
An Effective Global Computational Algorithm for a class of
Generalized Linear Multiplicative Programs

Bo Zhanga , YueLin Gaob ,∗ , Xia Liua , XiaoLi Huangc

a School of Mathematics and Statistics, Ningxia University, Yinchuan, 750021, P.R. China

b Ningxia province key laboratory of intelligent information and data processing, North Minzu University, Yinchuan, 750021, P.R. China

c Ningxia province cooperative innovation center of scientific computing and intelligent information processing, North Minzu University,
Yinchuan, 750021, P.R. China

Abstract

This paper explains a region-division-linearization algorithm for solving a class of generalized linear mul-

tiplicative programs (GLMP) with exponent. In this algorithm, the original non-convex problem (GLMP)

is transformed into a series of linear programming problems by dividing the outer space of the problem

(GLMP) into finite polynomial rectangles. A new two-stage acceleration technique is put in place to im-

prove the computational efficiency of the algorithm, which removes part of the region of the optimal so-

lution without problems (GLMP) in outer space. In addition, the global convergence of the algorithm is

discussed, and the computational complexity of the algorithm is investigated. It demonstrates that the al-

gorithm is a completely polynomial time approximation scheme. Finally, the numerical results show that

the algorithm is effective and feasible.

Keywords: Global optimization, Generalized linear multiplicative programs, Approximation algorithm,

Computational complexity, region-division-linearization

1. Introduction

Consider a class of generalized linear multiplicative programs(GLMP),

(LFP) :

min f (x) =

p

∏
i=1

(cT
i x + di)

αi ,

s.t. x ∈ X = {x ∈ Rn|Ax ≤ b, x ≥ 0}.

Here, p ≥ 2, X is a non-empty bounded closed set, A ∈ Rm×n, b ∈ Rm, ci, ei ∈ Rn and di, fi ∈ R,

αi ≥ 0, cT
i x + di > 0, i = 1, . . . , p.

The problem (GLMP) usually has multiple non-global local optimal solutions and is a class of NP-hard

problems [1], which can be widely used in the fields of finance optimization [2, 3], robust optimization [4],

microeconomics [5], and multi-objective decision making [6, 7]. In addition, the (GLMP) includes a wide

range of mathematical program categories, such as linear multiplicative programming, quadratic program-

ming, bilinear programming, and more. Therefore, for these and various other reasons, (GLMP) has caught

Email addresses: zbsdx121@163.com (Bo Zhanga), gaoyuelin@263.net (YueLin Gaob ,∗), lingxiaoyu911@163.com (Xia Liua),
hxl1569501@163.com. (XiaoLi Huangc)

∗ Author to whom any correspondence should be addressed.

Preprint submitted to Elsevier September 1, 2020

the attention of many experts, scholars and engineering practitioners who have studied this theory, and set

off a new wave of global optimization learning. With the increasing dependence of practical problems on

modeling optimization, local optimization theory and global optimization algorithms have made remark-

able progress. However, the algorithm theory of global optimization algorithm is still quite insufficient

relative to local optimization algorithm. There are many methods to study this kind of problems, such

as level set algorithm [8], heuristic algorithm [9, 10], branch and bound algorithm [11–13], outer approx-

imation algorithm [14], parametric simplex algorithm [15] and so on, but these methods do not give the

computational complexity of the algorithm. Furthermore, Daniele and Marco [16] consider the problem of

minimizing the product of two affine functions on a polyhedron set and propose a full polynomial time

approximation algorithm. Marco [17] gives an approximate algorithm to solve more general types of global

optimization problems, and give a computational complexity analysis, but lack of numerical results of the

algorithm. Recently, Shen and Wang [18] also proposed a full polynomial time approximation algorithm

for resolving the problem (GLMP) globally, but there is no acceleration technique. Moreover, for a more

comprehensive overview of the (GLMP), we encourage readers to mention the more detailed literature

[8, 19–21].

In this paper, two approximation algorithms are proposed for the (GLMP) , mainly by establishing a

non-uniform mesh to transform the process of solving the original problem into a series of linear solver

problem solving process and prove that the proposed algorithm can obtain a global ε−approximation solu-

tion for the problem. Besides, we put forward a two-stage acceleration technique to speed up Algorithm I,

which yields Algorithm II. Then, by discussing the computational complexity of the algorithm, it is shown

that the two algorithms are polynomial time approximation algorithms. The problem (GLMP) considered

in this paper not only generalizes the model proposed in [16] , but also the results of numerical experi-

ments show that at least Algorithm II outperforms the algorithm in [17, 18] , both in CPU running time and

iterations.

The rest of this paper will be paid below. In section 2, we first transform the problem (GLMP) into its

equivalent optimization problem (EOP) and give its region-decomposition-linearization technique. Section

3 presents the global ε−approximation algorithm for obtaining the problem (GLMP) and the convergence

of the proposed algorithm. In section 4, we give the computational complexity of the proposed algorithm

and carry out some numerical experiments in section 5 to verify the feasibility and effectiveness of the

algorithm. The concluding section is a simple summary.

2. Equivalence problem and its linearization technique

In this section, we will give some properties of the equivalence optimization problem (EOP) of the

problem (GLMP) and its objective function, then we will give the linearization technique of the equivalence

problem.

2.1. Equivalent problems and their properties

To solve the problem (GLMP), the definition of global ε−approximation solution is given below.

Definition 2.1. Let x∗ be a global optimal solution to the problem (GLMP) at a given precision ε ∈ (0, 1). If the

x̂ ∈ X satisfies f (x̂) ≤ (1 + ε) f (x∗), the x̂ is referred to as the global approximation of the problem (GLMP).

2

To obtain the global ε−approximation solution of the problem (GLMP), let fi(x) = cT
i x + di, li =

min
x∈X

fi(x).

Theorem 2.1. For each i = 1, 2, · · · , p, let x̃i = arg min
x∈X

fi(x), Q =
p⋃

i=1
x̃i, x̌ = arg min

x∈Q
f (x), Ũ = f (x̌). And

then, for each i ∈ {1, 2, · · · , p}, let Mi =
p

∏
j=1,j 6=i

l
αj
j , then fi(x∗) ≤ ui with ui = (Ũ

Mi
)

1
αi .

Proof. This is easy to know, for any i ∈ {1, 2, · · · , p}, there are li ≤ fi(x∗), thus

p

∏
j=1,j 6=i

l
αj
j (fi(x∗))αi ≤

p

∏
i=1

(fi(x∗))αi = f (x∗) ≤ f (x̌) = Ũ.

Therefore, fi(x∗) ≤ (Ũ
Mi

)
1
αi = ui and then the conclusion holds.

Next, according to the Theorem 2.1, for any i = 1, 2, · · · , p, ui = (Ũ
Mi

)
1
αi provide an upper bound for

each fi(x∗).

On the basis of the above definition of li and ui, define the rectangle H as follows.

H = [l1, u1]× [l2, u2]× · · · × [lp, up].

Moreover, the rectangle H is also called the problem (GLMP) of the outer space. Thus, by introducing

variable y = (y1, y2, · · · , yp)T ∈ H, the problem (GLMP) is equivalent to the following problem (P1).

(P1)

min h(y) =

p

∏
i=1

yαi
i ,

s.t. fi(x) ≤ yi, i = 1, 2, · · · , p

x ∈ X, y ∈ H.

Next, the equivalence of problems (GLMP) and (P1) is explained by Theorem 2.1.

Theorem 2.2. x∗ is the global optimal solution of the problem (GLMP) if and only if (x∗, y∗) is the optimal solution

of the (P1) and y∗i = fi(x∗), i = 1, 2, · · · , p.

Proof. Let y∗i = fi(x∗), i = 1, 2, · · · , p if x∗ is a global optimal solution of the problem (GLMP). And then it

is obvious that (x∗, y∗) is a feasible solution to (P1). Suppose the (x∗, y∗) is not the optimal solution of (P1),

then there is at least one feasible solution (x̄, ȳ) of (P1), which makes

f (x̄) =
p

∏
i=1

(fi(x̄))αi ≤
p

∏
i=1

ȳαi
i <

p

∏
i=1

(y∗i)
αi =

p

∏
i=1

(fi(x∗))αi = f (x∗),

which contradicts the optimality of the x∗, so the hypothesis does not hold, and then (x∗, y∗) is an optimal

solution of (P1).

On the contrary, if (x∗, y∗) is an optimal solution of (P1), if there is a i ∈ {1, 2, · · · , p} that makes

fi(x∗) < y∗i , let ỹi = fi(x∗), then (x∗, ỹ) is a feasible solution of (P1) and

p

∏
i=1

ỹαi
i <

p

∏
i=1

(y∗i)
αi ,

3

which contradicts the optimality of (x∗, y∗), so y∗i = fi(x∗), i = 1, 2, · · · , p. Suppose x∗ is not the global

optimal solution of the problem (GLMP), then there must be a x̄ ∈ X that makes f (x̄) < f (x∗). Let ȳi =

fi(x̄), obviously (x̄, ȳ) a feasible solution to (P1), so we have

p

∏
i=1

(ȳi)
αi = f (x̄) < f (x∗) =

p

∏
i=1

(y∗i)
αi ,

which contradicts the optimality of the (x∗, y∗). Therefore, x∗ is the global optimal solution of the problem

(GLMP), which proves to be completed.

It is easy to understand from Theorems 2.2 that the problem (GLMP) and (P1) are equivalent and have

the same global optimal value.

Then, for a given y ∈ H, define the set

D(y) = {x ∈ X| fi(x) ≤ yi, i = 1, 2, · · · , p}

and function

g(y) =

h(y), D(y) 6= ∅,

+ ∞, D(y) = ∅.

Then the problem (P1) is equivalent to the following equivalent optimization problem.

(EOP)

min g(y),

s.t. y ∈ H.

Theorem 2.3. y∗ is the global optimal solution of the problem (EOP) if and only if (x∗, y∗) is the optimal solution of

the (P1) and y∗i = fi(x∗), i = 1, 2, · · · , p.

Proof. Suppose (x∗, y∗) is an optimal solution of (P1), then according to Theorem 2.3, we can know y∗i =

fi(x∗), i = 1, 2, · · · , p and y∗ ∈ H. In addition, h(y∗) = g(y∗) = ∏
p
i=1(y

∗
i)

αi . Suppose that y∗ is not the

global optimal solution of the problem (EOP), there must be a ȳ ∈ H such that g(ȳ) < g(y∗) and D(ȳ) 6= ∅,

then there must also be a x̄ ∈ D(ȳ) such that fi(x̄) ≤ ȳi, i = 1, 2, · · · , p. Then, (x̄, ȳ) is a feasible solution

of the (P1), there is h(ȳ) = g(ȳ) < g(y∗) = h(y∗), which contradicts the optimality of (x∗, y∗), so the

hypothesis does not hold, so y∗ is the global optimal solution of the problem.

On the other hand, if y∗ is a global optimal solution of the problem (EOP), then D(y∗) 6= ∅, there must

be a x∗ ∈ D(y∗) such that (x∗, y∗) is a feasible solution of the (P1). Suppose (x∗, y∗) is not the global optimal

solution of the problem (P1), Then there must be an optimal solution (x̄, ȳ) to the problem (P1) such that

h(ȳ) < h(y∗), ȳi = fi(x̄), i = 1, 2, · · · , p, So D(ȳ) 6= ∅ and g(ȳ) = h(ȳ) < h(y∗) = g(y∗), which contradicts

the fact that y∗ is the global optimal solution of the problem (EOP), Therefore, (x∗, y∗) is the global optimal

solution of (P1), and y∗i = fi(x∗), i = 1, 2, · · · , p can be obtained from Theorem 2.2 and then proved to be

over.

Through Theorem 2.3, the problem (EOP) and (P1) has the same global optimal value, so combined with

Theorem 2.2, the problem (EOP) and (GLMP) is also equivalent. Therefore, we can solve the equivalent

problem (EOP) instead of addressing the problem (GLMP).

4

Next, we note the following linear programming problem.

(LPy)

min

p

∑
i=1

αi fi(x)
yi

,

s.t. x ∈ D(y).

If D(y) 6= ∅, the optimal solution to the problem (LPy) is recorded as xy, and let ỹi = fi(xy), ρ =
p
∑

i=1
αi > 0,

then

ρ =
p

∑
i=1

αiyi
yi
≥

p

∑
i=1

αi fi(x)
yi

, ∀x ∈ D(y).

Furthermore, according to the Jensen inequality, we have

p

∑
i=1

αi fi(xy)

yi
≥ ρ(

p

∏
i=1

(
fi(xy)

yi
)αi)

1
ρ = ρ(

g(ỹ)
g(y)

)
1
ρ ,

then

ρ ≥ ρ(
g(ỹ)
g(y)

)
1
ρ , g(ỹ) ≤ g(y). (1)

Theorem 2.4. Suppose x∗ ∈ X is the global optimal solution of the original problem (GLMP), let y∗i = fi(x∗), i =

1, 2, · · · , p, then y∗ = (y∗1 , y∗2 , · · · , y∗p)T ∈ H and x∗ is also the global optimal solution of the problem (LPy∗).

Proof. Firstly, according to Theorems 2.3 and 2.4, we know that y∗ is a global optimal solution of the problem

(EOP). Then, by using formula (1) and the optimality of the global optimal solution y∗ of the (EOP), we can

see that the x∗ is an optimal solution of the problem (LPy∗).

Next, the properties of the function g(y) on the H are given by Theorem 2.5.

Theorem 2.5. For a given precision ε ∈ (0, 1), let δ = (1 + ε)
1
ρ , then for any ȳ ∈ H, there is

g(ȳ) ≤ (1 + ε)g(y), ∀ y ∈ [
ȳ
δ

, ȳ]. (2)

In addition, if D(ȳ) 6= ∅, the optimal solution to the problem (LPȳ) is recorded as x̄, then let ỹi = fi(x̄)(i =

1, 2, · · · , p), there is also

g(ỹ) ≤ g(ȳ) ≤ (1 + ε)g(y), ∀ y ∈ [
ȳ
δ

, ȳ]. (3)

Proof. For all ȳ ∈ H, according to the definition of D(y) and δ = (1 + ε)
1
ρ > 1, one can know D(ȳ

δ) ⊆ D(ȳ).

If D(ȳ
δ) 6= ∅, for any y ∈ [ȳ

δ , ȳ], we have D(y) 6= ∅, obviously g(ỹ) ≤ g(ȳ) and yi ≥
ȳi
δ for each

i = 1, 2, · · · , p. Thus,
p

∏
i=1

(
ȳi
δ
)αi ≤

p

∏
i=1

yαi
i . (4)

Moreover, according to the definition of function g(y), g(y) = ∏
p
i=1 yαi

i , thus

g(
ȳ
δ
) =

p

∏
i=1

(
ȳi
δ
)αi =

1
δρ

p

∏
i=1

ȳαi
i =

1
δρ g(ȳ). (5)

And so in combination with the formula (4), (5), we have

g(y) ≥ g(
ȳ
δ
) =

1
δρ g(ȳ), ∀ y ∈ [

ȳ
δ

, ȳ]. (6)

5

Further, through the formula (6) and combined with the definition of δ, we can understand that the formula

(3) is formed, the formula (2) is of course also true.

If D(ȳ
δ) = ∅, D(ȳ) 6= ∅, it is clear that the inequality g(ỹ) ≤ g(ȳ) is established.

For all y ∈ [ȳ
δ , ȳ], if D(y) 6= ∅, we have yi ≥

ȳi
δ (i = 1, 2, · · · , p), and y 6= ȳ

δ , so

p

∏
i=1

(
ȳi
δ
)αi ≤ g(y) =

p

∏
i=1

yαi
i . (7)

Furthermore,

g(ȳ) =
p

∏
i=1

ȳαi
i = δρ

p

∏
i=1

(
ȳi
δ
)αi , (8)

By using the definition of δ and formula (7)-(8), one can infer that formula (2)-(3) holds.

If D(y) = ∅, and therefore g(y) = +∞, then the formula (2)-(3) is obviously hold.

If D(ȳ) = ∅, and the problem (LPȳ) is not solved, and for any y ∈ [ȳ
δ , ȳ], there is D(y) = ∅, then

g(y) = +∞, so the formula (2) is clearly established and the proof of the conclusion is completed.

Theorem 2.5 shows that for any ȳ ∈ H, we can determine whether the D(ȳ) is not empty by solving the

linear programming problem (LPȳ), and then determine whether formula (3) holds.

2.2. Linearization techniques

The objective function of the problem (EOP) is still non-convex compared to the problem (GLMP). But

the space H in which the variable y of the objective function is located is p dimensions. Therefore, based on

the above discussion, in order to solve the (EOP), for the given ε ∈ (0, 1), we first split the outer space H on

each dimension at a ratio of δ = (1 + ε)
1
ρ , thus producing several small rectangles.

To do this, let

γi = arg max{σ ∈N|liδσ ≤ ui}, i = 1, 2, · · · , p, (9)

where N represents a non-negative integer set. Therefore, the number of these small rectangles is finite,

and the set of all their vertices is

Bδ = {ν1, ν2, · · · , νp|νi ∈ Pδ
i , i = 1, 2, · · · , p}, (10)

where Pδ
i = {li, liδ, · · · , liδγi}. Obviously, for each y ∈ H, there must be a vertex (ν1, ν2, · · · , νp) ∈ Bδ

making yi ∈ [νi, δνi], i = 1, 2, · · · , p. Then it can be concluded that the rectangle H can be approximated by

the set Bδ.

Next, by using the set Bδ, the process of solving the problem (EOP) can be transformed into solving a

series of subproblems. To this end, for each ν ∈ Bδ, we need to consider the value of the g(ν), that is, to

determine whether the set D(ν) is not empty. According to Theorem 2.5, we can determine whether the

D(ν) is not empty by solving the linear programming problem (LPν). Therefore, for each vertex ν ∈ Bδ, the

following linear programming subproblem needs to be solved here, that is,

(LPν)

min

p

∑
i=1

αi fi(x)
νi

,

s.t. fi(x) ≤ νi, i = 1, 2, · · · , p,

x ∈ X.

6

On the basis of the conclusion of Theorem 2.5, if the problem (LPν) can be solved (its solution is recorded

as xν), then

ν̃ = (f1(xν), f2(xν), · · · , fp(xν))
T ∈ H, (11)

thus,

g(ν̃) ≤ g(ν) ≤ (1 + ε)g(y), ∀ y ∈ [
ν

δ
, ν].

3. Analysis of algorithm and its computational complexity

This section brings an approximate algorithm based on linearization-decomposition to solve the prob-

lem (EOP). After that, the analysis of its computational complexity is proved accordingly.

3.1. Approximate algorithm

To solve the (EOP), we subdivide the external space H into a finite number of small rectangles with ratio

δ, and put all the vertices of these small rectangles into the set Bδ.

Then for each vertex ν ∈ Bδ, solve the linear programming problem (LPν), and if D(ν) 6= ∅, a feasible

solution ν̃(formula (11)) to the (EOP) can be obtained according to its optimal solution xν, which makes

g(ν̃) ≤ g(ν) ≤ (1 + ε)g(y), ∀ y ∈ [
ν

δ
, ν].

If there is a ν̃ that satisfies g(ν̃) ≤ (1 + ε)g(y∗), and then

f (xν) =
p

∏
i=1

(fi(xν))
αi =

p

∏
i=1

ν̃
αi
i = g(ν̃) ≤ (1 + ε)g(y∗) = (1 + ε) f (x∗),

then ,xν is a global ε−approximation solution of the problem (GLMP). The specific algorithm steps are as

follows.

Algorithm I

Step 0 (Initialization). Set ε ∈ (0, 1), δ = (1 + ε)
1
ρ , F = +∞, k = 0. By using formulas (9)-(10), the H is

subdivided into smaller rectangles, such that the ratio of two consecutive segments is δ in each dimension.

Represents the vertex of each small rectangle as ν = (ν1, ν2, · · · , νp), which is stored in the set Bδ.

Step 1. Select a point ν from the Bδ, solve the linear programming problem (LPν), let Bδ = Bδ\ν.

Step 2. If the problem (LPν) is solvable, then D(ν) 6= ∅, let g(ν) = ∏
p
i=1(νi)

αi , if g(ν) < F, let F =

g(ν), ν̄ = ν, xν̄ = xν; If Bδ 6= ∅, set k = k + 1 and go to Step 1, otherwise, the algorithm terminates, let

ν̃i = fi(xν̄), i = 1, 2, · · · , p, ν̃ = (ν̃1, ν̃2, · · · , ν̃p)
T ,

then xν̄, ν̃ is a global ε−approximation solution to the problem (GLMP) and the (EOP), respectively.

Theorem 3.1. For a given precision ε ∈ (0, 1), let δ = (1 + ε)
1
ρ , ν̄ = arg min{g(ν)|ν ∈ Bδ}, xν̄ is the optimal

solution to the linear programming problem (LPν̄). Then, Algorithm I will get a global ε−approximation solution xν̄

of the problem (GLMP), i.e.

f (xν̄) ≤ (1 + ε) f (x∗),

where, x∗ is the global optimal solution to the original problem (GLMP).

7

Proof. Let

y∗i = fi(x∗), i = 1, 2, · · · , p.

According to the Theorem 2.1, we have

li ≤ y∗i ≤ ui, i = 1, 2, · · · , p. (12)

Then formula (12) implies that y∗ = (y∗1 , y∗2 , · · · , y∗p)T ∈ H, so there must be a ν∗ ∈ Bδ which makes

ν∗i
δ
≤ y∗i ≤ ν∗i , i = 1, 2, · · · , p.

So, using Theorem 2.5 on the small rectangle [ν∗
δ , ν∗], there is

f (x∗) =
p

∏
i=1

(y∗i)
αi = g(y∗) ≥

p

∏
i=1

(
ν∗i
δ
)αi = (

1
δ
)∑

p
i=1 αi

p

∏
i=1

(ν∗i)
αi =

1
δρ g(ν∗).

Thus,

δρ f (x∗) = δρg(y∗) ≥ g(ν∗). (13)

Noting that ν̄ = arg min{g(ν)|ν ∈ Bδ}, we can know

g(ν∗) ≥ g(ν̄). (14)

Since xν̄ is the optimal solution to the linear programming problem (LPν̄), let

ν̃i = fi(xν̄), i = 1, 2, · · · , p.

Apparently, ν̃ = (ν̃1, ν̃2, · · · , ν̃p) ∈ H. So, by taking advantage of the formula (3) in Theorem 2.5, we have

g(ν̄) ≥ g(ν̃) =
p

∏
i=1

(ν̃i)
αi =

p

∏
i=1

(fi(xν̄))
αi = f (xν̄). (15)

Therefore, by integrating the formula (13)-(15) and combining the δ = (1 + ε)
1
ρ , we can obtain

f (xν̄) ≤ (1 + ε) f (x∗)

and this proof is completed.

Remark 3.2. According to Theorem 3.1, if y∗ ∈ Bδ, then from Theorem 2.5, the optimal solution xy∗ of the

linear programming problem (LPy∗) is exactly the global optimal solution of the original problem (GLMP).

Through the Theorem 3.1, we can see that for a given precision ε ∈ (0, 1), Algorithm I will obtain a

global ε−approximation solution to the problem (GLMP). Moreover, the Remark 3.2 also shows that if

y∗ ∈ Bδ, then Algorithm I will find a global optimal solution of the problem (GLMP) exactly.

3.2. Accelerating techniques

Algorithm I shows that, for any ν ∈ Bδ, it is required to solve the linear programming problem (LPν)

, in order to verify that the D(ν) is non-empty. Hence, the computational cost of Algorithm I depends on

the number of points within the set Bδ, respectively. Then, the proposal of the acceleration technique will

8

discard some points that are not necessary to consider the set Bδ, and only consider the region that contains

the global optimal solution of the problem (EOP). The detailed process is paid below.

If ν̄ is the best known solution to the problem (EOP), xν̄ is the optimal solution to the linear programming

problem (LPν̄), for each i = 1, 2, · · · , p, let ν̃i = fi(xν̄), ν̃ = (ν̃1, ν̃2, · · · , ν̃p)T , obviously g(ν̃) ≤ g(ν̄), then ν̃

may be a better solution than ν̄. Well, using ν̃ may be able to remove more vertexes from the Bδ that do not

need to be explored. To give the acceleration technique for Algorithm I, we first need to specify a necessary

condition that the points in each sub-rectangle Hk ⊆ H0 = H(k ≥ 1) containing the global optimal solution

of the problem (EOP) must be satisfied, that is,

p

∏
i=1

lαi
i ≤ g(y∗) ≤ g(y) ≤ g(ν̃), ∀ y ∈ Hk, (16)

where Hk = [l, uk], uk = (uk
1, uk

2, · · · , uk
p)

T , uk
i ≤ uk−1

i ≤ ui, i = 1, 2, · · · , p. Similarly, if δ = (1 + ε)
1
ρ are

used to segment rectangles Hk on each dimension, this will produce a limited number of small rectangles.

For this purpose, let

γk
i = arg max{σ ∈N|liδσ ≤ uk

i }, i = 1, 2, · · · , p.

Then, a set of vertices of a finite number of small rectangles will also be generated on a rectangular Hk, that

is,

Bδ
k = {ν1, ν2, · · · , νp|νi ∈ Pδ

ki, i = 1, 2, · · · , p},

where Pδ
ki = {li, liδ, · · · , liδγk

i }. Clearly, Bδ
k ⊆ Bδ

0 = Bδ and Bδ
k ⊂ Hk ⊆ H0 = H.

Based on the above discussion, we will give propositions 3.3 and 3.4 to clarify the acceleration tech-

niques of the algorithm.

Proposition 3.3. The global optimal solution of the problem (EOP) can not be obtained on the set B̄δ
ki if a i ∈

{1, 2, · · · , p} makes (g(ν̃)
Mi

)
1
αi < liδγk

i , of which

B̄δ
ki = {ν ∈ Bδ

k |(
g(ν̃)
Mi

)
1
αi < νi}, i ∈ {1, 2, · · · , p}.

Proof. If ν ∈ B̄δ
ki, then there must be (g(ν̃)

Mi
)

1
αi < νi ≤ liδγk

i , and thus there is

g(ν̃) = ((
g(ν̃)
Mi

)
1
αi)αi Mi < (νi)

αi Mi = (νi)
αi

p

∏
j=1,j 6=i

l
αj
j ≤

p

∏
j=1

(νj)
αj = g(ν),

which contradicts the inequality chain (16), so the conclusion is valid.

With this proposition 3.3, we generate a new rectangle Hk+1 and vertex set Bδ
k+1, i.e. for each i =

1, 2, · · · , p, let

uk+1
i =

(

g(ν̃)
Mi

)
1
αi , (

g(ν̃)
Mi

)
1
αi < liδγk

i ,

uk
i , (

g(ν̃)
Mi

)
1
αi ≥ liδγk

i ,
(17)

as well as

γk+1
i =

arg max{σ ∈ N|liδσ ≤ uk+1

i }, (
g(ν̃)
Mi

)
1
αi < liδγk

i ,

γk
i , (

g(ν̃)
Mi

)
1
αi ≥ liδγk

i .
(18)

9

where N represents a non-negative integer set. Well, uk+1 = [l, uk+1] with uk+1 = (uk+1
1 , uk+1

2 , · · · , uk+1
p).

Moreover, the above rules may produce a small rectangular vertex set Bδ
k+1 with relatively few new

elements, but there is still ν̃ ∈ Bδ
k+1, so we then give proposition 3.4 to delete the other unconsidered

elements in the Bδ
k+1.

Proposition 3.4. If ν̄ is the best known solution to the problem (EOP), xν̄ is the optimal solution to the linear

planning problem (LPν̄), for each i = 1, 2, · · · , p, let ν̃i = fi(xν̄), ν̃ = (ν̃1, ν̃2, · · · , ν̃p)T , define the set

B̄δ
k+1 = {ν ∈ Bδ

k+1|ν̃i ≤ νi, i = 1, 2, · · · , p},

then, for any ν ∈ B̄δ
k+1, the (EOP) can not get a better solution than ν̃.

Proof. Since xν̄ is the optimal solution to a linear programming problem (LPν̄), then there is at least one

point xν̄ in the set D(ν̃), so D(ν̃) 6= ∅. For arbitrary ν ∈ B̄δ
k+1, Obviously D(ν̃) ⊆ D(ν), thus D(ν) 6= ∅.

According to the definition of the function g(y), for each ν ∈ B̄δ
k+1, the objective function value of the (EOP)

meet

g(ν) =
p

∏
i=1

(νi)
αi ≥

p

∏
i=1

(ν̃i)
αi = g(ν̃)

and this conclusion is proved.

Next, for a given ε ∈ (0, 1), δ = (1 + ε)
1
ρ , make use of proposition 3.4, let

τk+1
i = arg min{σ ∈N|ν̃i ≤ liδσ ≤ uk+1

i }. (19)

Through the expression of γk+1
i in (3.9), the set B̄δ

k+1 is defined as follows.

B̄δ
k+1 = {liδσ1 , liδσ2 , · · · , liδσp |σi ∈ {τk+1

i , τk+1
i + 1, · · · , γk+1

i }, i = 1, 2, · · · , p}. (20)

Therefore, for the convenience of narration, let Sδ
k+1 = Bδ

k+1 \ B̄δ
k+1. This means that in order to obtain

the global ε−approximation solution of the problem (EOP), it is only necessary to calculate up to |Sδ
k+1|

linear programming subproblems (LPν) to determine whether the D(ν) is not empty, which determines the

function value g(ν) at each vertex ν ∈ Sδ
k+1. Then, by using the set Sδ

k+1, the computational efficiency of

Algorithm I will be improved, leading to the following algorithm.

Algorithm II

Step 0 (Initialization). Set ε ∈ (0, 1), δ = (1+ ε)
1
ρ . By using formulas (9)-(10), the H0 = H is subdivided

into smaller rectangles, such that the ratio of two consecutive segments is δ in each dimension. Represents

the vertex of each small rectangle as ν = (ν1, ν2, · · · , νp), which is stored in the set Bδ. Let F = +∞, T = ∅,

Bδ
0 = Bδ, Ξ0 = Bδ

0, k = 0.

Step 1. Select a point ν = (ν1, ν2, · · · , νp)T from the Ξk, solve the linear programming problem (LPν), let

T = T ∪ ν.

Step 2. If the problem (LPν) is solvable, then D(ν) 6= ∅, let g(ν) = ∏
p
i=1(νi)

αi , if g(ν) < F, let ν̄ = ν,

xν̄ = xν, ν̃ = (ν̃1, ν̃2, · · · , ν̃p)T = (f1(xν̄), f2(xν̄), · · · , fp(xν̄))T , F = g(ν̃); Using rules (17)-(18) to produce

Hk+1 and Bδ
k+1, and through formula (19)-(20) to obtain set B̄δ

k+1, let Sδ
k+1 = Bδ

k+1 \ B̄δ
k+1, Ξk = Sδ

k+1 \ T. If

Ξk 6= ∅, set k = k + 1 and go to Step 1, otherwise, the algorithm terminates, let

ν̃i = fi(xν̄), i = 1, 2, · · · , p, ν̃ = (ν̃1, ν̃2, · · · , ν̃p)
T ,

10

then xν̄ , ν̃ is a global ε−approximation solution to the problem (GLMP) and the (EOP), respectively.

Note that the Algorithm II simply removes the set of vertices that do not contain a global optimal solu-

tion and, therefore, is similar to Theorem 3.1, the Algorithm II will also return a global ε−approximation

solution of the problem (GLMP) and (EOP) as well.

3.3. Analysis of computational complexity of the algorithm

We first give the following Lemma 3.1 to discuss the computational complexity of the two algorithms.

Lemma 3.1. [22] Let λ be the maximum of the absolute values of all the elements A, b, ci, di in problem (GLMP),

then each component x0
j of any pole x0 of the X can be expressed as x0

j =
pj
q , where 0 ≤ pj ≤ (nλ)n, 0 < q ≤ (nλ)n,

j = 1, 2, · · · , n.

Because for each i = 1, 2, · · · , p, the solution x̃i to the linear programming problem li = min
x∈X

fi(x) is the

pole of X, thus by Lemma 3.1 ,we have x̃i
j =

pi
j

qi , where, 0 ≤ pi
j ≤ (nλ)n, 0 < qi ≤ (nλ)n, j = 1, 2, · · · , n.

Thus, li =
n
∑

j=1
cij

pi
j

qi + di, i = 1, 2, · · · , p. Moreover, let

q̃ = max{ 1
qi | i = 1, 2, · · · , p}, ω = min{li| i = 1, 2, · · · , p}, (21)

Ũ = f (x̌) = min
1≤i≤p

f (x̃i), (22)

for the sake of the following smooth description of Theorem 3.5, here x̌ be defined in Theorem 2.1.

Theorem 3.5. For a given p ≥ 2, in order to obtain a global ε−approximation solution to the problem (GLMP). The

upper limit of the time required for the proposed Algorithm I is

O

((
2α̃ρ2

ε
[(n + 1) ln(nλ)− ln ω] + 1

)p

· T(m + p, n)

)
,

where α̃ = max{ 1
αi
|i = 1, 2, · · · , p}, ρ =

p
∑

i=1
αi, T(m + p, n) represents the upper limit of the time used to solve a

linear programming problem with m + p linear constraints and n variables at a time.

Proof. From the formula(9)-(10) we can see that the maximum number of midpoint of the set Bδ is

p

∏
i=1

(logδ

ui
li
+ 1). (23)

Using the definition of q̃, ω in the formula (21) and the Lemma 3.1, we have

ω ≤ li ≤ q̃nλ(nλ)n + λ ≤ 2q̃(nλ)n+1, i = 1, 2, · · · , p. (24)

Furthermore, we also have

Ũ =
p

∏
i=1

(cT
i x̌ + di)

αi ≤
p

∏
i=1

(
2q̃(nλ)n+1

)αi
=
(

2q̃(nλ)n+1
) p

∑
i=1

αi

11

by using the formula (22) and the above inequality (24). Of course, according to the definition of Mi and ui

in Theorem 2.1, and in conjunction with ρ =
p
∑

i=1
αi, there will be

ui =

(
Û
Mi

) 1
αi
≤
(

2q̃(nλ)n+1
)(2q̃(nλ)n+1

ω

) ρ
αi
−1

. (25)

By means of the above formulas (24) and (25), we can have

ui
li
≤
(

2q̃(nλ)n+1

ω

) ρ
αi

,

thus,
ln

ui
li
≤ ρ

αi
[ln 2q̃ + (n + 1) ln(nλ)− ln ω]

≤ ρα̃[ln 2q̃ + (n + 1) ln(nλ)− ln ω].
(26)

Using ε ∈ (0, 1), δ = (1 + ε)
1
ρ in Algorithm I and ε

2 < ln(1 + ε) < ε, then there will be

logδ

ui
li

= ρ log(1+ε)

ui
li

= ρ
ln ui

li
ln(1 + ε)

<
2ρ ln ui

li
ε

. (27)

Then, the upper limit of the number of internal points (expressed in |Bδ|) of Bδ is

|Bδ| ≤
(

2α̃ρ2

ε
[ln 2q̃ + (n + 1) ln(nλ)− ln ω] + 1

)p
(28)

in the utilized formula (23), (26)-(27). From the above formula (28), we can see that the running time of

Algorithm I is at most

O

((
2α̃ρ2

ε
[(n + 1) ln(nλ)− ln ω] + 1

)p

· T(m + p, n)

)

when the global ε−approximation solution is obtained, and then the proof of the conclusion is completed.

Remark 3.6. By propositions 3.3 and 3.4, we can see that Algorithm II simply removes the vertices of a

small rectangle that is not necessary to consider on the basis of Algorithm I, and acts as an acceleration

Algorithm I. Then the upper bound of the CPU running time required by algorithm II is the same as that of

Algorithm I in the most extreme cases (where acceleration techniques always fail). Therefore, Algorithm II

is likewise a polynomial time approximation algorithm.

4. Numerical experiments

This section will set the performance of the algorithm through several test problems. All of our testing

procedures were performed via MATLAB (2012a) on computers with Intel(R) Core(TM)i5-2320 3.00 GHz

power processor 4.00 GB memory and Microsoft Win7 operating system.

12

Problem 1 [17, 18]

min (0.813396x1 + 0.67440x2 + 0.305038x3 + 0.129742x4 + 0.217796)

× (0.224508x1 + 0.063458x2 + 0.932230x3 + 0.528736x4 + 0.091947)

s.t.

0.488509x1 + 0.063565x2 + 0.945686x3 + 0.210704x4 ≤ 3.562809,

−0.324014x1 − 0.501754x2 − 0.719204x3 + 0.099562x4 ≤ −0.052215,

0.445225x1 − 0.346896x2 + 0.637939x3 − 0.257623x4 ≤ 0.427920,

−0.202821x1 + 0.647361x2 + 0.920135x3 − 0.983091x4 ≤ 0.840950,

−0.886420x1 − 0.802444x2 − 0.305441x3 − 0.180123x4 ≤ −1.353686,

−0.515399x1 − 0.424820x2 + 0.897498x3 + 0.187268x4 ≤ 2.137251,

−0.591515x1 + 0.060581x2 − 0.427365x3 + 0.579388x4 ≤ −0.290987,

0.423524x1 + 0.940496x2 − 0.437944x3 − 0.742941x4 ≤ 0.373620,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Problem 2 [17, 18]

min (3x1 − 2x2 − 2)
2
3 (x1 + 2x2 + 2)

2
5 s.t.

{
2x1 − x2 ≥ 2, x1 − 2x2 ≤ 2,

x1 + x2 ≤ 5, 3 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 3.

Problem 3 [20]

min (x1 + x2)(x1 − x2 + 7) s.t.

2x1 + x2 ≤ 14,

x1 + x2 ≤ 10,

−4x1 + x2 ≤ 0,

2x1 + x2 ≥ 6,

x1 + 2x2 ≥ 6,

x1 − x2 ≤ 3,

1.99 ≤ x1 ≤ 2.01,

7.99 ≤ x2 ≤ 8.01.

Table 1: Comparison of results in Problem 1-3.

Problem Reference Solution Optimum Iter Time ε

1 [17] (1.3148,0.1396,0.0000,0.4233) 0.890190 404 9.606 0.05

[18] (1.3148,0.1396,0.0000,0.4233) 0.890190 3 0.047 0.05

Algorithm I/II (1.3148,0.1396,0.0000,0.4233) 0.890190 1 0.0149 0.05

2 [17] (3.000,2.000) 5.014514 69 2.4960 0.15009

[18] (3.000,2.000) 5.009309 4 0.0800 0.15009

Algorithm I (3.000,2.000) 5.014514 6 0.1024 0.15009

Algorithm II (3.000,2.000) 5.014514 4 0.0657 0.15009

3 [20] (2,8) 10 2 0.015 0.01

Algorithm I/II (2,8) 10 1 0.0241 0.01

13

Problem 4

min
p

∏
i=1

(cT
i xj + di)

αi , s.t. Ax ≤ b, x ≥ 0,

where p ≥ 2, ci ∈ Rn, αi ∈ R are pseudo-random numbers in [0,1], di = 1, constraint matrix elements aij

are generated in [-1,1] via aij = 2 ∗Q− 1, where Q are pseudo-random numbers in [0,1], and the right-hand

side values are generated via bi = ∑n
j=1 aij + 2π, where π are pseudo-random numbers in [0,1].

Table 2: Comparison of numerical results by using Problem 4

(p, m, n)
Algorithm I Algorithm II

Avg(Std).Time Avg(Std).Iter Avg(Std).Time Avg(Std).Iter

(2,10,20) 2.9068(2.8062) 75.8(84.7700) 1.9686(1.9352) 22.5(27.3395)

(2,20,20) 2.3784(3.1017) 52.6(76.8936) 1.7129(2.1472) 23.4(35.1801)

(2,22,20) 0.8663(0.9232) 18.1(25.0257) 0.6568(0.6239) 8(10.0199)

(2,20,30) 6.2414(6.3274) 165.2(164.0334) 3.4923(3.7124) 49(61.764)

(2,35,50) 3.9868(4.4041) 66.4(78.2102) 3.3046(3.9017) 32.3(38.6886)

(2,45,60) 5.8908(5.4016) 129.1(125.2481) 3.7409(3.3526) 40.5(38.1084)

(2,45,100) 6.6579(5.9685) 125.3(123.7061) 4.2665(3.6485) 40.2(40.1343)

(2,60,100) 7.8626(6.3057) 96.6(99.4818) 4.5517(2.8324) 26(19.8343)

(2,70,100) 9.1245(8.1057) 96.3(104.6633) 5.0942(3.3528) 23.6(18.9430)

(2,70,120) 11.2742(13.2311) 148(215.2185) 6.0341(5.5968) 35(37.3256)

(2,100,10) 0.1877(0.1300) 2.4(2.9732) 0.1542(0.0663) 1.3(0.6403)

(2,100,50) 0.9029(0.5392) 8.9(7.0632) 0.6542(0.3654) 3.9(2.7730)

(2,100,100) 9.8811(8.0793) 68.6(55.5287) 6.9462(6.3403) 24.1(26.6813)

(2,100,150) 15.4331(10.2573) 97.4(75.1720) 9.8838(6.2545) 30.8(22.1260)

(2,100,200) 27.1157(25.3267) 124.4(130.8076) 18.9561(16.8612) 49.2(47.3810)

(2,100,250) 64.8144(72.0125) 285.1(353.7955) 40.3711(41.0487) 91(103.9576)

(2,100,300) 87.5572(100.4846) 331(398.8197) 55.5067(64.5147) 117.2(153.2434)

(2,100,400) 132.4251(176.2381) 363.9(581.9823) 87.0321(97.4482) 130.7(169.6585)

(2,100,500) 158.4767(183.7060) 338.3(493.9785) 111.0958(106.7086) 133.8(145.3470)

(2,100,700) 331.3275(351.8534) 414.2(546.8741) 272.7311(264.9189) 227.1(257.8927)

(2,100,1000) 1020.9318(880.7910) 1063.6(1019.7921) 778.8913(638.1782) 522 (460.2479)

(3,100,10) 4.4724(7.4341) 59.7(117.2502) 3.6522(5.7934) 35.2(55.7867)

(3,100,50) 90.8139(74.9843) 1062.4(982.8277) 57.8342(55.5978) 473.3(564.6533)

(4,100,10) 75.4301(189.1250) 1509.3(4122.7180) 52.9122(122.0553) 868.1(2203.3283)

The numerical results in Table 1 show that algorithms I and II can effectively solve the three test prob-

lems known in the literature and get an approximate solution, so both algorithms are feasible.

Further, we do the corresponding random numerical experiments through the problem 4, which is uti-

lized to explore the performance of the two algorithms. We determine the convergence accuracy of the

algorithm to 0.05. For each set of fixed parameters (p, m, n), we run the two algorithms 10 times for numer-

ical comparison, and the numerical results are given in Table 2. In Table 2, Avg(Std).Time and Avg(Std).Iter

14

represent the average (standard deviation) of the CPU running time and the average(standard deviation)

of iterations, respectively, after the algorithm has run 10 times. Table 2 shows that the computation effect of

algorithm II is better than that of algorithm I, mainly because our acceleration technique plays a significant

role by deleting the vertices of small rectangles that do not need to consider. Hence, we believe that this

acceleration technique may be generalized on other approximation algorithms such as [17, 18, 20].

Moreover, under the condition that the fixed parameters (p, m) are invariant, the CPU running time of

the two algorithms will increase with the scale n of the problem 4. Under the condition that the pre-fixed

parameters (m, n) are invariant, the CPU running time and iterations of the two algorithms will grow with

the number p of linear functions in the objective function of the problem 4.

5. Conclusions

In this paper, we mainly propose two polynomial time approximation algorithms that can be utilized

to solve the problem (GLMP) globally, where algorithm II is obtained by accelerating algorithm I by the

proposed acceleration technique. The numerical results show that both algorithms are effective and feasible,

but the overall calculation effect of algorithm II is better than that of algorithm I, which shows that our

acceleration technique is efficient and can be extended to some approximate algorithms such as [17, 18, 20].

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant (11961001),

the Construction Project of first-class subjects in Ningxia higher Education(NXYLXK2017B09) and the major

proprietary funded project of North Minzu University (ZDZX201901).

Author contributions

Bo Zhang and YueLin Gao conceived of and designed the study. Bo Zhang performed the experiments.

Bo Zhang wrote the paper. YueLin Gao, XiaoLi Huang and Xia Liu reviewed and edited the manuscript.

All authors read and approved the manuscript.

Financial disclosure

None reported.

Conflict of interest

The authors declare no potential conflict of interests.

References

[1] Matsui T. NP-Hardness of linear multiplicative programming and related problems. Journal of Global

Optimization 1996, 9(2): 113-119.

15

[2] Maranas C, Androulakis I, Floudas C, et al. Solving long-term financial planning problems via global

optimization. Journal of Economic Dynamics and Control, 1997, 21(8-9): 1405-1425.

[3] Konno H. Kuno T. Yajima Y. Global optimization of a generalized convex multiplicative function. Jour-

nal of Global Optimization, 1994, 41(1): 47-62.

[4] Mulvey J, Vanderbei R, Zenios S. Robust Optimization of Large-Scale Systems. Operations Research,

1995, 43(2): 264-281.

[5] Nicholas R, Layard P, Walters A. Microeconomic Theory. Economica, 1980, 47(186): 211.

[6] Benson H. Vector maximization with two objective functions. Journal of Optimization Theory and Ap-

plications, 1979, 28(2): 253-257.

[7] Dennis D. Analyzing Public Inputs to Multiple Objective Decisions on National Forests Using Conjoint

Analysis. Forest ence, 1998, 44(3): 421-429.

[8] Liu S, Zhao Y. An efficient algorithm for globally solving generalized linear multiplicative program-

ming. Journal of Computational and Applied Mathematics, 2016, 296: 840-847.

[9] Liu X, Umegaki T, Yamamoto Y. Heuristic methods for linear multiplicative programming. Journal of

Global Optimization, 1999, 15(4): 433-447.

[10] Benson H, Boger G. Multiplicative programming problems: analysis and efficient point search heuris-

tic. Journal of Optimization Theory and Applications, 1997, 94(2): 487-510.

[11] Shen P, Bai X, Li W. A new accelerating method for globally solving a class of nonconvex programming

problems. Nonlinear Analysis, 2009, 71: 2866-2876.

[12] Chen Y, Jiao H. A nonisolated optimal solution of general linear multiplicative programming prob-

lems. Computers & Operations Research, 2009, 36(9): 2573-2579.

[13] Wang C, Bai Y, Shen P. A practicable branch-and-bound algorithm for globally solving linear multi-

plicative programming. Mathematische Operationsforschung Und Statistik, 2017, 66(3): 397-405.

[14] Gao Y, Xu C, Yang Y. An outcome-space finite algorithm for solving linear multiplicative program-

ming. Applied Mathematics and Computation, 2006, 179(2): 494-505.

[15] Konno H, Kuno T. Linear multiplicative programming. Mathematical Programming, 1992, 56(1-3): 51-

64.

[16] Depetrini D, Locatelli M. A FPTAS for a class of linear multiplicative problems. Computational Opti-

mization and Applications, 2007, 44(2): 275-288.

[17] Locatelli M. Approximation algorithm for a class of global optimization problems. journal of global

optimization, 2013, 55(1): 13-25.

[18] Shen P, Wang L. A Fully Polynomial Time Approximation Algorithm for Generalized Linear Multi-

plicative Programming. Mathematica Applicata, 2018, 31(1): 208-213.

16

[19] Zhang B, Gao Y, Liu X, Huang X. Output-Space Branch-and-Bound Reduction Algorithm for a Class

of Linear Multiplicative Programs. Mathematics, 2020, 8: 315.

[20] Shen P , Huang B , Wang L . Range division and linearization algorithm for a class of linear ratios

optimization problems. Journal of Computational and Applied Mathematics, 2019, 350: 324-342.

[21] Wang C, Liu S. A new linearization method for generalized linear multiplicative programming. Com-

puters and Operations Research, 2011, 38(7): 1008-1013.

[22] Peiping S, Xiaoke Z, A polynomial time approximation algorithm for linear fractionl programs. Math-

ematica Applicata. 2011, 26(2): 355-359.

17

	Introduction
	 Equivalence problem and its linearization technique
	Equivalent problems and their properties
	 Linearization techniques

	Analysis of algorithm and its computational complexity
	Approximate algorithm
	 Accelerating techniques
	 Analysis of computational complexity of the algorithm

	Numerical experiments
	Conclusions

