References
[1] S. Sudha, K.B. Jayanthi, C. Rajasekaran, N. Madian, T. Sunder, Convolutional Neural Network for Segmentation and Measurement of Intima Media Thickness, J. Med. Syst. 42 (2018). https://doi.org/10.1007/s10916-018-1001-y.
[2] R.-M. Menchón-Lara, J.-L. Sancho-Gómez, A. Bueno-Crespo, Early-stage atherosclerosis detection using deep learning over carotid ultrasound images, Appl. Soft Comput. 49 (2016) 616–628. https://doi.org/10.1016/j.asoc.2016.08.055.
[3] M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, A. Sharma, E. Cuadrado-Godia, J.R. Laird, A. Nicolaides, J.S. Suri, Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk, Med. Biol. Eng. Comput. 57 (2019) 543–564. https://doi.org/10.1007/s11517-018-1897-x.
[4] World Health Organisation, The Top 10 Causes of Death, (n.d.). https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
[5] G.A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S.F. Abera, G. Abyu, M. Ahmed, B. Aksut, T. Alam, K. Alam, others, Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015, J. Am. Coll. Cardiol. 70 (2017) 1–25.
[6] P. Bovet, F. Paccaud, Cardiovascular Disease and the Changing Face of Global Public Health: A Focus on Low and Middle Income Countries, Public Health Rev. 33 (2011) 397–415. https://doi.org/10.1007/bf03391643.
[7] A. Alwan, D.R. MacLean, A review of non-communicable disease in low- and middle-income countries, Int. Health. 1 (2009) 3–9. https://doi.org/10.1016/j.inhe.2009.02.003.
[8] Y.J. Yasin, J.A.M. Banoub, A. Husseini, GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017 (vol 392, pg 1736, 201, Lancet. 393 (2019) E44–E44.
[9] N.J. Kassebaum, M. Arora, R.M. Barber, Z.A. Bhutta, J. Brown, A. Carter, D.C. Casey, F.J. Charlson, M.M. Coates, M. Coggeshall, others, Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet. 388 (2016) 1603–1658.
[10] A.C. Carlsson, B. Starrin, B. Gigante, K. Leander, M.L. Hellenius, U. De Faire, Financial stress in late adulthood and diverse risks of incident cardiovascular disease and all-cause mortality in women and men, BMC Public Health. 14 (2014) 17. https://doi.org/10.1186/1471-2458-14-17.
[11] A. Georgiades, I. Janszky, M. Blom, K.D. László, S. Ahnve, Financial strain predicts recurrent events among women with coronary artery disease, Int. J. Cardiol. 135 (2009) 175–183. https://doi.org/10.1016/j.ijcard.2008.03.093.
[12] V. Viswanathan, A.D. Jamthikar, D. Gupta, N. Shanu, A. Puvvula, N.N. Khanna, L. Saba, T. Omerzum, K. Viskovic, S. Mavrogeni, M. Turk, J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D. Kitas, C. S, S. Joshi, H. Fiscian, A.A. Folson, D.H. Wu, Z. Ruzsa, A. Nicolaides, A. Sharma, D.L. Bhatt, J.S. Suri, Low-cost preventive screening using carotid ultrasound in patients with diabetes., Front. Biosci. (Landmark Ed. 25 (2020) 1132–1171. http://www.ncbi.nlm.nih.gov/pubmed/32114427 (accessed April 13, 2020).
[13] A. Gheorghe, U. Griffiths, A. Murphy, H. Legido-quigley, P. Lamptey, P. Perel, The economic burden of cardiovascular disease and hypertension in low- and middle-income countries : a systematic review, (2018) 1–11.
[14] A.J. Lusis, Atherosclerosis, Nature. 407 (2000) 233–241. https://doi.org/10.1038/35025203.
[15] Y. Sherer, Y. Shoenfeld, Mechanisms of Disease: atherosclerosis in autoimmune diseases, Nat. Clin. Pract. Rheumatol. 2 (2006) 99–106. https://doi.org/10.1038/ncprheum0092.
[16] R. Ross, Atherosclerosis-An Inflammatory Disease, NEJM. 340 (1999) 12.
[17] A.L. Wentland, T.M. Grist, O. Wieben, Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness., Cardiovasc. Diagn. Ther. 4 (2014) 193–206. https://doi.org/10.3978/j.issn.2223-3652.2014.03.04.
[18] P.H. Davis, J.D. Dawson, W.A. Riley, R.M. Lauer, Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age the muscatine Study, Circulation. 104 (2001) 2815–2819. https://doi.org/10.1161/hc4601.099486.
[19] J.D. Savant, S.L. Furth, K.E.C. Meyers, Arterial Stiffness in Children: Pediatric Measurement and Considerations, Pulse. 2 (2015) 69–80. https://doi.org/10.1159/000374095.
[20] A.E. Schutte, R. Kruger, L.F. Gafane-Matemane, Y. Breet, M. Strauss-Kruger, J.K. Cruickshank, Ethnicity and Arterial Stiffness, Arterioscler. Thromb. Vasc. Biol. (2020) ATVBAHA120313133. https://doi.org/10.1161/ATVBAHA.120.313133.
[21] F.U.S. Mattace-Raso, T.J.M. Van Der Cammen, A. Hofman, N.M. Van Popele, M.L. Bos, M.A.D.H. Schalekamp, R. Asmar, R.S. Reneman, A.P.G. Hoeks, M.M.B. Breteler, J.C.M. Witteman, Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study, Circulation. 113 (2006) 657–663. https://doi.org/10.1161/CIRCULATIONAHA.105.555235.
[22] G.F. Mitchell, S.J. Hwang, R.S. Vasan, M.G. Larson, M.J. Pencina, N.M. Hamburg, J.A. Vita, D. Levy, E.J. Benjamin, Arterial stiffness and cardiovascular events: The framingham heart study, Circulation. 121 (2010) 505–511. https://doi.org/10.1161/CIRCULATIONAHA.109.886655.
[23] Y. Chen, F. Shen, J. Liu, G.Y. Yang, Arterial stiffness and stroke: De-stiffening strategy, a therapeutic target for stroke, Stroke Vasc. Neurol. 2 (2017) 65–72. https://doi.org/10.1136/svn-2016-000045.
[24] A.D. Gepner, C.E. Korcarz, L.A. Colangelo, E.K. Hom, M.C. Tattersall, B.C. Astor, J.D. Kaufman, K. Liu, J.H. Stein, Longitudinal effects of a decade of aging on carotid artery stiffness : The multiethnic study of atherosclerosis, Stroke. 45 (2014) 48–53. https://doi.org/10.1161/STROKEAHA.113.002649.
[25] P. V Vaitkevicius, J.L. Fleg, J.H. Engel, F.C. O’Connor, J.G. Wright, L.E. Lakatta, F.C. Yin, E.G. Lakatta, Effects of age and aerobic capacity on arterial stiffness in healthy adults., Circulation. 88 (1993) 1456–1462. https://doi.org/10.1161/01.CIR.88.4.1456.
[26] A. Benetos, S. Laurent, A.P. Hoeks, P.H. Boutouyrie, M.E. Safar, Arterial alterations with aging and high blood pressure, (Arteriosclerosis Thromb. 13 (1993) 90–97.
[27] A. Benetos, B. Waeber, J. Izzo, G.Mitchell, L. Resnick, R. Asmar, Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: Clinical applications, Am. J. Hypertens. 15 (2002) 1101–1108. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=35397546.
[28] E. Oikonomou, G. Vogiatzi, G. Lazaros, S. Tsalamandris, A. Goliopoulou, V. Mystakidou, P. Theofilis, E. Christoforatou, C. Chasikidis, D. Tousoulis, Relationship of depressive symptoms with arterial stiffness and carotid atherosclerotic burden in the Corinthia study, QJM An Int. J. Med. (2020). https://doi.org/10.1093/qjmed/hcaa079.
[29] D. Liao, D.K. Arnett, H.A. Tyroler, W.A. Riley, L.E. Chambless, M. Szklo, G. Heiss, Arterial Stiffness and the Development of Hypertension, Hypertension. 34 (1999) 201–206. https://doi.org/10.1161/01.HYP.34.2.201.
[30] J. Dernellis, M. Panaretou, Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects, Hypertension. 45 (2005) 426–431. https://doi.org/10.1161/01.HYP.0000157818.58878.93.
[31] H. Takase, Y. Dohi, T. Toriyama, T. Okado, S. Tanaka, H. Sonoda, K. Sato, G. Kimura, Brachial-ankle pulse wave velocity predicts increase in blood pressure and onset of hypertension, Am. J. Hypertens. 24 (2011) 667–673. https://doi.org/10.1038/ajh.2011.19.
[32] S.S. Najjar, A. Scuteri, V. Shetty, J.G. Wright, D.C. Muller, J.L. Fleg, H.P. Spurgeon, L. Ferrucci, E.G. Lakatta, Pulse Wave Velocity Is an Independent Predictor of the Longitudinal Increase in Systolic Blood Pressure and of Incident Hypertension in the Baltimore Longitudinal Study of Aging, J. Am. Coll. Cardiol. 51 (2008) 1377–1383. https://doi.org/10.1016/j.jacc.2007.10.065.
[33] M. Yambe, H. Tomiyama, Y. Hirayama, Z. Gulniza, Y. Takata, Y. Koji, K. Motobe, A. Yamashina, Arterial Stiffening as a Possible Risk Factor for Both Atherosclerosis and Diastolic Heart Failure, n.d. https://www.jstage.jst.go.jp/article/hypres/27/9/27_9_625/_article/-char/ja/ (accessed March 28, 2020).
[34] G.F. Mitchell, S.-J. Hwang, R.S. Vasan, M.G. Larson, M.J. Pencina, N.M. Hamburg, J.A. Vita, D. Levy, E.J. Benjamin, Arterial Stiffness and Cardiovascular Events. The Framingham Heart Study, Circulation. 121 (2010) 505–511. https://doi.org/10.1161/CIRCULATIONAHA.109.886655.
[35] J. Kim, M.J. Cha, D.H. Lee, H.S. Lee, C.M. Nam, H.S. Nam, Y.D. Kim, J.H. Heo, The association between cerebral atherosclerosis and arterial stiffness in acute ischemic stroke, Atherosclerosis. 219 (2011) 887–891. https://doi.org/10.1016/j.atherosclerosis.2011.09.013.
[36] T. Pereira, J. Maldonado, L. Pereira, J. Conde, Aortic Stiffness is an Independent Predictor of Stroke in Hypertensive Patients, Arq. Bras. Cardiol. 258 (2013) 1236–1241. https://doi.org/10.5935/abc.20130079.
[37] S.B. Prenner, J.A. Chirinos, Arterial stiffness in diabetes mellitus, Atherosclerosis. 238 (2015) 370–379. https://doi.org/10.1016/j.atherosclerosis.2014.12.023.
[38] E. Sciatti, E. Vizzardi, A. Castiello, F. Valentini, I. Bonadei, S. Gelsomino, R. Lorusso, M. Metra, The role of type 2 diabetes mellitus on hypertensive-related aortic stiffness, Echocardiography. 35 (2018) 798–803. https://doi.org/10.1111/echo.13841.
[39] G.S. Berenson, S.R. Srinivasan, Emergence of obesity and cardiovascular risk for coronary artery disease: the Bogalusa Heart Study., Prev. Cardiol. 4 (2001) 116–121. http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L32613803.
[40] K. Sutton-Tyrrell, A. Newman, E.M. Simonsick, R. Havlik, M. Pahor, E. Lakatta, H. Spurgeon, P. Vaitkevicius, Aortic stiffness is associated with visceral adiposity in older adults enrolled in the Study of Health, Aging, and Body Composition, Hypertension. 38 (2001) 429–433. https://doi.org/10.1161/01.HYP.38.3.429.
[41] R.P. Wildman, R.H. Mackey, A. Bostom, T. Thompson, K. Sutton-Tyrrell, Measures of obesity are associated with vascular stiffness in young and older adults, Hypertension. 42 (2003) 468–473. https://doi.org/10.1161/01.HYP.0000090360.78539.CD.
[42] M. Kanbay, B. Afsar, P. Gusbeth-Tatomir, A. Covic, Arterial stiffness in dialysis patients: Where are we now?, Int. Urol. Nephrol. 42 (2010) 741–752. https://doi.org/10.1007/s11255-009-9675-1.
[43] R.R. Townsend, A.H. Anderson, J.A. Chirinos, H.I. Feldman, J.E. Grunwald, L. Nessel, J. Roy, M.R. Weir, J.T. Wright, N. Bansal, C.Y. Hsu, J.W. Kusek, M. Rahman, Association of pulse wave velocity with chronic kidney disease progression and mortality findings from the CRIC Study (Chronic Renal Insufficiency Cohort), Hypertension. 71 (2018) 1101–1107. https://doi.org/10.1161/HYPERTENSIONAHA.117.10648.
[44] M. O’Rourke, C. Hartley, D. McDonald, McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles, (1998).
[45] J.J. Oliver, D.J. Webb, Noninvasive assessment of arterial stiffness and risk of atherosclerotic events, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 554–566. https://doi.org/10.1161/01.ATV.0000060460.52916.D6.
[46] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, Expert consensus document on arterial stiffness: Methodological issues and clinical applications, Eur. Heart J. 27 (2006) 2588–2605. https://doi.org/10.1093/eurheartj/ehl254.
[47] P. Hallock, I.C. Benson, STUDIES ON THE ELASTIC PROPERTIES OF HUMAN ISOLATED AORTA, J. Clin. Invest. 16 (1937) 595–602. https://doi.org/10.1172/JCI100886.
[48] P. Hallock, I.C. Benson, STUDIES ON THE ELASTIC PROPERTIES OF HUMAN ISOLATED AORTA, J. Clin. Invest. 16 (1937) 595–602. https://doi.org/10.1172/jci100886.
[49] M. Gevers, W.W. Hack, E.F. Ree, H.N. Lafeber, N. Westerhof, Arterial blood pressure wave forms in radial and posterior tibial arteries in critically ill newborn infants., J. Dev. Physiol. 19 (1993) 179–85. http://www.ncbi.nlm.nih.gov/pubmed/8089447 (accessed April 19, 2020).
[50] C.S. Uiterwaal, S. Anthony, L.J. Launer, J.C. Witteman, A.M. Trouwborst, A. Hofman, D.E. Grobbee, Birth weight, growth, and blood pressure: an annual follow-up study of children aged 5 through 21 years., Hypertens. (Dallas, Tex. 1979). 30 (1997) 267–71. https://doi.org/10.1161/01.hyp.30.2.267.
[51] G.F. Mitchell, H. Parise, E.J. Benjamin, M.G. Larson, M.J. Keyes, J.A. Vita, R.S. Vasan, D. Levy, Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study, Hypertension. 43 (2004) 1239–1245. https://doi.org/10.1161/01.HYP.0000128420.01881.aa.
[52] R. Kelly, C. Hayward, A. Avolio, M. O’Rourke, Noninvasive determination of age-related changes in the human arterial pulse., Circulation. 80 (1989) 1652–1659. https://doi.org/10.1161/01.CIR.80.6.1652.
[53] K.L. Jablonski, A.J. Donato, B.S. Fleenor, M.J. Nowlan, A.E. Walker, R.E. Kaplon, D.B. Ballak, D.R. Seals, Reduced large elastic artery stiffness with regular aerobic exercise inmiddle-agedandolder adults: Potential role of suppressed nuclear factor κ B signalling, J. Hypertens. 33 (2015) 2477–2482. https://doi.org/10.1097/HJH.0000000000000742.
[54] N. Fujimoto, A. Prasad, J.L. Hastings, A. Arbab-Zadeh, P.S. Bhella, S. Shibata, D. Palmer, B.D. Levine, Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age, Circulation. 122 (2010) 1797–1805. https://doi.org/10.1161/CIRCULATIONAHA.110.973784.
[55] J. Westerbacka, I. Wilkinson, J. Cockcroft, T. Utriainen, S. Vehkavaara, H. Yki-Järvinen, Diminished wave reflection in the aorta: A novel physiological action of insulin on large blood vessels, Hypertension. 33 (1999) 1118–1122. https://doi.org/10.1161/01.HYP.33.5.1118.
[56] M. Tamminen, J. Westerbacka, S. Vehkavaara, H. Yki-Järvinen, Insulin-induced decreases in aortic wave reflection and central systolic pressure are impaired in type 2 diabetes., Diabetes Care. 25 (2002) 2314–2319. https://doi.org/10.2337/diacare.25.12.2314.
[57] M.F.O. Rourke, A. Pauca, X. Jiang, Pulse wave analysis, (2001) 507–522.
[58] G.M. London, A.P. Guerin, B. Pannier, S.J. Marchais, M. Stimpel, Influence of sex on arterial hemodynamics and blood pressure: Role of body height, in: Hypertension, Lippincott Williams and Wilkins, 1995: pp. 514–519. https://doi.org/10.1161/01.HYP.26.3.514.
[59] C.S. Hayward, R.P. Kelly, Gender-related differences in the central arterial pressure waveform, J. Am. Coll. Cardiol. 30 (1997) 1863–1871. https://doi.org/10.1016/S0735-1097(97)00378-1.
[60] Y. Zhang, P. Lacolley, A.D. Protogerou, M.E. Safar, Arterial Stiffness in Hypertension and Function of Large Arteries, Am. J. Hypertens. 33 (2020) 291–296. https://doi.org/10.1093/ajh/hpz193.
[61] B.A. Brooks, L.M. Molyneaux, D.K. Yue, Augmentation of central arterial pressure in type 2 diabetes, Diabet. Med. 18 (2001) 374–380. https://doi.org/10.1046/j.1464-5491.2001.00479.x.
[62] B. Brooks, L. Molyneaux, D.K. Yue, Augmentation of central arterial pressure in type 1 diabetes, Diabetes Care. 22 (1999) 1722–1727. https://doi.org/10.2337/diacare.22.10.1722.
[63] K. Takagi, S. Ishihara, N. Kenji, H. Iha, N. Kobayashi, Y. Ito, T. Nohara, S. Ohkuma, T. Mitsuishi, A. Ishizuka, S. Shigihara, M. Sone, H. Tokuyama, T. Omote, A. Kikuchi, S. Nakamura, E. Yamamoto, M. Ishikawa, K. Amitani, N. Takahashi, Y. Maruyama, H. Imura, N. Sato, W. Shimizu, Clinical significance of arterial stiffness as a factor for hospitalization of heart failure with preserved left ventricular ejection fraction: a retrospective matched case-control study, J. Cardiol. (2020). https://doi.org/10.1016/j.jjcc.2020.02.013.
[64] B. Gavish, J.L. Izzo, Arterial Stiffness: Going a Step beyond, Am. J. Hypertens. 29 (2016) 1223–1233. https://doi.org/10.1093/ajh/hpw061.
[65] H. Tanaka, M. Munakata, Y. Kawano, M. Ohishi, T. Shoji, J. Sugawara, H. Tomiyama, A. Yamashina, H. Yasuda, T. Sawayama, T. Ozawa, Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness, J. Hypertens. 27 (2009) 2022–2027. https://doi.org/10.1097/HJH.0b013e32832e94e7.
[66] R.R. Townsend, I.B. Wilkinson, E.L. Schiffrin, A.P. Avolio, J.A. Chirinos, J.R. Cockcroft, K.S. Heffernan, E.G. Lakatta, C.M. McEniery, G.F. Mitchell, S.S. Najjar, W.W. Nichols, E.M. Urbina, T. Weber, Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness, 2015. https://doi.org/10.1161/hyp.0000000000000033.
[67] L.M. Van Bortel, S. Laurent, P. Boutouyrie, P. Chowienczyk, J.K. Cruickshank, T. De Backer, J. Filipovsky, S. Huybrechts, F.U.S. Mattace-Raso, A.D. Protogerou, G. Schillaci, P. Segers, S. Vermeersch, T. Weber, Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity, J. Hypertens. 30 (2012) 445–448. https://doi.org/10.1097/HJH.0b013e32834fa8b0.
[68] S.J. Al Aref, K. Anchouche, G. Singh, P.J. Slomka, K.K. Kolli, A. Kumar, M. Pandey, G. Maliakal, A.R. Van Rosendael, A.N. Beecy, D.S. Berman, J. Leipsic, K. Nieman, D. Andreini, G. Pontone, U.J. Schoepf, L.J. Shaw, H. Chang, J. Narula, J.J. Bax, Y. Guan, J.K. Min, Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging, (2018) 1–14. https://doi.org/10.1093/eurheartj/ehy404.
[69] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (2015) 436–444. https://doi.org/10.1038/nature14539.
[70] I. Goodfellow, Deep Learning, (n.d.).
[71] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst. (2007) 153–160.
[72] P. Vincent, H. Larochelle, Extracting and Composing Robust Features with Denoising.pdf, (2008) 1096–1103.
[73] A. Redheuil, W. Yu, C.O. Wu, E. Mousseaux, A. De Cesare, R. Yan, N. Kachenoura, D. Bluemke, J.A.C. Lima, Reduced Ascending Aortic Strain and Distensibility Earliest Manifestations of Vascular Aging in Humans, (2010). https://doi.org/10.1161/HYPERTENSIONAHA.109.141275.
[74] M.E. Safar, R. Asmar, A. Benetos, J. Blacher, P. Boutouyrie, P. Lacolley, S. Laurent, G. London, B. Pannier, A. Protogerou, Interaction Between Hypertension and Arterial Stiffness, Hypertens. (Dallas, Tex. 1979). 72 (2018) 796–805. https://doi.org/10.1161/HYPERTENSIONAHA.118.11212.
[75] H. Obeid, V. Ouedraogo, M. Hallab, Arterial Stiffness: A New Biomarker to be Measured, J. Arch. Mil. Med. 5 (2017). https://doi.org/10.5812/jamm.47078.
[76] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, Expert consensus document on arterial stiffness: methodological issues and clinical applications, Eur. Heart J. 27 (2006) 2588–2605. https://doi.org/10.1093/eurheartj/ehl254.
[77] F.J. Callaghan, L.A. Geddes, C.F. Babbs, J.D. Bourland, Relationship between pulse-wave velocity and arterial elasticity, Med. Biol. Eng. Comput. 24 (1986) 248–254. https://doi.org/10.1007/BF02441620.
[78] K. Shirai, J. Utino, K. Otsuka, M. Takata, A novel blood pressure-independent arterial wall stiffness parameter, J. Atheroscler. Thromb. 13 (2006) 101–107. http://link.kesli.or.kr:3210/cmclib?sid=Entrez:PubMed.
[79] S. Vulliémoz, N. Stergiopulos, R. Meuli, Estimation of local aortic elastic properties with MRI, Magn. Reson. Med. 47 (2002) 649–654. https://doi.org/10.1002/mrm.10100.
[80] S.W. Fielden, B.K. Fornwalt, M. Jerosch-Herold, R.L. Eisner, A.E. Stillman, J.N. Oshinski, A new method for the determination of aortic pulse wave velocity using cross-correlation on 2D PCMR velocity data, J. Magn. Reson. Imaging. 27 (2008) 1382–1387. https://doi.org/10.1002/jmri.21387.
[81] N. Jatoi, A. Mahmud, K. Bennett, J.F.-J. of hypertension, undefined 2009, Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques, Journals.Lww.Com. (n.d.). https://journals.lww.com/jhypertension/Fulltext/2009/11000/Tranilast_attenuates_myocardial_fibrosis_in.6.aspx (accessed July 25, 2020).
[82] M. Butlin, A. Qasem, Large Artery Stiffness Assessment Using SphygmoCor Technology, Pulse. 4 (2016) 180–192. https://doi.org/10.1159/000452448.
[83] S.S. Hickson, M. Butlin, J. Broad, A.P. Avolio, I.B. Wilkinson, C.M. McEniery, Validity and repeatability of the Vicorder apparatus: A comparison with the SphygmoCor device, Hypertens. Res. 32 (2009) 1079–1085. https://doi.org/10.1038/hr.2009.154.
[84] P. Salvi, G. Lio, C. Labat, E. Ricci, … B.P.-J. of, undefined 2004, Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device, Journals.Lww.Com. (n.d.). https://journals.lww.com/jhypertension/fulltext/2004/12000/validation_of_a_new_non_invasive_portable.10.aspx (accessed July 25, 2020).
[85] J.L. Taylor, T.B. Curry, L.J. Matzek, M.J. Joyner, D.P. Casey, Acute Effects of a Mixed Meal on Arterial Stiffness and Central Hemodynamics in Healthy Adults, Am. J. Hypertens. 27 (2014) 331. https://doi.org/10.1093/ajh/hpt211.
[86] A. Mahmud, J. Feely, Acute Effect of Caffeine on Arterial Stiffness and Aortic Pressure Waveform, Hypertension. 38 (2001) 227–231. https://doi.org/10.1161/01.HYP.38.2.227.
[87] A. Mahmud, J. Feely, Effect of smoking on arterial stiffness and pulse pressure amplification, Hypertension. 41 (2003) 183–187. https://doi.org/10.1161/01.HYP.0000047464.66901.60.
[88] T. Araki, A.M. Kumar, P.K. Kumar, A. Gupta, L. Saba, J. Rajan, F. Lavra, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird, J.S. Suri, Ultrasound-based automated carotid lumen diameter/stenosis measurement and its validation system, J. Vasc. Ultrasound. 40 (2016) 120–134. https://doi.org/10.1177/154431671604000302.
[89] J.R.H. Kumar, K. Teotia, P.K. Raj, J. Andrade, K. V Rajagopal, C.S. Seelamantula, AUTOMATIC SEGMENTATION OF COMMON CAROTID ARTERY IN LONGITUDINAL MODE ULTRASOUND IMAGES USING ACTIVE OBLONGS Department of Electrical Engineering , Indian Institute of Science , Bangalore , India Department of Electrical and Electronics Engineering , Manip, (2019) 1353–1357.
[90] S. Petroudi, C. Loizou, M. Pantziaris, C. Pattichis, Segmentation of the common carotid intima-media complex in ultrasound images using active contours, IEEE Trans. Biomed. Eng. 59 (2012) 3060–3069. https://doi.org/10.1109/TBME.2012.2214387.
[91] A.M.F. Santos, J.M.R.S. Tavares, L. Sousa, R. Santos, P. Castro, E. Azevedo, Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images, Med. Imaging 2013 Comput. Diagnosis. 8670 (2013) 86703I. https://doi.org/10.1117/12.2007259.
[92] A.M.F. Santos, J.M.R.S. Tavares, L. Sousa, R. Santos, P. Castro, E. Azevedo, Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images, in: C.L. Novak, S. Aylward (Eds.), Med. Imaging 2013 Comput. Diagnosis, 2013: p. 86703I. https://doi.org/10.1117/12.2007259.
[93] A.R. Abdel-Dayem, M.R. El-Sakka, A. Fenster, Watershed segmentation for carotid artery ultrasound images, 3rd ACS/IEEE Int. Conf. Comput. Syst. Appl. 2005. 2005 (2005) 735–742. https://doi.org/10.1109/AICCSA.2005.1387120.
[94] K. Saini, M.L. Dewal, M. Rohit, Ultrasound Imaging and Image Segmentation in the area of Ultrasound : A Ultrasound Imaging and Image Segmentation in the area of Ultrasound : A Review, (2010).
[95] D.D.B. Carvalho, Z. Akkus, S.C.H. van den Oord, A.F.L. Schinkel, A.F.W. van der Steen, W.J. Niessen, J.G. Bosch, S. Klein, Lumen Segmentation and Motion Estimation in B-Mode and Contrast-Enhanced Ultrasound Images of the Carotid Artery in Patients With Atherosclerotic Plaque, IEEE Trans. Med. Imaging. 34 (2015) 983–993. https://doi.org/10.1109/TMI.2014.2372784.
[96] F. Benzarti, H. Amiri, Speckle Noise Reduction in Medical Ultrasound Images, Proc. 9th WSEAS Int. Conf. Signal, Speech Image Process. SSIP ’09, Proc. 9th WSEAS Int. Conf. Multimedia, Internet Video Technol. MIV ’09. (2013) 126–131. http://arxiv.org/abs/1305.1344.
[97] F. Molinari, K.M. Meiburger, L. Saba, U.R. Acharya, G. Ledda, G. Zeng, S.Y.S. Ho, A.T. Ahuja, S.C. Ho, A. Nicolaides, J.S. Suri, Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods, Comput. Methods Programs Biomed. 108 (2012) 946–960. https://doi.org/10.1016/j.cmpb.2012.05.008.
[98] E.G. Sifakis, S. Golemati, Robust carotid artery recognition in longitudinal B-mode ultrasound images, IEEE Trans. Image Process. 23 (2014) 3762–3772. https://doi.org/10.1109/TIP.2014.2332761.
[99] F. Molinari, G. Zeng, J.S. Suri, An Integrated Approach to Computer-Based Automated Tracing and Its Validation for 200 Common Carotid Arterial Wall Ultrasound Images, J. Ultrasound Med. 29 (2010) 399–418. https://doi.org/10.7863/jum.2010.29.3.399.
[100] P. Krishna Kumar, T. Araki, J. Rajan, L. Saba, F. Lavra, N. Ikeda, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird, A. Gupta, J.S. Suri, Accurate lumen diameter measurement in curved vessels in carotid ultrasound: an iterative scale-space and spatial transformation approach, Med. Biol. Eng. Comput. 55 (2017) 1415–1434. https://doi.org/10.1007/s11517-016-1601-y.
[101] R. Rocha, J. Silva, A. Campilho, Automatic detection of the carotid lumen axis in B-mode ultrasound images, Comput. Methods Programs Biomed. 115 (2014) 110–118. https://doi.org/10.1016/j.cmpb.2014.04.004.
[102] T. Araki, P.K. Kumar, H.S. Suri, N. Ikeda, A. Gupta, L. Saba, J. Rajan, F. Lavra, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird, J.S. Suri, Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches, J. Med. Syst. 40 (2016). https://doi.org/10.1007/s10916-016-0543-0.
[103] J.F. Polak, M. Szklo, D.H. O’Leary, Associations of Coronary Heart Disease with Common Carotid Artery Near and Far Wall Intima-Media Thickness: The Multi-Ethnic Study of Atherosclerosis, J. Am. Soc. Echocardiogr. 28 (2015) 1114–1121. https://doi.org/10.1016/j.echo.2015.04.001.
[104] J.F. Polak, W.S. Post, J.J. Carr, M. Szklo, D.H. O’Leary, Associations of Common Carotid Intima-Media Thickness with Coronary Heart Disease Risk Factors and Events Vary with Distance from the Carotid Bulb, J. Am. Soc. Echocardiogr. 27 (2014) 991–997. https://doi.org/10.1016/j.echo.2014.04.019.
[105] Pierre-Jean Touboul;Patrizio Prati;Pierre-Yves Scarabin;Valerie Adrai;Emmanuel Thibout; and Pierre Ducimetiere, Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging, (1992) S37–S41.
[106] C. Liguori, A. Paolillo, A. Pietrosanto, An automatic measurement system for the evaluation of carotid intima-media thickness, IEEE Trans. Instrum. Meas. 50 (2001) 1684–1691. https://doi.org/10.1109/19.982968.
[107] G. Zahnd, K. Kapellas, M. van Hattem, A. van Dijk, A. Sérusclat, P. Moulin, A. van der Lugt, M. Skilton, M. Orkisz, A Fully-Automatic Method to Segment the Carotid Artery Layers in Ultrasound Imaging: Application to Quantify the Compression-Decompression Pattern of the Intima-Media Complex During the Cardiac Cycle, Ultrasound Med. Biol. 43 (2017) 239–257. https://doi.org/10.1016/j.ultrasmedbio.2016.08.016.
[108] Y. Zhou, X. Cheng, X. Xu, E. Song, Dynamic programming in parallel boundary detection with application to ultrasound intima-media segmentation, Med. Image Anal. 17 (2013) 892–906. https://doi.org/10.1016/j.media.2013.05.009.
[109] F. Faita, V. Gemignani, E. Bianchini, C. Giannarelli, L. Ghiadoni, M. Demi, Real-time Measurement System for Evaluation of the Carotid Intima-Media Thickness With a Robust Edge Operator, J. Ultrasound Med. 27 (2008) 1353–1361. https://doi.org/10.7863/jum.2008.27.9.1353.
[110] A.C. Rossi, P.J. Brands, A.P.G. Hoeks, Automatic Localization of Intimal and Adventitial Carotid Artery Layers with Noninvasive Ultrasound: A Novel Algorithm Providing Scan Quality Control, Ultrasound Med. Biol. 36 (2010) 467–479. https://doi.org/10.1016/j.ultrasmedbio.2009.12.007.
[111] S. Golemati, J. Stoitsis, T. Balkizas, K.S. Nikita, Comparison of B-mode, M-mode and Hough transform methods for measurement of arterial diastolic and systolic diameters, (2006) 1758–1761. https://doi.org/10.1109/iembs.2005.1616786.
[112] S. Golemati, J. Stoitsis, E.G. Sifakis, T. Balkizas, K.S. Nikita, Using the Hough Transform to Segment Ultrasound Images of Longitudinal and Transverse Sections of the Carotid Artery, Ultrasound Med. Biol. 33 (2007) 1918–1932. https://doi.org/10.1016/j.ultrasmedbio.2007.05.021.
[113] C.P. Loizou, C.S. Pattichis, M. Pantziaris, T. Tyllis, A. Nicolaides, Snakes based segmentation of the common carotid artery intima media, Med. Biol. Eng. Comput. 45 (2007) 35–49. https://doi.org/10.1007/s11517-006-0140-3.
[114] N. Santhiyakumari, P. Rajendran, M. Madheswaran, S. Suresh, Detection of the intima and media layer thickness of ultrasound common carotid artery image using efficient active contour segmentation technique, Med. Biol. Eng. Comput. 49 (2011) 1299–1310. https://doi.org/10.1007/s11517-011-0800-9.
[115] F. Destrempes, J. Meunier, M.F. Giroux, G. Soulez, G. Cloutier, Segmentation in ultrasonic B-mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization, IEEE Trans. Med. Imaging. 28 (2009) 215–229. https://doi.org/10.1109/TMI.2008.929098.
[116] F. Molinari, G. Zeng, J.S. Suri, Inter-Greedy Technique for Fusion of Different Segmentation Strategies Leading to High-Performance Carotid IMT Measurement in Ultrasound Images, in: Atheroscler. Dis. Manag., Springer New York, New York, NY, 2011: pp. 253–279. https://doi.org/10.1007/978-1-4419-7222-4_10.
[117] F. Molinari, G. Zeng, J.S. Suri, Greedy Technique and Its Validation for Fusion of Two Segmentation Paradigms Leads to an Accurate Intima–Media Thickness Measure in Plaque Carotid Arterial Ultrasound, J. Vasc. Ultrasound. 34 (2018) 63–73. https://doi.org/10.1177/154431671003400201.
[118] F. Molinari, G. Zeng, J.S. Suri, Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images, Atheroscler. Dis. Manag. (2011) 253–279. https://doi.org/10.1007/978-1-4419-7222-4_10.
[119] D.E. Ilea, C. Duffy, L. Kavanagh, A. Stanton, P.F. Whelan, Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60 (2013) 158–177. https://doi.org/10.1109/TUFFC.2013.2547.
[120] R.M. Menchón-Lara, M.C. Bastida-Jumilla, J. Morales-Sánchez, J.L. Sancho-Gómez, Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks, Med. Biol. Eng. Comput. 52 (2014) 169–181. https://doi.org/10.1007/s11517-013-1128-4.
[121] A.K. Patel, H.S. Suri, J. Singh, D. Kumar, S. Shafique, A. Nicolaides, S.K. Jain, L. Saba, A. Gupta, J.R. Laird, A. Giannopoulos, J.S. Suri, A Review on Atherosclerotic Biology, Wall Stiffness, Physics of Elasticity, and Its Ultrasound-Based Measurement, Curr. Atheroscler. Rep. 18 (2016). https://doi.org/10.1007/s11883-016-0635-9.
[122] F. Molinari, G. Zeng, J.S. Suri, A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound, Comput. Methods Programs Biomed. 100 (2010) 201–221. https://doi.org/10.1016/j.cmpb.2010.04.007.
[123] B. Ihnatsenka, A.P. Boezaart, Ultrasound: Basic understanding and learning the language, Int. J. Shoulder Surg. 4 (2010) 55–62. https://doi.org/10.4103/0973-6042.76960.
[124] B. Schmauch, P. Herent, P. Jehanno, O. Dehaene, C. Saillard, C. Aubé, A. Luciani, N. Lassau, S. Jégou, Diagnosis of focal liver lesions from ultrasound using deep learning, Diagn. Interv. Imaging. 100 (2019) 227–233. https://doi.org/10.1016/j.diii.2019.02.009.
[125] B.Q. Huynh, H. Li, M.L. Giger, Digital mammographic tumor classification using transfer learning from deep convolutional neural networks, J. Med. Imaging. 3 (2016) 034501. https://doi.org/10.1117/1.jmi.3.3.034501.
[126] N. Hatipoglu, G. Bilgin, Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships, Med. Biol. Eng. Comput. 55 (2017) 1829–1848. https://doi.org/10.1007/s11517-017-1630-1.
[127] W. Bai, M. Sinclair, G. Tarroni, O. Oktay, M. Rajchl, G. Vaillant, A.M. Lee, N. Aung, E. Lukaschuk, M.M. Sanghvi, F. Zemrak, K. Fung, J.M. Paiva, V. Carapella, Y.J. Kim, H. Suzuki, B. Kainz, P.M. Matthews, S.E. Petersen, S.K. Piechnik, S. Neubauer, B. Glocker, D. Rueckert, Automated cardiovascular magnetic resonance image analysis with fully convolutional networks, J. Cardiovasc. Magn. Reson. 20 (2018) 1–12. https://doi.org/10.1186/s12968-018-0471-x.
[128] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting Cardiovascular Disease from Mammograms with Deep Learning, IEEE Trans. Med. Imaging. 36 (2017) 1172–1181. https://doi.org/10.1109/TMI.2017.2655486.
[129] A. Jamthikar, D. Gupta, N.N. Khanna, L. Saba, J.R. Laird, J.S. Suri, Cardiovascular/stroke risk prevention: A new machine learning framework integrating carotid ultrasound image-based phenotypes and its harmonics with conventional risk factors, Indian Heart J. (2020) 0–6. https://doi.org/10.1016/j.ihj.2020.06.004.
[130] M. Biswas, V. nkatanareshbabu Kuppili, D.R. Edla, H.S. Suri, L. Saba, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm, Comput. Methods Programs Biomed. 155 (2018) 165–177. https://doi.org/10.1016/j.cmpb.2017.12.016.
[131] V. Kuppili, M. Biswas, A. Sreekumar, H.S. Suri, L. Saba, D.R. Edla, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization, J. Med. Syst. 41 (2017) 152. https://doi.org/10.1007/s10916-017-0797-1.
[132] R. Hemalatha, V. Vijaybaskar, T. Thamizhvani, Automatic localization of anatomical regions in medical ultrasound images of rheumatoid arthritis using deep learning, Proc. Inst. Mech. Eng. Part H J. Eng. Med. (2019) 095441191984574. https://doi.org/10.1177/0954411919845747.
[133] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G.S. Corrado, L. Peng, D.R. Webster, Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning, Nat. Biomed. Eng. 2 (2018) 158–164. https://doi.org/10.1038/s41551-018-0195-0.
[134] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting Cardiovascular Disease from Mammograms With Deep Learning, IEEE Trans. Med. Imaging. 36 (2017) 1172–1181. https://doi.org/10.1109/TMI.2017.2655486.
[135] N. Tajbakhsh, J.Y. Shin, R.T. Hurst, C.B. Kendall, J. Liang, Automatic Interpretation of Carotid Intima–Media Thickness Videos Using Convolutional Neural Networks, in: Deep Learn. Med. Image Anal., 1st ed., Elsevier, 2017: pp. 105–131. https://doi.org/10.1016/B978-0-12-810408-8.00007-9.
[136] K. Lekadir, A. Galimzianova, A. Betriu, M. del Mar Vila, L. Igual, D.L. Rubin, E. Fernandez, P. Radeva, S. Napel, A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound, IEEE J. Biomed. Heal. Informatics. 21 (2017) 48–55. https://doi.org/10.1109/JBHI.2016.2631401.
[137] A. Kumar Patel, S. Kumar Jain, Arterial Parameters and Elasticity Estimation in Common Carotid Artery Using Deep Learning Approach, Int. J. Image, Graph. Signal Process. 11 (2019) 18–28. https://doi.org/10.5815/ijigsp.2019.11.03.
[138] E.A. Melnikova, I. V. Avdeeva, V.E. Oleynikov, Echo-Tracking is a novel technology to assess structural and functional properties of carotid arteries (review), Sovrem. Tehnol. v Med. 8 (2016) 119–127. https://doi.org/10.17691/stm2016.8.2.16.
[139] I.S. Mackenzie, Assessment of arterial stiffness in clinical practice, QJM. 95 (2002) 67–74. https://doi.org/10.1093/qjmed/95.2.67.
[140] T. Miyoshi, H. Ito, Assessment of Arterial Stiffness Using the Cardio-Ankle Vascular Index, Pulse. 4 (2016) 11–23. https://doi.org/10.1159/000445214.