and
Herroelen, 2004).

The sophistication of water security data gathering and the associated manage-
ment tools is increasing, an increase driven by our improved understanding of the
subject matter. This sophistication emphasises the importance and the urgency
of a comprehensive DGS for all the entities and individuals involved. Documents
such as Knowledge Management (KM) plans at enterprise level (Pasher and Ro-
nen, 2011) or Data Management Plans (DMP) in research projects (Burnette
et al., 2016) have emerged recently as standard practice.

The leadership, structure, and management of a data gathering organisation are
extremely important and should not be overlooked, irrespective of the regional
settings (Global North or South). For example, a study on water quality mon-
itoring in Sub-Saharan Africa (Peletz et al., 2018) identified leadership, knowl-
edge, and staff retention as key drivers of success and arguably more important
than equipment, procurement, infrastructure, and enforcement. Perhaps this
is because caring leaders and knowledgeable staff can compensate for deficien-
cies in material. Conversely, excellent material cannot compensate for poor
leadership and staff turnover.

2.4 Interface with stakeholders

Human processes can limit WS because of the divergent visions, perceptions,
biases, and values of stakeholders and decision makers across multiple scales.
Our understanding of the motivations that drive environmental degradation
should include an ethical approach that connects the values, behaviours, and
actions that affect WS.

Even though the need to link different types of knowledge and stakeholder mo-
tivations for WS and sustainability has been recognized, little actual progress
has been made in this regard (Zhongming et al., 2021; Norman et al., 2013).
Stakeholders are essential drivers of the WS system, due to the dynamics gener-
ated in the use, access, and management of water (Braden et al., 2009; Sullivan
and Meigh, 2006; UN-Water, 2006; Gielczewski et al., 2011). Stakeholders
should be understood through their different roles: as sources and receivers of
new information and as drivers of change with their own agency (Timmerman,
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2005; Timmerman et al., 2010; Kumpel et al., 2020). McNie (2017) identified
the interface with stakeholders as a key area for improvements with knowledge
gaps in: understanding better decision-making processes; creating linkages be-
tween scientists; boundary organisations and stakeholders; and understanding
how funding organisations and research managers make decisions about research
priorities.

Indices and approaches to WS often under emphasise social aspects - in particu-
lar governance (Cook and Bakker, 2012), an important factor in malfunctioning
water systems (Srinivasan et al., 2017). Incorporating human capabilities, socio-
cultural dynamics, and political institutions into water governance could lead
to a better understanding of WS (Padowski et al., 2015; Wutich et al., 2017).
Involving stakeholders in the co-creation of WS assessment tools (Jensen and
Wu, 2018) could help increase the legitimacy and salience of data. Local knowl-
edge should be incorporated into citizen science strategies: people are sources
of information but they also generate a common understanding of water dynam-
ics in the context of the socio-ecological processes involved. Co-creation will
facilitate the communication of WS data in a harmonised and aggregated way
that improves decision making based on real scenarios with actively involved
and engaged stakeholders (Espey et al., 2015; Octavianti and Staddon, 2021;
UN-TaskForce, 2010; Wheater, 2000).

Co-creation improves governance, as well as stakeholder cooperation and coor-
dination around data availability - a weak aspect of many WS systems. One ex-
ample of co-creation is through polycentric governance, where decision-making
processes are more decentralised and diversified, by considering the relationships
with stakeholders and the interactions among different scales of governance sys-
tems (Ostrom et al., 1961).

Traditionally, data credibility has received most attention, but recent research
shows that underestimating data legitimacy and salience can be detrimental,
leading to the “information-rich but communication and action poor syndrome”
(Behmel et al., 2016) due to a lack of effective communication between science
and decision-making processes. If properly addressed, this interface could trans-
form information into real impact. Stakeholders provide local and specific data
that can strengthen data saliency and legitimacy (De Filippo et al., 2021): com-
plementary tools such as the mapping and analysis of stakeholders (as referenced
in Table 1) provide key information to make WS decisions more relevant.

2.5 Interface with the socio-economic context

Effective DGSxWS lies in understanding the context of water security in differ-
ent environments/basins. This context must include the socio-economic dynam-
ics occurring at different scales within basins. These dynamics impact WS avail-
ability through productive activities, water use and access, and socio-cultural
processes. Each one of these dynamics, individually or grouped, define the
framework in which data should be analysed for WS.
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Different socio-economic processes across multiple scales in the basins are con-
veyed in the data analysis clusters with experiential scale-based metrics and
resource-based metrics that guide WS strategies. However, the wide range of
conceptualizations of WS is reflected in the great variation in the methods of
assessment of WS, which also vary greatly (Gerlak et al., 2018). This varia-
tion in conception and assessment generates confusion that affects the course of
decision making at individual, community, and government levels, as well as re-
sponses to development models, local conditions, market demands, and political
frameworks.

Considering the socio-economic context of data collection will reinforce the
saliency, legitimacy, and credibility of that data - characteristics that are nec-
essary for the systemic approach, mentioned in the proposed interface of the
DGSxWS. Socio-economic data collection should use both quantitative and qual-
itative research methods and consider different and complementary sources of
data (stakeholder databases and primary data), type of systematisation require-
ments, and type of information analysis. For example, as the largest user of
freshwater, the agricultural sector (land use, crop production, animal protein
production, and supply chain) should be prioritised when developing a DGSxWS
(Hotlos, 2008). Also, the increasing demand of water for domestic use may be
directly tied to urbanisation and thus, the associated economic activities.

The socio-ecological framework with which data is analysed is supported by the
understanding that environmental problems are, at their root, social problems
(World Bank, 2002). These considerations suggest that water systems should
be understood through the human-nature linkages incorporating ecological, eco-
nomic, cultural, and physical systems at different levels (Bogardi et al., 2012).
Socio-ecological systems are characterised by a systemic vision of the ecological
and the social components, their structure, functioning, and emergent properties
across spatial and temporal scales.

Studies around the world, including indices and approaches to WS, tend to
focus on technical aspects (Xenarios et al., 2020), for example the cost of water
quality monitoring for human consumptions (Delaire et al., 2017; Peletz et al.,
2018; Crocker and Bartram, 2014; Peletz et al., 2016), indicators for sustainable
consumption and production activities (Hoff et al., 2014), continuous access for
water supply (Giné and Pérez-Foguet, 2010; Jepson, 2014; Sullivan et al., 2003),
rural conditions for water security (Dickson et al., 2016), and urban metabolism
(Ghosh et al., 2019). While these studies offer distinct and/or complementary
perspectives, they do not consider or constitute system thinking.

One of the largest challenges in gathering socio-economic data for WS is ensuring
that the complexities of the socio-ecosystem are captured. When approaching
an analysis for socio-ecological systems, the use of reductionist frameworks over-
simplifies the system, ignoring underlying causes or unforeseen effects. Water
use is often analysed from the scale of individual users. In a socio-ecological sys-
tem, while it is important to recognize the role and behaviours of individuals,
it is the relationships and interactions between individuals that represents the
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patterns of the system as a whole (Maniates, 2014). Water use (i.e demand) is
a key factor for socio-economic assessment. A systemic framework is needed to
collect data that represents not just the surface level of water use, but the root
drivers of water user behaviour (Spash and Dobernig, 2017)

In the field of ecological economics, a framework known as socio-economic
metabolism has emerged as a way to analyse the human-nature relationship
through their biophysical exchanges in socio-ecological systems (Fischer-
Kowalski and Weisz, 1999). This method has potential for DGSxWS.
Metabolism studies have historically focused on finite natural resources such
as fossil fuels and minerals, however Fischer-Kowalski and Haberl (1998)
argue that water should be included due to the negative impacts on WS that
socio-economic activities have caused. Madrid-López (2015) found that water
has been omitted from socio-economic metabolism not because of a lack of
data, but due to the conceptual challenge of analysing a renewable resource
that flows in a more cyclical manner. The utilisation of socio-ecological systems
framework, which recognizes complexity and interactions within systems, could
be helpful to incorporate metabolism studies into water security.

3 A Framework for Data Gathering Strategy in the Water Security
Context

3.1 Challenges

There are several valuable frameworks and handbooks on data gathering for
water security (WS) that have approached the issue from different perspectives
(Bartram and Ballance, 1996; of Meteorology, 2017; Chapman, 1996; IISD, 2015;
Timmerman et al., 2000; USEPA, 1997; Ward et al., 1990; WMO, 2013; UN-
Environment, 2017). Due to the problem’s complexity and technical improve-
ments/variability across basins, there is no generally-accepted practical strategy
that supports all phases of a Water Security Monitoring Plan planning and op-
timising in a holistic manner (Khalil et al., 2011; Strobl and Robillard, 2008).

We observed that existing tools give different emphases to the five interfaces
identified. The interface between data and the physical environment is the one
usually receiving most attention with information provided on sampling meth-
ods, approaches to sampling strategies, data quality best practices, statistical
tools for analysis, and interpretation. This interface is key to creating credible
(Lehtonen, 2015) and robust data. Further work can be done in incorporating
the temporal dimension when assessing WS (Srinivasan et al., 2017), by consider-
ing the dynamic of the WS system (understanding how internal changes are hap-
pening), and understanding the external stressors of the system (economic and
political situation). A dynamic assessment would also be able to better capture
socio-political changes, which are usually more abrupt than physio-hydrological
ones. Incorporating dynamics into the framework needs to be facilitated by a
change in medium (and therefore in the content structure and usability) from
printed to digital, since digital media is better for iterative processes, restriction,
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interlinkages, and dataset management (Behmel et al., 2016).

The relationship with project resources is usually addressed to produce an esti-
mate of costs (Bartram and Ballance, 1996; WMO, 2013). In reality, resources
are always finite and the tradeoff between cost-quality-time should be acknowl-
edged and managed, with the intent of optimising results given available project
resources. A more recent framework (UN-Environment, 2017) explicitly calls for
a capacity assessment, underlining the importance of project-tailored solutions.
Reporting data within existing requirements and legislation has been addressed
extensively (Bartram and Ballance, 1996; WMO, 2013). Lastly, soft aspects
(motivation & leadership, knowledge, and staff retention) are influential factors
(Peletz et al., 2018) in the success of a monitoring project and should be consid-
ered of equal, if not greater, importance to financial and physical assets when
evaluating project resources.

Bridging the gap between gathering, accessing, and sharing data is a strategi-
cally important step to global water security and achieving the associated SDGs
(SDG6, but also SDGs 1, 2, 3, 4, 5, 7, 8, 9, 11, and 14). Technological innova-
tion in the past decades has dramatically increased the amount of data that is
gathered. Despite these advances, the creation of an open data culture is still in
its infancy and will not only require a change of mindset, but also a revision of
the whole process of data gathering, editing, storage, and access. As a starting
point, following the FAIR guiding principles (Wilkinson et al., 2016) is essential,
yet the problem of properly transferring such knowledge to all users’ levels re-
mains. While FAIR principles are known and accepted internationally in global
scale datasets, those working at small scales (e.g., municipalities, basins) are
not always aware of, or follow, such principles. This is an important problem
because most of the data required for understanding and assessing WS is gath-
ered at these smaller scales. Thus, there is a need to bridge the gap between
data gathering, access, and sharing.

The linkage between stakeholders and information is often approached from a
top-down perspective where the research community produces new information
to be communicated to relevant stakeholders. The engagement of stakeholders
as data producers has only emerged in recent years through the phenomenon of
citizen-science (Conrad and Hilchey, 2010; Walker et al., 2020) and therefore is
typically absent from older frameworks. Stakeholders should not be seen only
as information receivers but as active players in the identification of information
needs (Timmerman et al., 2000). Timmerman et al’s study proposes different
information categories (information for policy evaluation, for policy preparation,
and for operational water management) but there is no mention of users and
communities nor information-related to behavioural change, which is essential
to achieving water security.

The socio-cultural context is often acknowledged but not incorporated into the
data gathering framework. While this is not strictly part of a DGS, it benefits
to be aware of social aspects since they may influence data quality salience and
legitimacy (Peletz et al., 2018). Additionally, the involvement of stakeholders
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in the process is very beneficial in creating information that is understood and
used. This requires a stronger collaboration between hard and social sciences
and the co-creation of tools for implementation.

Operationalisation of a framework is, obviously, extremely important. The only
data on the usage of WS assessment tools that was found (Norman et al., 2011)
reported a gap between the abundance of analytic tools produced by academics
and uptake by water professionals. A balance should be found between the
necessary complexity needed to address WS and the tool usability. This also
implies finding a compromise between the needs for generalisation and practical-
ity. In this paper, the issue was addressed not by prescribing strict procedures
but bringing attention to key relationships and qualities that a DGS should
have.

The conceptual aim of this framework can be summarised as shifting the focus
of DGS from a “data-to-information approach” to a “data-to-action approach”.
This implies moving from an intra-disciplinary perspective (e.g. water quality,
hydrology) to an interdisciplinary one that prioritises the relationship between
produced information and stakeholders.

3.2 Suggested steps

To address and overcome the obstacles, we have identified a set of activities that
a research team or project could undertake when addressing a DGSxWS. These
activities are intended as an initial step to bring attention to specific issues
pertinent to the five interfaces (Table 1). For each interface a set of goals was
identified with a related activity and key references. This table is a suggestion,
it is not to be understood as mandatory or limiting. In order to move from
a “data-to-information approach” to a “data-to-action approach”, activities in
Table 1 can be used as a starting point to evaluate and understand the current
situation of a certain place in relation with the WS problem/concept.

Table 1: summary of key activities related to each interface
Goal Activity References
A. Data-scape (data collected is harmonised and comparable with existing one)
A.1 Determine data requirements Review of data requirements based on legislation, existing datasets, donors.
A.2 Harmonise data with existing ones to fill gaps and avoid duplication Review existing secondary data for the WS dimension addressed in the DGS
A.3 Set data management plan Understand how to deal with data along the whole process (collect, edit, store, process, communicate)

Complement the plan if risk analysis was considered in the aims of the project. Aven, 2020
A.4 Collect and preserve data following the FAIR guiding principles Guarantee the collection and reuse of data in the future by considering open access approaches and FAIR principles
B. Physical Environment (data is able to capture variability with acceptable level of statistical power and uncertainty)
B.1 Basic characterization of study area Definition of basin boundaries and basic characterization, including places of local amenities related to water
B.2 Define scope and aim of investigation to ensure that data will translate into valuable information Identify WS dimension(s) for primary data collection

B.4 Collect secondary data Build own dataset from existing open sources
B.4 Primary data: sampling design and data collection Draft sampling location based on project resources, hypothesis, and considering the places where hazards are created and risk manifest Alilou,2019; Bartram 1996; Rajagopal, 1984;Sanders, 1983; Strobl, 2008; Ward, 1990; Zhang, 2012

Draft sampling parameters based on hypothesis to be tested, existing data, project resources
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Draft sampling frequency and times based on project resources and hypothesis to be tested (e.g. drinking water quality may deteriorate due to low velocities and high water age i.e. low or null water demand during night times in residential areas; illegal wastewater discharges may occur during night times, etc.)
Choose sampling methods
Choose appropriate laboratories according to analytical methods, certifications, and proximity to sampling locations to deliver samples on the right time Wright et al., 2014
Verify that sampling plan has enough statistical power to test the chosen hypothesis PNNL 2021
Create a team for sample collection and train them accordingly

B.5 Ensure data quality control Data quality control is in place Bureau of Meteorology, 2017, p.49; USEPA, 1997
B.6 analyse risks I Identify hazards and location

Identify vulnerabilities of people and assets Aven, 2020
Specify temporal considerations: period when hazardous events were observed and period when consequences were defined. Logan et al., 2021
Report qualitative and quantitative uncertainties: probabilities and surprises (unknown unknowns, known unknowns, ignored events due to low probability of occurrence). Aven, 2020
Judge the strength of the knowledge Aven, 2020

C. Project resources (data strategies optimise project resources)
C.1 Understand project constraints (time, cost and quality) and the feasibility of sampling strategy these constraints Assess project resources in the planning phase in terms of budget, time, scope and quality of deliverables

Verify that the sampling strategy is feasible within these constraints Sholarin and Awange, 2015a
C.2 Optimise the drafted sampling strategy in relation to available resources Revise sampling strategy Whitfield, 1988
C.3 Plan for data while you plan the project Prepare a knowledge management plan (for enterprise), or a data management plan (for research) during the planning phase of a project and keep them updated while monitoring and controlling the project’s implementation
C.4 Maintain agility and ensure a continuous cycle of feedback Continuously evaluate any discrepancies between what is planned and what is implemented. Hidalgo, 2019

Adjust sampling strategy accordingly (in case of deficit or surplus in any of the project’s constraints)
C.5 Avoid the failure of either project or data strategy through maintaining the right balance of resource allocation Avoid letting sampling strategy exploits more resources than planned or letting the other components of the project expand on the expense of sampling strategy Kendrick, 2015
C.6 Invest in training and capacity development Building capacity, on the institutional and individual levels, by providing tailored training to achieve a proper implementation of all strategies and actions Phillips and Stawarski, 2008
D. Stakeholder (Information produced by data reaches relevant stakeholders (policy makers, community, private sector)
D.1 Understand role of stakeholders and their possible engagement Stakeholder mapping and analysis Chinyio and Olomolaiye, 2009
D.2 Understand from key stakeholder, their information needs related to the study topic Participatory Needs Assessment Wang and Burris, 1994
D.3 Analyse risks II Map the stakeholder landscape to identify for whom and how assessments could be useful and to help identifying opportunities for managing particular risks

Determine actors and their mutual influences such as their capabilities for actions or effects, their goals and incentives, their use of communication channels and the nature of those channels, their knowledge, vulnerabilities, and values. Schweizer et al., 2021
Carry out a conceptual model to identify power relationships and their direction and conflicts Checkland, 1999
Involve river basin stakeholders and experts during the whole process
Set clear ways of how stakeholders will participate and how their inputs will be included in the analysis
Contact stakeholders and socialise the project with them, explaining objectives, potential impacts, and the importance of their participation
Manage clear expectations
Identify stakeholders’ water values and risk perceptions

D.4 Plan how to reach stakeholder with new information produced Participatory workshops
D.5 Involve key stakeholders in the dissemination and process Plan for participation
D.6 Incorporate local knowledge from informal pathways Local knowledge mining activities such as community mapping and participatory GIS
D.7 Ethical considerations Ethics Forms and Processes (https://www.ncl.ac.uk/research/researchgovernance/ethics/process/)
D.8 Co-production of information on local scales Citizen science De Filippo et al., 2021; Walker et al. 2020; Starkey et al., 2017
E. Socio-economic context (data strategy takes into consideration specific characteristics)
E.1 Identify elements that characterise the context Place-based definition of WS

Map existence and location of ethnic communities in the river basin FAO 2022;
E.2 Assess external context identifying key factors that could promote water insecurity Conduct a Rapid Assessment of WS system from secondary data and existing tools.
E.3 analyse risks III Identify individuals, populations or assets exposed to hazards Aven, 2019; Bonadonna et al., 2021

Characterise exposed people according to gender, ethnicity, age, socio-economic status, etc. Aven, 2019; Bonadonna et al., 2021
Determine exposure paths to hazards Aven, 2019; Bonadonna et al., 2021
Quantify exposure or describe it qualitatively if uncertainty is high Aven, 2019; Bonadonna et al., 2021; Renn et al., 2011
Identify vulnerabilities of individuals, populations or assets exposed to hazards Aven, 2019; Bonadonna et al., 2021
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Include resilience as part of the vulnerability identification Aven, 2021
E.4 Understand causal relations, sinergies, and tradeoffs between system components Social metabolism analysis Krausmann, 2017

4 Conclusion

The main purpose of this paper was to understand how a Data Gathering Strat-
egy for Water Security (DGSxWS) could be designed in a way that ensures the
data gathered is credible, legitimate, and salient. Additional attention should
be given to how data is stored and shared amongst stakeholders so that the
generated information can form the foundation for action to improve WS.

A complex system of knowledge emerged from a review of the literature. WS
can be approached using different frameworks, has several accepted definitions,
and has a multitude of indices and indicators which in turn often need more
than one parameter to be estimated. This complexity constitutes a barrier to
the operationalization of data and DGS by practitioners and thus change on the
ground.

In order to orientate practitioners and researchers within this complexity, a
logical framework was proposed. Given the diversity of approaches, research
scopes, and socio-cultural contexts found across basins, a single rigid approach
is not appropriate. Therefore, a logical framework was proposed that would
capture the key dimensions of an effective data collection strategy but have
sufficient flexibility to be applied in different contexts.

The proposed tool directs the attention of practitioners to five key areas that
should be addressed: the description of the observed environment, the available
project resources, the relation with the existing data-scape, the relation with the
socio-economic context, and the stakeholders. For each area, a set of activities
that could help address key challenges was proposed.

The proposed framework does not give a definitive answer to the issue of data-
gathering. This is appropriate as in reality a single defined method is not appro-
priate. We advocate a a new approach that addresses multiple spheres (physical
environment, socio-economic), uses different data types (qualitative and quan-
titative data, primary and secondary), and stresses the importance of seeing
the data gathering process as a step in the data-information-stakeholder-impact
chain and thus real change on the ground.
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