REFERENCES
Ahmed, I. M., Dai, H. X., Zheng,
W. T., Cao, F. B., Zhang, G. P., Sun, D. F., & Wu, F.B. (2013).
Genotypic differences in physiological characteristics in the tolerance
to drought and salinity combined stress between Tibetan wild and
cultivated barley. Plant Physiology and Biochemistry , 63, 49–60.
https://doi.org/10.1016/j.plaphy.2012.11.004
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., Mcdowell,
N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg,
E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N.,
Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobbt, N.
(2010). A global overview of drought and heat-induced tree mortality
reveals emerging climate change risks for forests. Forest Ecology
and Management , 259(4), 660–684.
https://doi.org/10.1016/j.foreco.2009.09.001
An, Y. Y. & Liang, Z. S. (2012). Staged strategy of plants in response
to drought stress. Journal of Applied Ecology , 23(10),
2907–2915. https://doi.org/10.13287/j.1001-9332.2012.0403
Bakhshandeh, S., Corneo, P. E., Yin, L. M., & Dijkstra, F. A. (2019).
Drought and heat stress reduce yield and alter carbon rhizodeposition of
different wheat genotypes. Journal of Agronomy and Crop Science ,
205(2), 157–167. https://doi.org/10.1111/jac.12314
Barnabás, B., Jäger, K., & Fehér, A. (2007). The effect of drought and
heat stress on reproductive processes in cereals. Plant, Cell &
Environment , 31(1), 11–38.
https://doi.org/10.1111/j.1365-3040.2007.01727.x
Blum, A. (2009). Effective use of water (EUW) and not water-use
efficiency (WUE) is the target of crop yield improvement under drought
stress. Field Crops Research , 112(2–3), 119–123.
https://doi.org/10.1016/j.fcr.2009.03.009
Bray, E. A. (1997). Plant responses to water deficit. Trends in
Plant Science , 2(2), 48–54.
https://doi.org/10.1016/S1360-1385(97)82562-9
Chakhchar, A., Lamaoui, M., Aissam, S., Ferradous, A., Wahbi, S.,
Mousadik, A. E., Ibnsouda-Koraichi, S., Filali-Maltouf, A., & Modafar,
C. E. (2016). Differential physiological and antioxidative responses to
drought stress and recovery among four contrasting Argania
spinosa ecotypes. Journal of Plant Interactions , 11(1), 30–40.
https://doi.org/10.1080/17429145.2016.1148204
Chen, H. L., Zhang, H. W., & Xue, C.Y. (2010). Extreme climate events
and agricultural meteorological services in China. Meteorological
and Environmental Sciences , 33(03), 67–77.
https://doi.org/10.16765/j.cnki.1673-7148.2010.03.015
Daryanto, S., Wang, L. X., & Jacinthe, P. A. (2016). Global synthesis
of drought effects on maize and wheat production. Plos One , 11(5):
e0156362. https://doi.org/10.1371/journal.pone.0156362
Dreesen, F. E., De Boeck, H. J., Janssens, I. A., & Nijs, I. (2012).
Summer heat and drought extremes trigger unexpected changes in
productivity of a temperate annual/biannual plant community.Environmental and Experimental Botany, 79, 21–30.
https://doi.org/10.1016/j.envexpbot.2012.01.005
Du, Y. G., Ke, X., Dai, L. C., Cao, G. M., Zhou, H. K., & Guo, X. W.
(2020). Moderate grazing increased alpine meadow soils bacterial
abundance and diversity index on the Tibetan Plateau. Ecology and
Evolution , 1–7. https://doi.org/10.1002/ece3.6563
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib,
A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M., Alharby, H.,
Wu, C., Wand, D., & Huang, J. (2017). Crop production under drought and
heat stress: plant responses and management options. Frontiers in
Plant Science , 8, 1147. https://doi.org/10.3389/fpls.2017.01147
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A.
(2009). Plant drought stress: effects, mechanisms and management.Agronomy for Sustainable Development , 29(1), 185–212.
https://doi.org/10.1051/agro:2008021
Field, C. B., Barros, V. R., Stocker, T. F., Qin, D., Dokken, D. J.,
Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., Allen, S.
K., Tignor, M., & Midgley, P. (2012). Managing the risks of
extreme events and disasters to advance climate change adaptation:
special report of the Intergovernmental Panel on Climate Change .
Cambridge, Cambridge University Press: 109–111 pp.
https://doi.org/10.1017/CBO9781139177245
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004).
Diffusive and metabolic limitations to photosynthesis under drought and
salinity in C3 plants. Plant Biology , 6(3),
269–279. https://doi.org/10.1055/s-2004-820867
Hao, L. H., Guo, L. L., Li, R. Q., Cheng, Y., Huang, L., Zhou, H. R.,
Xu, M., Li, F., Zhang, X. X., & Zheng, Y. P. (2019). Responses of
photosynthesis to high temperature stress associated with changes in
leaf structure and biochemistry of blueberry (Vaccinium
corymbosum L.). Scientia Horticulturae , 246, 251–264.
https://doi.org/10.1016/j.scienta.2018.11.007
Huang, W. W., Zhang, N. N., Hu, T. X., Li, X. Q., He, Y. Y., & Yin, L.
(2011). Effects of high-temperature stress on physiological
characteristics of leaves of Simmondsia chinensis seedlings from
different provenances. Acta Ecologica Sinica , 31(23), 7047-7055.
https://doi.org/CNKI:SUN:STXB.0.2011-23-009
Jing, D. W., Xing, S. J., Du, Z. Y., & Liu, F. C. (2013). Effects of
drought stress on the growth, photosynthetic characteristics, and active
oxygen metabolism of poplar seedlings. Chinese Journal of
Applied Ecology , 24(7), 1809–1816.
https://doi.org/10.13287/j.1001-9332.2013.0420
Jumrani, K., Bhatia, V. S., & Pandey, G. P. (2017). Impact of elevated
temperatures on specific leaf weight, stomatal density, photosynthesis
and chlorophyll fluorescence in soybean. Photosynthesis Research ,
131(3), 333–350. https://doi.org/10.1007/s11120-016-0326-y
Keyvan, S. (2010). The effects of drought stress on yield, relative
water content, proline, soluble carbohydrates and chlorophyll of bread
wheat cultivars. Journal of Animal and Plant Sciences , 8(3),
1051–1060. https://doi.org/JAPS/2010/8.3/4
Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and
drought stresses in crops and approaches for their mitigation.Frontiers in Chemistry , 6(26).
https://doi.org/10.3389/fchem.2018.00026
Lawas, L. M. F., Li, X., Erban, A., Kopka, J., Jagadish, S. V. K.,
Zuther, E., & Hincha, D. K. (2019). Metabolic responses of rice
cultivars with different tolerance to combined drought and heat stress
under field conditions. GigaScience , 8(5), giz050.
https://doi.org/10.1093/gigascience/giz050
Lawas, L. M. F., Zuther, E., Jagadish, S. V. K., & Hincha, D. K.
(2018). Molecular mechanisms of combined heat and drought stress
resilience in cereals. Current Opinion in Plant Biology , 45 (Part
B), 212–217. https://doi.org/10.1016/j.pbi.2018.04.002
Lawlor, D. W. & Cornic, G. (2002). Photosynthetic carbon assimilation
and associated metabolism in relation to water deficits in higher
plants. Plant, Cell & Environment , 25(2), 275–294.
https://doi.org/10.1046/j.0016-8025.2001.00814.x
Li, J. L.,& Li, X. L. (2016). Research progress on environmental
adaptability of Kobresia humilis in alpine meadow.Ecological Science , 35(2), 156–165.
https://doi.org/10.14108/j.cnki.1008-8873.2016.02.024
Li, X. L., Luo, L. L., Hua, Z. R. (2018).
Physiological and biochemical
responses of Rhododendron lapponicum to heat stress. Acta
Agriculturae Boreali-Occidentalia Sinica , 27(2), 253–259.https://doi.org/10.7606/j.issn.1004-1389.2018.02.013
Liu, F., Jensen, C. R., & Andersen, M. N. (2005). A review of drought
adaptation in crop plants: changes in vegetative and reproductive
physiology induced by ABA-based chemical signals. Australian
Journal of Agricultural Research , 56(11), 1245–1252.
https://doi.org/10.1071/AR05062
Ma, L., Xu, M. H., Zhai, D. T., Jia, Y. Y. (2017). Response of alpine
meadow vegetation-soil system to climate change: A review. Chinese
Journal of Ecology , 36(6), 1708–1717.
https://doi.org/10.13292/j.1000-4890.201706.009
Mahalingam, R. (2015). Consideration of combined stress: A crucial
paradigm for improving multiple stress tolerance in plants.Combined Stresses in Plants , 1–25.
https://doi.org/10.1007/978-3-319-07899-1_1
Nankishore, A. & Farrell, A. D. (2016). The response of contrasting
tomato genotypes to combined heat and drought stress. Journal of
Plant Physiology , 202, 75–82.
https://doi.org/10.1016/j.jplph.2016.07.006
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W.,
Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., &
Dubash, N. K. (2014) Climate Change 2014: Synthesis Report. Contribution
of Working Groups I, II and III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (p. 151). Geneva, IPCC.
Pradhan, G. P., Prasad, P. V., Fritz, A. K., Kirkham, M. B., & Gill, B.
S. (2012). Effects of drought and high temperature stress on synthetic
hexaploid wheat. Functional Plant Biology , 39(3), 190–198.
https://doi.org/10.1071/FP11245
Prasad, P. V. V., Pisipati, S. R., Momčilović, I., & Ristic, Z. (2011).
Independent and combined effects of high temperature and drought stress
during grain filling on plant yield and chloroplast EF-Tu expression in
spring wheat. Journal of Agronomy & Crop Science , 197(6),
430–441. https://doi.org/10.1111/j.1439-037X.2011.00477.x
Peñuelas,
J., Sardans, J., Estiarte, M., Ogaya, R., Carnicer, J., Coll, M.,
Barbeta, A., Rivas-Ubach, A., Llusia, J., Garbulsky, M., Filella, I., &
Jump, A. S. (2013). Evidence of current impact of climate change on
life: a walk from genes to the biosphere. Global Change Biology ,
19(8), 2303–2338. https://doi.org/10.1111/gcb.12143
Qaseem, M. F., Qureshi, R., & Shaheen, H. (2019). Effects of
pre-anthesis drought, heat and their combination on the growth, yield
and physiology of diverse wheat (Triticum aestivum L.) genotypes
varying in sensitivity to heat and drought stress. Scientific
Reports , 9, 6955. https://doi.org/10.1038/s41598-019-43477-z
Read, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders,
N. J. (2014). Convergent effects of elevation on functional leaf traits
within and among species. Functional Ecology , 28(1), 37–45.
https://doi.org/10.1111/1365-2435.12162
Ren, F., Yang, X. X., Zhou, H. K., Yao, B. Q., Wang, W. Y., Wen, J., He,
J., & Zhao, X. Q. (2013). Physiological-biochemical responses of three
plant species to experimental warming using OTC in alpine meadow on
Qinghai-Tibetan Plateau. Acta Botanica Boreali-Occidentalia
Sinica , 33(11), 2257–2264. http://210.75.249.4/handle/363003/3872
Rollins, J. A., Habte, E., Templer, S. E., Colby, T., Schmidt, J., &
von Korff, M. (2013). Leaf proteome alterations in the context of
physiological and morphological responses to drought and heat stress in
barley (Hordeum vulgare L.). Journal of Experimental
Botany , 64(11), 3201–3212. https://doi.org/10.1093/jxb/ert158
Salvucci, M. E. & Crafts-Brandner, S. J. (2004). Inhibition of
photosynthesis by heat stress: the activation state of Rubisco as a
limiting factor in photosynthesis. Physiologia Plantarum , 120(2),
179–186. https://doi.org/10.1111/j.0031-9317.2004.0173.x
Sehgal, A., Sita, K., Bhandari, K., Kumar, S., Kumar, J., Prasad, P. V.,
Siddique, K. H. M., & Nayyar, H. (2019). Influence of drought and heat
stress, applied independently or in combination during seed development,
on qualitative and quantitative aspects of seeds of lentil (Lens
culinaris Medikus ) genotypes, differing in drought sensitivity.Plant Cell & Environment , 42(1), 198–211.
https://doi.org/10.1111/pce.13328
Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory
metabolic networks in drought stress responses. Current Opinion in
Plant Biology , 10(3), 296–302.
https://doi.org/10.1016/j.pbi.2007.04.014
Sita, K., Sehgal, A., Kumar, J.,
Kumar, S., Singh, S., Siddique, K. H. M., & Nayyar, H. (2017).
Identification of high-temperature tolerant lentil (Lens
culinaris Medik.) genotypes through leaf and pollen traits.Frontiers in Plant Science , 8, 744.
https://doi.org/10.3389/fpls.2017.00744
Song, Y. L., Wang, K. Q., Wang, S., Qian, X. J., & Xu, J. (2018).
Physiological responses of three kinds of cool season turfgrasses under
continuous drought stress, heat stress and their interaction. Acta
Agrestia Sinica , 26(3), 705–717.
https://doi.org/10.11733/j.issn.1007-0435.2018.03.025
Xu, Z., Shimizu, H., Yagasaki, Y., Ito, S., Zheng, Y., & Zhou, G.
(2013). Interactive effects of elevated CO2, drought,
and warming on plants. Journal of Plant Growth Regulation , 32(4),
692–707. https://doi.org/10.1007/s00344-013-9337-5
Xu, M. H. & Xue, X. (2013). Correlation among vegetation
characteristics, temperature and moisture of alpine meadow in the
Qinghai-Tibetan Plateau. Acta Ecologica Sinica , 33(10),
3158–3168. https://doi.org/10.5846/stxb201202140190
Xue, L., Zhang, R., Xi, R. C., Guo, S. H., Yang, Z. Y., Liu, B., & Wei,
R. P. (2012). Seasonal change of leaf morphological traits of six
broadleaf seedlings in South China. Acta Ecologica Sinica , 32(1),
123–134. https://doi.org/10.5846/stxb201011291691
Yu, X. C., Yao, B. Q., Zhou, H. K., Jin, Y. X., Yang, Y. J., Wang, W.
Y., Dong, S. K., & Zhao, X. Q. (2015). Variable responses to long-term
simulated warming of underground biomass and carbon allocations of two
alpine meadows on the Qinghai-Tibet Plateau. ChineseScience Bulletin , 60(4), 379–388.
https://doi.org/10.1360/N972014-00473
Zandalinas, S. I., Mittler, R.,
Balfagón,
D., Arbona, V., & Gomez-Cadenas, A. (2017). Plant adaptations to the
combination of drought and high temperatures. Physiologia
Plantarum , 162(1), 2–12. https://doi.org/10.1111/ppl.12540
Zhang, L. R., Niu, H. S., Wang, S. P., Li, Y. N., & Zhao, X. Q. (2010).
Effects of temperature increase and grazing on stomatal density and
length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau.Acta Ecologica Sinica , 30(24), 6961–6969.
https://doi.org/CNKI:SUN:STXB.0.2010-24-032
Zhang, W. L., Zhu, G., Huang, W. G., Zhang, Y., Wang, L., Luo, X. L., &
Liu, Y. B. (2020). Physiological response characteristics ofHedysarum multijugum, Clematis fruticosa and Buddleja
alternifolia seedlings to drought in semi-arid region of Northwest
China. Journal of Desert Research , 40(3), 159–167.
https://doi.org/10.7522/j.issn.1000-694X.2019.00065
Zhao, C. M. & Wang, G. X. (2002). Effects of drought stress on the
photoprotection in Ammopiptanthus mongolicus leaves. Acta
Botanica Sinica , 44(11), 1309–1313.
Zhao, Y. Y., Zhou, H. K., Yao, B. Q., Wang, W. Y., Dong, S. K., & Zhao,
X. Q. (2015). The influence of long-term simulating warming to the plant
community and soil nutrient of alpine meadow. Acta Agrestia
Sinica , 2015, 23(4), 665–671.
https://doi.org/10.11733/j.issn.1007-0435.2015.04.001