References
[1] S. Sudha, K.B. Jayanthi, C. Rajasekaran, N. Madian, T. Sunder,
Convolutional Neural Network for Segmentation and Measurement of Intima
Media Thickness, J. Med. Syst. 42 (2018).
https://doi.org/10.1007/s10916-018-1001-y.
[2] R.-M. Menchón-Lara, J.-L. Sancho-Gómez, A. Bueno-Crespo,
Early-stage atherosclerosis detection using deep learning over carotid
ultrasound images, Appl. Soft Comput. 49 (2016) 616–628.
https://doi.org/10.1016/j.asoc.2016.08.055.
[3] M. Biswas, V. Kuppili, L. Saba, D.R. Edla, H.S. Suri, A. Sharma,
E. Cuadrado-Godia, J.R. Laird, A. Nicolaides, J.S. Suri, Deep learning
fully convolution network for lumen characterization in diabetic
patients using carotid ultrasound: a tool for stroke risk, Med. Biol.
Eng. Comput. 57 (2019) 543–564.
https://doi.org/10.1007/s11517-018-1897-x.
[4] World Health Organisation, The Top 10 Causes of Death, (n.d.).
https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
[5] G.A. Roth, C. Johnson, A. Abajobir, F. Abd-Allah, S.F. Abera, G.
Abyu, M. Ahmed, B. Aksut, T. Alam, K. Alam, others, Global, regional,
and national burden of cardiovascular diseases for 10 causes, 1990 to
2015, J. Am. Coll. Cardiol. 70 (2017) 1–25.
[6] P. Bovet, F. Paccaud, Cardiovascular Disease and the Changing
Face of Global Public Health: A Focus on Low and Middle Income
Countries, Public Health Rev. 33 (2011) 397–415.
https://doi.org/10.1007/bf03391643.
[7] A. Alwan, D.R. MacLean, A review of non-communicable disease in
low- and middle-income countries, Int. Health. 1 (2009) 3–9.
https://doi.org/10.1016/j.inhe.2009.02.003.
[8] Y.J. Yasin, J.A.M. Banoub, A. Husseini, GBD 2017 Causes of Death
Collaborators. Global, regional, and national age-sex-specific mortality
for 282 causes of death in 195 countries and territories, 1980-2017: a
systematic analysis for the Global Burden of Disease Study 2017 (vol
392, pg 1736, 201, Lancet. 393 (2019) E44–E44.
[9] N.J. Kassebaum, M. Arora, R.M. Barber, Z.A. Bhutta, J. Brown, A.
Carter, D.C. Casey, F.J. Charlson, M.M. Coates, M. Coggeshall, others,
Global, regional, and national disability-adjusted life-years (DALYs)
for 315 diseases and injuries and healthy life expectancy (HALE),
1990–2015: a systematic analysis for the Global Burden of Disease
Study 2015, Lancet. 388 (2016) 1603–1658.
[10] A.C. Carlsson, B. Starrin, B. Gigante, K. Leander, M.L.
Hellenius, U. De Faire, Financial stress in late adulthood and diverse
risks of incident cardiovascular disease and all-cause mortality in
women and men, BMC Public Health. 14 (2014) 17.
https://doi.org/10.1186/1471-2458-14-17.
[11] A. Georgiades, I. Janszky, M. Blom, K.D. László, S. Ahnve,
Financial strain predicts recurrent events among women with coronary
artery disease, Int. J. Cardiol. 135 (2009) 175–183.
https://doi.org/10.1016/j.ijcard.2008.03.093.
[12] V. Viswanathan, A.D. Jamthikar, D. Gupta, N. Shanu, A. Puvvula,
N.N. Khanna, L. Saba, T. Omerzum, K. Viskovic, S. Mavrogeni, M. Turk,
J.R. Laird, G. Pareek, M. Miner, P.P. Sfikakis, A. Protogerou, G.D.
Kitas, C. S, S. Joshi, H. Fiscian, A.A. Folson, D.H. Wu, Z. Ruzsa, A.
Nicolaides, A. Sharma, D.L. Bhatt, J.S. Suri, Low-cost preventive
screening using carotid ultrasound in patients with diabetes., Front.
Biosci. (Landmark Ed. 25 (2020) 1132–1171.
http://www.ncbi.nlm.nih.gov/pubmed/32114427 (accessed April 13, 2020).
[13] A. Gheorghe, U. Griffiths, A. Murphy, H. Legido-quigley, P.
Lamptey, P. Perel, The economic burden of cardiovascular disease and
hypertension in low- and middle-income countries : a systematic review,
(2018) 1–11.
[14] A.J. Lusis, Atherosclerosis, Nature. 407 (2000) 233–241.
https://doi.org/10.1038/35025203.
[15] Y. Sherer, Y. Shoenfeld, Mechanisms of Disease: atherosclerosis
in autoimmune diseases, Nat. Clin. Pract. Rheumatol. 2 (2006) 99–106.
https://doi.org/10.1038/ncprheum0092.
[16] R. Ross, Atherosclerosis-An Inflammatory Disease, NEJM. 340
(1999) 12.
[17] A.L. Wentland, T.M. Grist, O. Wieben, Review of MRI-based
measurements of pulse wave velocity: a biomarker of arterial stiffness.,
Cardiovasc. Diagn. Ther. 4 (2014) 193–206.
https://doi.org/10.3978/j.issn.2223-3652.2014.03.04.
[18] P.H. Davis, J.D. Dawson, W.A. Riley, R.M. Lauer, Carotid
intimal-medial thickness is related to cardiovascular risk factors
measured from childhood through middle age the muscatine Study,
Circulation. 104 (2001) 2815–2819.
https://doi.org/10.1161/hc4601.099486.
[19] J.D. Savant, S.L. Furth, K.E.C. Meyers, Arterial Stiffness in
Children: Pediatric Measurement and Considerations, Pulse. 2 (2015)
69–80. https://doi.org/10.1159/000374095.
[20] A.E. Schutte, R. Kruger, L.F. Gafane-Matemane, Y. Breet, M.
Strauss-Kruger, J.K. Cruickshank, Ethnicity and Arterial Stiffness,
Arterioscler. Thromb. Vasc. Biol. (2020) ATVBAHA120313133.
https://doi.org/10.1161/ATVBAHA.120.313133.
[21] F.U.S. Mattace-Raso, T.J.M. Van Der Cammen, A. Hofman, N.M. Van
Popele, M.L. Bos, M.A.D.H. Schalekamp, R. Asmar, R.S. Reneman, A.P.G.
Hoeks, M.M.B. Breteler, J.C.M. Witteman, Arterial stiffness and risk of
coronary heart disease and stroke: The Rotterdam Study, Circulation. 113
(2006) 657–663. https://doi.org/10.1161/CIRCULATIONAHA.105.555235.
[22] G.F. Mitchell, S.J. Hwang, R.S. Vasan, M.G. Larson, M.J.
Pencina, N.M. Hamburg, J.A. Vita, D. Levy, E.J. Benjamin, Arterial
stiffness and cardiovascular events: The framingham heart study,
Circulation. 121 (2010) 505–511.
https://doi.org/10.1161/CIRCULATIONAHA.109.886655.
[23] Y. Chen, F. Shen, J. Liu, G.Y. Yang, Arterial stiffness and
stroke: De-stiffening strategy, a therapeutic target for stroke, Stroke
Vasc. Neurol. 2 (2017) 65–72. https://doi.org/10.1136/svn-2016-000045.
[24] A.D. Gepner, C.E. Korcarz, L.A. Colangelo, E.K. Hom, M.C.
Tattersall, B.C. Astor, J.D. Kaufman, K. Liu, J.H. Stein, Longitudinal
effects of a decade of aging on carotid artery stiffness : The
multiethnic study of atherosclerosis, Stroke. 45 (2014) 48–53.
https://doi.org/10.1161/STROKEAHA.113.002649.
[25] P. V Vaitkevicius, J.L. Fleg, J.H. Engel, F.C. O’Connor, J.G.
Wright, L.E. Lakatta, F.C. Yin, E.G. Lakatta, Effects of age and aerobic
capacity on arterial stiffness in healthy adults., Circulation. 88
(1993) 1456–1462. https://doi.org/10.1161/01.CIR.88.4.1456.
[26] A. Benetos, S. Laurent, A.P. Hoeks, P.H. Boutouyrie, M.E.
Safar, Arterial alterations with aging and high blood pressure,
(Arteriosclerosis Thromb. 13 (1993) 90–97.
[27] A. Benetos, B. Waeber, J. Izzo, G.Mitchell, L. Resnick, R.
Asmar, Influence of age, risk factors, and cardiovascular and renal
disease on arterial stiffness: Clinical applications, Am. J. Hypertens.
15 (2002) 1101–1108.
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed8&NEWS=N&AN=35397546.
[28] E. Oikonomou, G. Vogiatzi, G. Lazaros, S. Tsalamandris, A.
Goliopoulou, V. Mystakidou, P. Theofilis, E. Christoforatou, C.
Chasikidis, D. Tousoulis, Relationship of depressive symptoms with
arterial stiffness and carotid atherosclerotic burden in the Corinthia
study, QJM An Int. J. Med. (2020).
https://doi.org/10.1093/qjmed/hcaa079.
[29] D. Liao, D.K. Arnett, H.A. Tyroler, W.A. Riley, L.E. Chambless,
M. Szklo, G. Heiss, Arterial Stiffness and the Development of
Hypertension, Hypertension. 34 (1999) 201–206.
https://doi.org/10.1161/01.HYP.34.2.201.
[30] J. Dernellis, M. Panaretou, Aortic stiffness is an independent
predictor of progression to hypertension in nonhypertensive subjects,
Hypertension. 45 (2005) 426–431.
https://doi.org/10.1161/01.HYP.0000157818.58878.93.
[31] H. Takase, Y. Dohi, T. Toriyama, T. Okado, S. Tanaka, H.
Sonoda, K. Sato, G. Kimura, Brachial-ankle pulse wave velocity predicts
increase in blood pressure and onset of hypertension, Am. J. Hypertens.
24 (2011) 667–673. https://doi.org/10.1038/ajh.2011.19.
[32] S.S. Najjar, A. Scuteri, V. Shetty, J.G. Wright, D.C. Muller,
J.L. Fleg, H.P. Spurgeon, L. Ferrucci, E.G. Lakatta, Pulse Wave Velocity
Is an Independent Predictor of the Longitudinal Increase in Systolic
Blood Pressure and of Incident Hypertension in the Baltimore
Longitudinal Study of Aging, J. Am. Coll. Cardiol. 51 (2008) 1377–1383.
https://doi.org/10.1016/j.jacc.2007.10.065.
[33] M. Yambe, H. Tomiyama, Y. Hirayama, Z. Gulniza, Y. Takata, Y.
Koji, K. Motobe, A. Yamashina, Arterial Stiffening as a Possible Risk
Factor for Both Atherosclerosis and Diastolic Heart Failure, n.d.
https://www.jstage.jst.go.jp/article/hypres/27/9/27_9_625/_article/-char/ja/
(accessed March 28, 2020).
[34] G.F. Mitchell, S.-J. Hwang, R.S. Vasan, M.G. Larson, M.J.
Pencina, N.M. Hamburg, J.A. Vita, D. Levy, E.J. Benjamin, Arterial
Stiffness and Cardiovascular Events. The Framingham Heart Study,
Circulation. 121 (2010) 505–511.
https://doi.org/10.1161/CIRCULATIONAHA.109.886655.
[35] J. Kim, M.J. Cha, D.H. Lee, H.S. Lee, C.M. Nam, H.S. Nam, Y.D.
Kim, J.H. Heo, The association between cerebral atherosclerosis and
arterial stiffness in acute ischemic stroke, Atherosclerosis. 219 (2011)
887–891. https://doi.org/10.1016/j.atherosclerosis.2011.09.013.
[36] T. Pereira, J. Maldonado, L. Pereira, J. Conde, Aortic
Stiffness is an Independent Predictor of Stroke in Hypertensive
Patients, Arq. Bras. Cardiol. 258 (2013) 1236–1241.
https://doi.org/10.5935/abc.20130079.
[37] S.B. Prenner, J.A. Chirinos, Arterial stiffness in diabetes
mellitus, Atherosclerosis. 238 (2015) 370–379.
https://doi.org/10.1016/j.atherosclerosis.2014.12.023.
[38] E. Sciatti, E. Vizzardi, A. Castiello, F. Valentini, I.
Bonadei, S. Gelsomino, R. Lorusso, M. Metra, The role of type 2 diabetes
mellitus on hypertensive-related aortic stiffness, Echocardiography. 35
(2018) 798–803. https://doi.org/10.1111/echo.13841.
[39] G.S. Berenson, S.R. Srinivasan, Emergence of obesity and
cardiovascular risk for coronary artery disease: the Bogalusa Heart
Study., Prev. Cardiol. 4 (2001) 116–121.
http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L32613803.
[40] K. Sutton-Tyrrell, A. Newman, E.M. Simonsick, R. Havlik, M.
Pahor, E. Lakatta, H. Spurgeon, P. Vaitkevicius, Aortic stiffness is
associated with visceral adiposity in older adults enrolled in the Study
of Health, Aging, and Body Composition, Hypertension. 38 (2001)
429–433. https://doi.org/10.1161/01.HYP.38.3.429.
[41] R.P. Wildman, R.H. Mackey, A. Bostom, T. Thompson, K.
Sutton-Tyrrell, Measures of obesity are associated with vascular
stiffness in young and older adults, Hypertension. 42 (2003) 468–473.
https://doi.org/10.1161/01.HYP.0000090360.78539.CD.
[42] M. Kanbay, B. Afsar, P. Gusbeth-Tatomir, A. Covic, Arterial
stiffness in dialysis patients: Where are we now?, Int. Urol. Nephrol.
42 (2010) 741–752. https://doi.org/10.1007/s11255-009-9675-1.
[43] R.R. Townsend, A.H. Anderson, J.A. Chirinos, H.I. Feldman, J.E.
Grunwald, L. Nessel, J. Roy, M.R. Weir, J.T. Wright, N. Bansal, C.Y.
Hsu, J.W. Kusek, M. Rahman, Association of pulse wave velocity with
chronic kidney disease progression and mortality findings from the CRIC
Study (Chronic Renal Insufficiency Cohort), Hypertension. 71 (2018)
1101–1107. https://doi.org/10.1161/HYPERTENSIONAHA.117.10648.
[44] M. O’Rourke, C. Hartley, D. McDonald, McDonald’s blood flow in
arteries: theoretic, experimental, and clinical principles, (1998).
[45] J.J. Oliver, D.J. Webb, Noninvasive assessment of arterial
stiffness and risk of atherosclerotic events, Arterioscler. Thromb.
Vasc. Biol. 23 (2003) 554–566.
https://doi.org/10.1161/01.ATV.0000060460.52916.D6.
[46] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C.
Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H.
Struijker-Boudier, Expert consensus document on arterial stiffness:
Methodological issues and clinical applications, Eur. Heart J. 27 (2006)
2588–2605. https://doi.org/10.1093/eurheartj/ehl254.
[47] P. Hallock, I.C. Benson, STUDIES ON THE ELASTIC PROPERTIES OF
HUMAN ISOLATED AORTA, J. Clin. Invest. 16 (1937) 595–602.
https://doi.org/10.1172/JCI100886.
[48] P. Hallock, I.C. Benson, STUDIES ON THE ELASTIC PROPERTIES OF
HUMAN ISOLATED AORTA, J. Clin. Invest. 16 (1937) 595–602.
https://doi.org/10.1172/jci100886.
[49] M. Gevers, W.W. Hack, E.F. Ree, H.N. Lafeber, N. Westerhof,
Arterial blood pressure wave forms in radial and posterior tibial
arteries in critically ill newborn infants., J. Dev. Physiol. 19 (1993)
179–85. http://www.ncbi.nlm.nih.gov/pubmed/8089447 (accessed April 19,
2020).
[50] C.S. Uiterwaal, S. Anthony, L.J. Launer, J.C. Witteman, A.M.
Trouwborst, A. Hofman, D.E. Grobbee, Birth weight, growth, and blood
pressure: an annual follow-up study of children aged 5 through 21
years., Hypertens. (Dallas, Tex. 1979). 30 (1997) 267–71.
https://doi.org/10.1161/01.hyp.30.2.267.
[51] G.F. Mitchell, H. Parise, E.J. Benjamin, M.G. Larson, M.J.
Keyes, J.A. Vita, R.S. Vasan, D. Levy, Changes in arterial stiffness and
wave reflection with advancing age in healthy men and women: The
Framingham Heart Study, Hypertension. 43 (2004) 1239–1245.
https://doi.org/10.1161/01.HYP.0000128420.01881.aa.
[52] R. Kelly, C. Hayward, A. Avolio, M. O’Rourke, Noninvasive
determination of age-related changes in the human arterial pulse.,
Circulation. 80 (1989) 1652–1659.
https://doi.org/10.1161/01.CIR.80.6.1652.
[53] K.L. Jablonski, A.J. Donato, B.S. Fleenor, M.J. Nowlan, A.E.
Walker, R.E. Kaplon, D.B. Ballak, D.R. Seals, Reduced large elastic
artery stiffness with regular aerobic exercise inmiddle-agedandolder
adults: Potential role of suppressed nuclear factor κ B signalling, J.
Hypertens. 33 (2015) 2477–2482.
https://doi.org/10.1097/HJH.0000000000000742.
[54] N. Fujimoto, A. Prasad, J.L. Hastings, A. Arbab-Zadeh, P.S.
Bhella, S. Shibata, D. Palmer, B.D. Levine, Cardiovascular effects of 1
year of progressive and vigorous exercise training in previously
sedentary individuals older than 65 years of age, Circulation. 122
(2010) 1797–1805. https://doi.org/10.1161/CIRCULATIONAHA.110.973784.
[55] J. Westerbacka, I. Wilkinson, J. Cockcroft, T. Utriainen, S.
Vehkavaara, H. Yki-Järvinen, Diminished wave reflection in the aorta: A
novel physiological action of insulin on large blood vessels,
Hypertension. 33 (1999) 1118–1122.
https://doi.org/10.1161/01.HYP.33.5.1118.
[56] M. Tamminen, J. Westerbacka, S. Vehkavaara, H. Yki-Järvinen,
Insulin-induced decreases in aortic wave reflection and central systolic
pressure are impaired in type 2 diabetes., Diabetes Care. 25 (2002)
2314–2319. https://doi.org/10.2337/diacare.25.12.2314.
[57] M.F.O. Rourke, A. Pauca, X. Jiang, Pulse wave analysis, (2001)
507–522.
[58] G.M. London, A.P. Guerin, B. Pannier, S.J. Marchais, M.
Stimpel, Influence of sex on arterial hemodynamics and blood pressure:
Role of body height, in: Hypertension, Lippincott Williams and Wilkins,
1995: pp. 514–519. https://doi.org/10.1161/01.HYP.26.3.514.
[59] C.S. Hayward, R.P. Kelly, Gender-related differences in the
central arterial pressure waveform, J. Am. Coll. Cardiol. 30 (1997)
1863–1871. https://doi.org/10.1016/S0735-1097(97)00378-1.
[60] Y. Zhang, P. Lacolley, A.D. Protogerou, M.E. Safar, Arterial
Stiffness in Hypertension and Function of Large Arteries, Am. J.
Hypertens. 33 (2020) 291–296. https://doi.org/10.1093/ajh/hpz193.
[61] B.A. Brooks, L.M. Molyneaux, D.K. Yue, Augmentation of central
arterial pressure in type 2 diabetes, Diabet. Med. 18 (2001) 374–380.
https://doi.org/10.1046/j.1464-5491.2001.00479.x.
[62] B. Brooks, L. Molyneaux, D.K. Yue, Augmentation of central
arterial pressure in type 1 diabetes, Diabetes Care. 22 (1999)
1722–1727. https://doi.org/10.2337/diacare.22.10.1722.
[63] K. Takagi, S. Ishihara, N. Kenji, H. Iha, N. Kobayashi, Y. Ito,
T. Nohara, S. Ohkuma, T. Mitsuishi, A. Ishizuka, S. Shigihara, M. Sone,
H. Tokuyama, T. Omote, A. Kikuchi, S. Nakamura, E. Yamamoto, M.
Ishikawa, K. Amitani, N. Takahashi, Y. Maruyama, H. Imura, N. Sato, W.
Shimizu, Clinical significance of arterial stiffness as a factor for
hospitalization of heart failure with preserved left ventricular
ejection fraction: a retrospective matched case-control study, J.
Cardiol. (2020). https://doi.org/10.1016/j.jjcc.2020.02.013.
[64] B. Gavish, J.L. Izzo, Arterial Stiffness: Going a Step beyond,
Am. J. Hypertens. 29 (2016) 1223–1233.
https://doi.org/10.1093/ajh/hpw061.
[65] H. Tanaka, M. Munakata, Y. Kawano, M. Ohishi, T. Shoji, J.
Sugawara, H. Tomiyama, A. Yamashina, H. Yasuda, T. Sawayama, T. Ozawa,
Comparison between carotid-femoral and brachial-ankle pulse wave
velocity as measures of arterial stiffness, J. Hypertens. 27 (2009)
2022–2027. https://doi.org/10.1097/HJH.0b013e32832e94e7.
[66] R.R. Townsend, I.B. Wilkinson, E.L. Schiffrin, A.P. Avolio,
J.A. Chirinos, J.R. Cockcroft, K.S. Heffernan, E.G. Lakatta, C.M.
McEniery, G.F. Mitchell, S.S. Najjar, W.W. Nichols, E.M. Urbina, T.
Weber, Recommendations for Improving and Standardizing Vascular Research
on Arterial Stiffness, 2015.
https://doi.org/10.1161/hyp.0000000000000033.
[67] L.M. Van Bortel, S. Laurent, P. Boutouyrie, P. Chowienczyk,
J.K. Cruickshank, T. De Backer, J. Filipovsky, S. Huybrechts, F.U.S.
Mattace-Raso, A.D. Protogerou, G. Schillaci, P. Segers, S. Vermeersch,
T. Weber, Expert consensus document on the measurement of aortic
stiffness in daily practice using carotid-femoral pulse wave velocity,
J. Hypertens. 30 (2012) 445–448.
https://doi.org/10.1097/HJH.0b013e32834fa8b0.
[68] S.J. Al Aref, K. Anchouche, G. Singh, P.J. Slomka, K.K. Kolli,
A. Kumar, M. Pandey, G. Maliakal, A.R. Van Rosendael, A.N. Beecy, D.S.
Berman, J. Leipsic, K. Nieman, D. Andreini, G. Pontone, U.J. Schoepf,
L.J. Shaw, H. Chang, J. Narula, J.J. Bax, Y. Guan, J.K. Min, Clinical
applications of machine learning in cardiovascular disease and its
relevance to cardiac imaging, (2018) 1–14.
https://doi.org/10.1093/eurheartj/ehy404.
[69] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521
(2015) 436–444. https://doi.org/10.1038/nature14539.
[70] I. Goodfellow, Deep Learning, (n.d.).
[71] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy
layer-wise training of deep networks, Adv. Neural Inf. Process. Syst.
(2007) 153–160.
[72] P. Vincent, H. Larochelle, Extracting and Composing Robust
Features with Denoising.pdf, (2008) 1096–1103.
[73] A. Redheuil, W. Yu, C.O. Wu, E. Mousseaux, A. De Cesare, R.
Yan, N. Kachenoura, D. Bluemke, J.A.C. Lima, Reduced Ascending Aortic
Strain and Distensibility Earliest Manifestations of Vascular Aging in
Humans, (2010). https://doi.org/10.1161/HYPERTENSIONAHA.109.141275.
[74] M.E. Safar, R. Asmar, A. Benetos, J. Blacher, P. Boutouyrie, P.
Lacolley, S. Laurent, G. London, B. Pannier, A. Protogerou, Interaction
Between Hypertension and Arterial Stiffness, Hypertens. (Dallas, Tex.
1979). 72 (2018) 796–805.
https://doi.org/10.1161/HYPERTENSIONAHA.118.11212.
[75] H. Obeid, V. Ouedraogo, M. Hallab, Arterial Stiffness: A New
Biomarker to be Measured, J. Arch. Mil. Med. 5 (2017).
https://doi.org/10.5812/jamm.47078.
[76] S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C.
Giannattasio, D. Hayoz, B. Pannier, C. Vlachopoulos, I. Wilkinson, H.
Struijker-Boudier, Expert consensus document on arterial stiffness:
methodological issues and clinical applications, Eur. Heart J. 27 (2006)
2588–2605. https://doi.org/10.1093/eurheartj/ehl254.
[77] F.J. Callaghan, L.A. Geddes, C.F. Babbs, J.D. Bourland,
Relationship between pulse-wave velocity and arterial elasticity, Med.
Biol. Eng. Comput. 24 (1986) 248–254.
https://doi.org/10.1007/BF02441620.
[78] K. Shirai, J. Utino, K. Otsuka, M. Takata, A novel blood
pressure-independent arterial wall stiffness parameter, J. Atheroscler.
Thromb. 13 (2006) 101–107.
http://link.kesli.or.kr:3210/cmclib?sid=Entrez:PubMed.
[79] S. Vulliémoz, N. Stergiopulos, R. Meuli, Estimation of local
aortic elastic properties with MRI, Magn. Reson. Med. 47 (2002)
649–654. https://doi.org/10.1002/mrm.10100.
[80] S.W. Fielden, B.K. Fornwalt, M. Jerosch-Herold, R.L. Eisner,
A.E. Stillman, J.N. Oshinski, A new method for the determination of
aortic pulse wave velocity using cross-correlation on 2D PCMR velocity
data, J. Magn. Reson. Imaging. 27 (2008) 1382–1387.
https://doi.org/10.1002/jmri.21387.
[81] N. Jatoi, A. Mahmud, K. Bennett, J.F.-J. of hypertension,
undefined 2009, Assessment of arterial stiffness in hypertension:
comparison of oscillometric (Arteriograph), piezoelectronic (Complior)
and tonometric (SphygmoCor) techniques, Journals.Lww.Com. (n.d.).
https://journals.lww.com/jhypertension/Fulltext/2009/11000/Tranilast_attenuates_myocardial_fibrosis_in.6.aspx
(accessed July 25, 2020).
[82] M. Butlin, A. Qasem, Large Artery Stiffness Assessment Using
SphygmoCor Technology, Pulse. 4 (2016) 180–192.
https://doi.org/10.1159/000452448.
[83] S.S. Hickson, M. Butlin, J. Broad, A.P. Avolio, I.B. Wilkinson,
C.M. McEniery, Validity and repeatability of the Vicorder apparatus: A
comparison with the SphygmoCor device, Hypertens. Res. 32 (2009)
1079–1085. https://doi.org/10.1038/hr.2009.154.
[84] P. Salvi, G. Lio, C. Labat, E. Ricci, … B.P.-J. of,
undefined 2004, Validation of a new non-invasive portable tonometer for
determining arterial pressure wave and pulse wave velocity: the PulsePen
device, Journals.Lww.Com. (n.d.).
https://journals.lww.com/jhypertension/fulltext/2004/12000/validation_of_a_new_non_invasive_portable.10.aspx
(accessed July 25, 2020).
[85] J.L. Taylor, T.B. Curry, L.J. Matzek, M.J. Joyner, D.P. Casey,
Acute Effects of a Mixed Meal on Arterial Stiffness and Central
Hemodynamics in Healthy Adults, Am. J. Hypertens. 27 (2014) 331.
https://doi.org/10.1093/ajh/hpt211.
[86] A. Mahmud, J. Feely, Acute Effect of Caffeine on Arterial
Stiffness and Aortic Pressure Waveform, Hypertension. 38 (2001)
227–231. https://doi.org/10.1161/01.HYP.38.2.227.
[87] A. Mahmud, J. Feely, Effect of smoking on arterial stiffness
and pulse pressure amplification, Hypertension. 41 (2003) 183–187.
https://doi.org/10.1161/01.HYP.0000047464.66901.60.
[88] T. Araki, A.M. Kumar, P.K. Kumar, A. Gupta, L. Saba, J. Rajan,
F. Lavra, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird, J.S.
Suri, Ultrasound-based automated carotid lumen diameter/stenosis
measurement and its validation system, J. Vasc. Ultrasound. 40 (2016)
120–134. https://doi.org/10.1177/154431671604000302.
[89] J.R.H. Kumar, K. Teotia, P.K. Raj, J. Andrade, K. V Rajagopal,
C.S. Seelamantula, AUTOMATIC SEGMENTATION OF COMMON CAROTID ARTERY IN
LONGITUDINAL MODE ULTRASOUND IMAGES USING ACTIVE OBLONGS Department of
Electrical Engineering , Indian Institute of Science , Bangalore , India
Department of Electrical and Electronics Engineering , Manip, (2019)
1353–1357.
[90] S. Petroudi, C. Loizou, M. Pantziaris, C. Pattichis,
Segmentation of the common carotid intima-media complex in ultrasound
images using active contours, IEEE Trans. Biomed. Eng. 59 (2012)
3060–3069. https://doi.org/10.1109/TBME.2012.2214387.
[91] A.M.F. Santos, J.M.R.S. Tavares, L. Sousa, R. Santos, P.
Castro, E. Azevedo, Automatic segmentation of the lumen of the carotid
artery in ultrasound B-mode images, Med. Imaging 2013 Comput. Diagnosis.
8670 (2013) 86703I. https://doi.org/10.1117/12.2007259.
[92] A.M.F. Santos, J.M.R.S. Tavares, L. Sousa, R. Santos, P.
Castro, E. Azevedo, Automatic segmentation of the lumen of the carotid
artery in ultrasound B-mode images, in: C.L. Novak, S. Aylward (Eds.),
Med. Imaging 2013 Comput. Diagnosis, 2013: p. 86703I.
https://doi.org/10.1117/12.2007259.
[93] A.R. Abdel-Dayem, M.R. El-Sakka, A. Fenster, Watershed
segmentation for carotid artery ultrasound images, 3rd ACS/IEEE Int.
Conf. Comput. Syst. Appl. 2005. 2005 (2005) 735–742.
https://doi.org/10.1109/AICCSA.2005.1387120.
[94] K. Saini, M.L. Dewal, M. Rohit, Ultrasound Imaging and Image
Segmentation in the area of Ultrasound : A Ultrasound Imaging and Image
Segmentation in the area of Ultrasound : A Review, (2010).
[95] D.D.B. Carvalho, Z. Akkus, S.C.H. van den Oord, A.F.L.
Schinkel, A.F.W. van der Steen, W.J. Niessen, J.G. Bosch, S. Klein,
Lumen Segmentation and Motion Estimation in B-Mode and Contrast-Enhanced
Ultrasound Images of the Carotid Artery in Patients With Atherosclerotic
Plaque, IEEE Trans. Med. Imaging. 34 (2015) 983–993.
https://doi.org/10.1109/TMI.2014.2372784.
[96] F. Benzarti, H. Amiri, Speckle Noise Reduction in Medical
Ultrasound Images, Proc. 9th WSEAS Int. Conf. Signal, Speech Image
Process. SSIP ’09, Proc. 9th WSEAS Int. Conf. Multimedia, Internet Video
Technol. MIV ’09. (2013) 126–131. http://arxiv.org/abs/1305.1344.
[97] F. Molinari, K.M. Meiburger, L. Saba, U.R. Acharya, G. Ledda,
G. Zeng, S.Y.S. Ho, A.T. Ahuja, S.C. Ho, A. Nicolaides, J.S. Suri,
Ultrasound IMT measurement on a multi-ethnic and multi-institutional
database: Our review and experience using four fully automated and one
semi-automated methods, Comput. Methods Programs Biomed. 108 (2012)
946–960. https://doi.org/10.1016/j.cmpb.2012.05.008.
[98] E.G. Sifakis, S. Golemati, Robust carotid artery recognition in
longitudinal B-mode ultrasound images, IEEE Trans. Image Process. 23
(2014) 3762–3772. https://doi.org/10.1109/TIP.2014.2332761.
[99] F. Molinari, G. Zeng, J.S. Suri, An Integrated Approach to
Computer-Based Automated Tracing and Its Validation for 200 Common
Carotid Arterial Wall Ultrasound Images, J. Ultrasound Med. 29 (2010)
399–418. https://doi.org/10.7863/jum.2010.29.3.399.
[100] P. Krishna Kumar, T. Araki, J. Rajan, L. Saba, F. Lavra, N.
Ikeda, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird, A. Gupta,
J.S. Suri, Accurate lumen diameter measurement in curved vessels in
carotid ultrasound: an iterative scale-space and spatial transformation
approach, Med. Biol. Eng. Comput. 55 (2017) 1415–1434.
https://doi.org/10.1007/s11517-016-1601-y.
[101] R. Rocha, J. Silva, A. Campilho, Automatic detection of the
carotid lumen axis in B-mode ultrasound images, Comput. Methods Programs
Biomed. 115 (2014) 110–118. https://doi.org/10.1016/j.cmpb.2014.04.004.
[102] T. Araki, P.K. Kumar, H.S. Suri, N. Ikeda, A. Gupta, L. Saba,
J. Rajan, F. Lavra, A.M. Sharma, S. Shafique, A. Nicolaides, J.R. Laird,
J.S. Suri, Two Automated Techniques for Carotid Lumen Diameter
Measurement: Regional versus Boundary Approaches, J. Med. Syst. 40
(2016). https://doi.org/10.1007/s10916-016-0543-0.
[103] J.F. Polak, M. Szklo, D.H. O’Leary, Associations of Coronary
Heart Disease with Common Carotid Artery Near and Far Wall Intima-Media
Thickness: The Multi-Ethnic Study of Atherosclerosis, J. Am. Soc.
Echocardiogr. 28 (2015) 1114–1121.
https://doi.org/10.1016/j.echo.2015.04.001.
[104] J.F. Polak, W.S. Post, J.J. Carr, M. Szklo, D.H. O’Leary,
Associations of Common Carotid Intima-Media Thickness with Coronary
Heart Disease Risk Factors and Events Vary with Distance from the
Carotid Bulb, J. Am. Soc. Echocardiogr. 27 (2014) 991–997.
https://doi.org/10.1016/j.echo.2014.04.019.
[105] Pierre-Jean Touboul;Patrizio Prati;Pierre-Yves
Scarabin;Valerie Adrai;Emmanuel Thibout; and Pierre Ducimetiere, Use of
monitoring software to improve the measurement of carotid wall thickness
by B-mode imaging, (1992) S37–S41.
[106] C. Liguori, A. Paolillo, A. Pietrosanto, An automatic
measurement system for the evaluation of carotid intima-media thickness,
IEEE Trans. Instrum. Meas. 50 (2001) 1684–1691.
https://doi.org/10.1109/19.982968.
[107] G. Zahnd, K. Kapellas, M. van Hattem, A. van Dijk, A.
Sérusclat, P. Moulin, A. van der Lugt, M. Skilton, M. Orkisz, A
Fully-Automatic Method to Segment the Carotid Artery Layers in
Ultrasound Imaging: Application to Quantify
the Compression-Decompression Pattern of the Intima-Media Complex During
the Cardiac Cycle, Ultrasound Med. Biol. 43 (2017) 239–257.
https://doi.org/10.1016/j.ultrasmedbio.2016.08.016.
[108] Y. Zhou, X. Cheng, X. Xu, E. Song, Dynamic programming in
parallel boundary detection with application to ultrasound intima-media
segmentation, Med. Image Anal. 17 (2013) 892–906.
https://doi.org/10.1016/j.media.2013.05.009.
[109] F. Faita, V. Gemignani, E. Bianchini, C. Giannarelli, L.
Ghiadoni, M. Demi, Real-time Measurement System for Evaluation of the
Carotid Intima-Media Thickness With a Robust Edge Operator, J.
Ultrasound Med. 27 (2008) 1353–1361.
https://doi.org/10.7863/jum.2008.27.9.1353.
[110] A.C. Rossi, P.J. Brands, A.P.G. Hoeks, Automatic Localization
of Intimal and Adventitial Carotid Artery Layers with Noninvasive
Ultrasound: A Novel Algorithm Providing Scan Quality Control, Ultrasound
Med. Biol. 36 (2010) 467–479.
https://doi.org/10.1016/j.ultrasmedbio.2009.12.007.
[111] S. Golemati, J. Stoitsis, T. Balkizas, K.S. Nikita, Comparison
of B-mode, M-mode and Hough transform methods for measurement of
arterial diastolic and systolic diameters, (2006) 1758–1761.
https://doi.org/10.1109/iembs.2005.1616786.
[112] S. Golemati, J. Stoitsis, E.G. Sifakis, T. Balkizas, K.S.
Nikita, Using the Hough Transform to Segment Ultrasound Images of
Longitudinal and Transverse Sections of the Carotid Artery, Ultrasound
Med. Biol. 33 (2007) 1918–1932.
https://doi.org/10.1016/j.ultrasmedbio.2007.05.021.
[113] C.P. Loizou, C.S. Pattichis, M. Pantziaris, T. Tyllis, A.
Nicolaides, Snakes based segmentation of the common carotid artery
intima media, Med. Biol. Eng. Comput. 45 (2007) 35–49.
https://doi.org/10.1007/s11517-006-0140-3.
[114] N. Santhiyakumari, P. Rajendran, M. Madheswaran, S. Suresh,
Detection of the intima and media layer thickness of ultrasound common
carotid artery image using efficient active contour segmentation
technique, Med. Biol. Eng. Comput. 49 (2011) 1299–1310.
https://doi.org/10.1007/s11517-011-0800-9.
[115] F. Destrempes, J. Meunier, M.F. Giroux, G. Soulez, G.
Cloutier, Segmentation in ultrasonic B-mode images of healthy carotid
arteries using mixtures of Nakagami distributions and stochastic
optimization, IEEE Trans. Med. Imaging. 28 (2009) 215–229.
https://doi.org/10.1109/TMI.2008.929098.
[116] F. Molinari, G. Zeng, J.S. Suri, Inter-Greedy Technique for
Fusion of Different Segmentation Strategies Leading to High-Performance
Carotid IMT Measurement in Ultrasound Images, in: Atheroscler. Dis.
Manag., Springer New York, New York, NY, 2011: pp. 253–279.
https://doi.org/10.1007/978-1-4419-7222-4_10.
[117] F. Molinari, G. Zeng, J.S. Suri, Greedy Technique and Its
Validation for Fusion of Two Segmentation Paradigms Leads to an Accurate
Intima–Media Thickness Measure in Plaque Carotid Arterial Ultrasound,
J. Vasc. Ultrasound. 34 (2018) 63–73.
https://doi.org/10.1177/154431671003400201.
[118] F. Molinari, G. Zeng, J.S. Suri, Inter-greedy technique for
fusion of different segmentation strategies leading to high-performance
carotid IMT measurement in ultrasound images, Atheroscler. Dis. Manag.
(2011) 253–279. https://doi.org/10.1007/978-1-4419-7222-4_10.
[119] D.E. Ilea, C. Duffy, L. Kavanagh, A. Stanton, P.F. Whelan,
Fully automated segmentation and tracking of the intima media thickness
in ultrasound video sequences of the common carotid artery, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control. 60 (2013) 158–177.
https://doi.org/10.1109/TUFFC.2013.2547.
[120] R.M. Menchón-Lara, M.C. Bastida-Jumilla, J. Morales-Sánchez,
J.L. Sancho-Gómez, Automatic detection of the intima-media thickness in
ultrasound images of the common carotid artery using neural networks,
Med. Biol. Eng. Comput. 52 (2014) 169–181.
https://doi.org/10.1007/s11517-013-1128-4.
[121] A.K. Patel, H.S. Suri, J. Singh, D. Kumar, S. Shafique, A.
Nicolaides, S.K. Jain, L. Saba, A. Gupta, J.R. Laird, A. Giannopoulos,
J.S. Suri, A Review on Atherosclerotic Biology, Wall Stiffness, Physics
of Elasticity, and Its Ultrasound-Based Measurement, Curr. Atheroscler.
Rep. 18 (2016). https://doi.org/10.1007/s11883-016-0635-9.
[122] F. Molinari, G. Zeng, J.S. Suri, A state of the art review on
intima-media thickness (IMT) measurement and wall segmentation
techniques for carotid ultrasound, Comput. Methods Programs Biomed. 100
(2010) 201–221. https://doi.org/10.1016/j.cmpb.2010.04.007.
[123] B. Ihnatsenka, A.P. Boezaart, Ultrasound: Basic understanding
and learning the language, Int. J. Shoulder Surg. 4 (2010) 55–62.
https://doi.org/10.4103/0973-6042.76960.
[124] B. Schmauch, P. Herent, P. Jehanno, O. Dehaene, C. Saillard,
C. Aubé, A. Luciani, N. Lassau, S. Jégou, Diagnosis of focal liver
lesions from ultrasound using deep learning, Diagn. Interv. Imaging. 100
(2019) 227–233. https://doi.org/10.1016/j.diii.2019.02.009.
[125] B.Q. Huynh, H. Li, M.L. Giger, Digital mammographic tumor
classification using transfer learning from deep convolutional neural
networks, J. Med. Imaging. 3 (2016) 034501.
https://doi.org/10.1117/1.jmi.3.3.034501.
[126] N. Hatipoglu, G. Bilgin, Cell segmentation in
histopathological images with deep learning algorithms by utilizing
spatial relationships, Med. Biol. Eng. Comput. 55 (2017) 1829–1848.
https://doi.org/10.1007/s11517-017-1630-1.
[127] W. Bai, M. Sinclair, G. Tarroni, O. Oktay, M. Rajchl, G.
Vaillant, A.M. Lee, N. Aung, E. Lukaschuk, M.M. Sanghvi, F. Zemrak, K.
Fung, J.M. Paiva, V. Carapella, Y.J. Kim, H. Suzuki, B. Kainz, P.M.
Matthews, S.E. Petersen, S.K. Piechnik, S. Neubauer, B. Glocker, D.
Rueckert, Automated cardiovascular magnetic resonance image analysis
with fully convolutional networks, J. Cardiovasc. Magn. Reson. 20 (2018)
1–12. https://doi.org/10.1186/s12968-018-0471-x.
[128] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S.
Molloi, P. Baldi, Detecting Cardiovascular Disease from Mammograms with
Deep Learning, IEEE Trans. Med. Imaging. 36 (2017) 1172–1181.
https://doi.org/10.1109/TMI.2017.2655486.
[129] A. Jamthikar, D. Gupta, N.N. Khanna, L. Saba, J.R. Laird, J.S.
Suri, Cardiovascular/stroke risk prevention: A new machine learning
framework integrating carotid ultrasound image-based phenotypes and its
harmonics with conventional risk factors, Indian Heart J. (2020) 0–6.
https://doi.org/10.1016/j.ihj.2020.06.004.
[130] M. Biswas, V. nkatanareshbabu Kuppili, D.R. Edla, H.S. Suri,
L. Saba, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Symtosis: A liver
ultrasound tissue characterization and risk stratification in optimized
deep learning paradigm, Comput. Methods Programs Biomed. 155 (2018)
165–177. https://doi.org/10.1016/j.cmpb.2017.12.016.
[131] V. Kuppili, M. Biswas, A. Sreekumar, H.S. Suri, L. Saba, D.R.
Edla, R.T. Marinhoe, J.M. Sanches, J.S. Suri, Extreme Learning Machine
Framework for Risk Stratification of Fatty Liver Disease Using
Ultrasound Tissue Characterization, J. Med. Syst. 41 (2017) 152.
https://doi.org/10.1007/s10916-017-0797-1.
[132] R. Hemalatha, V. Vijaybaskar, T. Thamizhvani, Automatic
localization of anatomical regions in medical ultrasound images of
rheumatoid arthritis using deep learning, Proc. Inst. Mech. Eng. Part H
J. Eng. Med. (2019) 095441191984574.
https://doi.org/10.1177/0954411919845747.
[133] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V.
McConnell, G.S. Corrado, L. Peng, D.R. Webster, Prediction of
cardiovascular risk factors from retinal fundus photographs via deep
learning, Nat. Biomed. Eng. 2 (2018) 158–164.
https://doi.org/10.1038/s41551-018-0195-0.
[134] J. Wang, H. Ding, F.A. Bidgoli, B. Zhou, C. Iribarren, S.
Molloi, P. Baldi, Detecting Cardiovascular Disease from Mammograms With
Deep Learning, IEEE Trans. Med. Imaging. 36 (2017) 1172–1181.
https://doi.org/10.1109/TMI.2017.2655486.
[135] N. Tajbakhsh, J.Y. Shin, R.T. Hurst, C.B. Kendall, J. Liang,
Automatic Interpretation of Carotid Intima–Media Thickness Videos Using
Convolutional Neural Networks, in: Deep Learn. Med. Image Anal., 1st
ed., Elsevier, 2017: pp. 105–131.
https://doi.org/10.1016/B978-0-12-810408-8.00007-9.
[136] K. Lekadir, A. Galimzianova, A. Betriu, M. del Mar Vila, L.
Igual, D.L. Rubin, E. Fernandez, P. Radeva, S. Napel, A Convolutional
Neural Network for Automatic Characterization of Plaque Composition in
Carotid Ultrasound, IEEE J. Biomed. Heal. Informatics. 21 (2017) 48–55.
https://doi.org/10.1109/JBHI.2016.2631401.
[137] A. Kumar Patel, S. Kumar Jain, Arterial Parameters and
Elasticity Estimation in Common Carotid Artery Using Deep Learning
Approach, Int. J. Image, Graph. Signal Process. 11 (2019) 18–28.
https://doi.org/10.5815/ijigsp.2019.11.03.
[138] E.A. Melnikova, I. V. Avdeeva, V.E. Oleynikov, Echo-Tracking
is a novel technology to assess structural and functional properties of
carotid arteries (review), Sovrem. Tehnol. v Med. 8 (2016) 119–127.
https://doi.org/10.17691/stm2016.8.2.16.
[139] I.S. Mackenzie, Assessment of arterial stiffness in clinical
practice, QJM. 95 (2002) 67–74. https://doi.org/10.1093/qjmed/95.2.67.
[140] T. Miyoshi, H. Ito, Assessment of Arterial Stiffness Using the
Cardio-Ankle Vascular Index, Pulse. 4 (2016) 11–23.
https://doi.org/10.1159/000445214.