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The objective of this study is to establish new sufficient
criteria for the oscillation of the 2nd-order neutral equa-
tion

(
r (z ′)α

) ′ (t ) + q (t ) xβ (σ (t )) = 0, where t ≥ t0 and
z (t ) = x (t ) + px (τ (t )). We improve the known criteria by
establishing a new relationship between the solution x and
the corresponding function z . To show the importance of
our results, we provide two examples.
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1 | INTRODUCTION

In this study, we aim to study the oscillatory behaviour of solutions of the 2nd-order neutral-delay differential equation
(NDDE)

(
r (t )

(
z ′ (t )

)γ )′
+ q (t ) xβ (σ (t )) = 0, (1)

∗Equally contributing authors.
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where t ≥ t0 and z (t ) := x (t )+px (τ (t )) . Throughout the results, we always suppose γ, β ∈ Ñ+odd := {a/b : a, b ∈ Ú+ are odd},
p is a nonnegative constant, r ∈ C ( [t0,∞), (0,∞)) , q ∈ C ( [t0,∞), [0,∞)) , τ,σ ∈ C ( [t0,∞),Ò) , q (t ) is not congru-
ently zero for t ≥ t∗ large enough, τ (t ) ≤ t , σ (t ) ≤ t , limt→∞ τ (t ) = limt→∞ σ (t ) = ∞ and∫ ∞

t0

r −1/γ (υ) dυ = ∞. (2)

By a solution of equation (1), wemean a x ∈ C 1 ( [tx ,∞)) , for tx ≥ t0,which has the feature r (z ′)γ ∈ C 1
(
[t y ,∞)

)
,

and satisfies (1) on [tx ,∞) . We only take into account those solutions x that achieve the advantage sup{ |x (t ) | : t ≥
T } > 0, for all T ≥ tx . If the solution of (1) is neither ultimately positive nor ultimately negative, then it is called an
oscillatory solution; otherwise, it is called non-oscillatory. The equation itself is called oscillatory if all its solutions
oscillate.

In real-world life problems, the NDDEs have interesting applications. The NDDEs appear in the modeling of the
networks containing lossless transmission lines, in the study of vibratingmasses attached to an elastic bar, in the theory
of automatic control, and others, see [14]. It is easy - in recent times - to observe the great development in the theory
of oscillation for differential equations of different orders, see [1]-[21]. As part of this development, the oscillatory
properties of solutions of the second-order NDDEs attracted the interest of researchers; see [2, 3, 4, 6, 7, 13, 18, 19]
and the references cited therein.

At studying the oscillatory behavior of NDDEs with canonical case (2), the relationship between the solution and
the corresponding function

x (t ) > (1 − p) z (t ) (3)

has been commonly used in the literature. By using (3), Grace et al. [13] studied the oscillatory behavior of solutions
of (1) when γ = β and p < 1. Moreover, they improved previous results in the literature.

Theorem 1 [13, Theorem 3, Theorem 6] If

lim inf
t→∞

∫ t

σ (t )
G (s)

(
κ∗ (σ (s))

)γ ds > 1

e ,

or

lim sup
t→∞

∫ ∞

t1

(
φ (s) exp

(
−

∫ s

σ (s )

du
r 1/γ (u) κ∗ (u)

)
−
r (s)

(
φ′+ (s)

)γ+1
(γ + 1)γ+1 φγ (s)

)
ds = ∞,

then (1) is oscillatory, where κ (t ) :=
∫ t
t1
r −1/γ (s) ds , φ ∈ C ( [t0,∞) , (0,∞)) , φ′+ (t ) := max {φ′ (t ) , 0} and

G (t ) := q (t ) (1 − p (σ (t )))γ , κ∗t1 (t ) := κt1 (t ) +
1

γ

∫ t

t1

κt1 (u) κ
γ (u) du . (4)

On the other hand, in the case where p > 1, the relationship (3) is useless. Nevertheless, Baculikova and Dzurina
[3] established the oscillation criteria for (1) with 0 ≤ p < ∞.
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Theorem 2 [3, Corollary 2] Let 0 < β ≤ 1, β ≤ γ,

σ (t ) ≤ τ (t ) ≤ t , τ′ (t ) ≥ τ0 > 0 and τ ◦ σ = σ ◦ τ .

If

lim inf
t→∞

∫ t

τ−1 (σ (t ) )
Ĝ (s)

(∫ σ (t )

t1

r −1/γ (u) du
)β

ds >
(
1 +

p
β
0

τ0

)β/γ
1

e ,

then (1) is oscillatory, where Ĝ (t ) := min {q (t ) , q (τ (t )) }.

Moaaz et al. [20] generalized and complemented the results in [13]. They established the following criteria for
oscillation of (1) with p < 1:

Theorem 3 [20, Theorem 2] Let β = γ. If

lim inf
t→∞

γ

ψ (t )

∫ ∞

t
r −1/γ (u) ψ (γ+1)/γ (u) du > γ

(γ + 1) (γ+1)/γ
,

then (1) is oscillatory, where

κ̂ (t ) := exp
(
−γ

∫ t

σ (t )

1

κ∗ (s) r 1/γ (s)
ds

)
, ψ (t ) :=

∫ ∞

t
κ̂ (u) G (u) du

and G (t ) , κ∗ (t ) are defined as in (4).

The objective of this paper is to establish new oscillation criteria for the NDDE (1) by improving (3). The new
relationship enables us to,

- create more effective criteria for studying neutral equations in both cases p < 1 and p > 1.
- essentially take into account the influence of the delay argument τ (t ) that has been careless in all related results.
- exclude some restrictions that are usually imposed on the coefficients of the neutral equations in the case where

p > 1.

Moreover, we use an iterative technique to establish new oscillation criteria for the NDDE (1) when β = γ and
p < 1. One purpose of this paper is to further improve Theorems 1 and 2. The results reported in this paper generalize,
complement, and improve those in [3, 13, 18, 20]. To show the importance of our results, we provide an example.

2 | MAIN RESULTS I: NEW RELATIONSHIP BETWEEN x AND z

For simplicity, we just write the functions without the independent variable, such as f (t ) := f and f (g (t )) = f (g ) .
Moreover, assuming

τ0 := t , τκ := τ ◦ τκ−1, τ−κ−1 := τ−1 ◦ τ−κ for κ = 1, 2, ... ,
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ηt0 (t ) :=
∫ t

t0

r −1/γ (s) ds,

and

B :=
{
c
β−γ
1 if γ ≤ β ;
c2η

β−γ
t2
(t ) if γ > β ,

where c1 and c2 are positive constants. The set of all eventually positive solutions of (1) is denoted by X +.

Lemma 1 [3, Lemma 3] Let x ∈ X +. Then,

z > 0, z ′ > 0 and
(
r
(
z ′

)γ )′ ≤ 0, (5)

for t ≥ t1, where t1 is sufficiently large.

The following lemma is a direct observation from the proof of Theorem 2.1 in [18].

Lemma 2 If x ∈ X +, then z β−γ (t ) ≥ B (t ) , eventually.

Lemma 3 Let x ∈ X +, p > 0 and there exists an even positive integer n such that

p̃ :=
n/2∑
κ=1

1

p2κ−1
©­­«1 −

1

p

ηt2

(
τ−2κ

)
ηt2

(
τ−(2κ−1)

) ª®®¬ > 0. (6)

Then

x (t ) ≥ p̃ (t ) z (t ) . (7)

Proof Suppose that x ∈ X +. Thus, x (t ) , x (τ (t )) and x (σ (t )) are positive for all t ≥ t1, where t1 is sufficiently
large. From Lemma 1, we see that (5) holds. Since

(
r 1/γz ′

)′
≤ 0, we have that

z (t ) >
∫ t

t1

1

r 1/γ (υ)
r 1/γ (υ) z ′ (υ) dυ > r 1/γ (t ) z ′ (t ) ηt1 (t ) , (8)

for all t ≥ t1. Using the definition of z (t ) , we obtain

x =
1

p

(
z

(
τ−1

)
− x

(
τ−1

))
=
1

p

(
z

(
τ−1

)
− 1
p
z

(
τ−2

))
+
1

p2
x

(
τ−2

)
.

Repeating this procedure, we get

x =
n∑
κ=1

(−1)κ+1

pκ
z

(
τ−κ

)
+
1

pn
x

(
τ−n

)
>

n/2∑
κ=1

1

p2κ−1

(
z

(
τ−(2κ−1)

)
− 1
p
z

(
τ−2κ

))
, (9)
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for t ≥ t2 ≥ t1, where t2 is sufficiently large, and any even positive integer n . Taking (8) and τ−2κ ≥ τ−(2κ−1) into
account, we get

z
(
τ−2κ

)
< z

(
τ−(2κ−1)

) ηt2

(
τ−2κ

)
ηt2

(
τ−(2κ−1)

) , (10)

for κ = 1, 2, ..., n/2. Combining (9) and (10), we obtain

x >

n/2∑
κ=1

1

p2κ−1
©­­«1 −

1

p0

ηt2

(
τ−2κ

)
ηt2

(
τ−(2κ−1)

) ª®®¬ z
(
τ−(2κ−1)

)
> p̃z .

This completes the proof.

Lemma 4 Let x ∈ X + and p0 < 1. Then,

x (t ) ≥ p̂ (t ) z (t ) , (11)

for any odd positive integer n , where

p̂ := (1 − p)
(n−1)/2∑
κ=0

p2κ
ηt1

(
τ2κ+1

)
ηt1

. (12)

Proof Proceeding as in the proof of Lemma 3, we arrive at (8). From the definition of z (t ) , we have that

x = z − px (τ) = z − pz (τ) + p2x
(
τ2

)
.

Repeating this procedure, we obtain

x =
n∑
κ=0

(−1)κ pκz
(
τκ

)
+ pn+1x

(
τn+1

)
≥
(n−1)/2∑
κ=0

(
p2κz

(
τ2κ

)
− p2κ+1z

(
τ2κ+1

))
, (13)

for t ≥ t2 ≥ t1, where t2 is sufficiently large, and any odd n ∈ Ú+. Since τ2κ+1 (t ) ≤ τ2κ (t ) , we see that

z
(
τn

)
≤ ... ≤ z

(
τ2κ+1

)
≤ z

(
τ2κ

)
≤ ... ≤ z ,

for κ = 0, 2, ..., (n − 1) /2, which with (13) gives

x ≥
(n−1)/2∑
κ=0

p2κ (1 − p) z
(
τ2κ+1

)
. (14)
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From (8), we find

z
(
τ2κ+1

)
> z

ηt1

(
τ2κ+1

)
ηt1

,

which with (14) gives

x ≥ (1 − p) z
(n−1)/2∑
κ=0

p2κ
ηt1

(
τ2κ+1

)
ηt1

.

This completes the proof.

Theorem 4 Assume that p0 < 1. If there exists a function θ ∈ C 1 ( [t0,∞) , (0,∞)) such that

lim sup
t→∞

∫ t

t1

(
θ (υ) q (υ) p̂β (σ (υ)) δ (υ) B (σ (υ)) − 1

(γ + 1) (γ+1)
r (υ)

(
θ′+ (υ)

)γ+1
θγ (υ)

)
dυ = ∞, (15)

then (1) is oscillatory, where

η̂t0 (t ) := ηt0 (t ) +
1

γ

∫ t

t0

ηt0 (%) η
γ
t0
(σ (%)) q (%) p̂β (σ (%)) B (σ (%)) d%

and

δ (t ) := exp
(
−γ

∫ t

σ (t )

1

r 1/γ (υ) η̂t1 (υ)
dυ

)
.

Proof Assume the contrary that x is a nonoscillatory solution of (1). Without loss of generality, we suppose that
x ∈ X +. Thus, x (t ) , x (τ (t )) and x (σ (t )) are positive for all t ≥ t1, where t1 is sufficiently large. Using Lemma 4,
we have that (11) holds. Using (1) and (11), we obtain

(
r
(
z ′

)γ )′ ≤ −qp̂β (σ) z β (σ) . (16)

Using the chain rule and simple computation, we find

γ
(
r 1/γz ′

)γ−1 d
dt

(
z − ηt1 r

1/γz ′
)
= −γ

(
r 1/γz ′

)γ−1
ηt1

(
r 1/γz ′

)′
= −ηt1

(
r
(
z ′

)γ )′
. (17)

which with (16) gives

d
dt

(
z − ηt1 r

1/γz ′
)
≥ 1

γ

(
r 1/γz ′

)1−γ
ηt1qp̂

β (σ) z β (σ)

≥ 1

γ

(
r 1/γz ′

)1−γ
ηt1qp̂

β (σ) B (σ) zγ (σ) . (18)
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Integrating (18) from t1 to t , we get

z ≥ ηt1 r
1/γz ′ +

1

γ

∫ t

t1

(
r 1/γ (%) z ′ (%)

)1−γ
ηt1 (%) q (%) p̂

β (σ (%)) B (σ (%)) zγ (σ (%)) d% . (19)

Since
((
r 1/γ (t ) z ′ (t )

)γ )′
≤ 0, we have

z (σ) ≥ ηt1 (σ) r
1/γ (σ) z ′ (σ) ≥ ηt1 (σ) r

1/γz ′.

Thus, (19) becomes

z ≥
(
ηt1 (t ) +

1

γ

∫ t

t1

ηt0 (%) η
γ
t0
(σ (%)) q (%) p̂β (σ (%)) B (σ (%)) d%

)
r 1/γz ′,

that is

z ≥ η̂t1 r
1/γz ′. (20)

Integrating z ′/z ≤ 1/
(
r
1/γ
t1
η̂t1

)
from σ (t ) to t , we find

ln z (t )
z (σ (t )) ≤

∫ t

σ (t )

1

r 1/γ (υ) η̂t1 (υ)
dυ

that is

z (σ (t )) ≥ exp
(
−

∫ t

σ (t )

1

r 1/γ (υ) η̂t1 (υ)
dυ

)
z (t ) . (21)

Next, we define the function

Θ := θ r (z
′)γ

zγ
.

Clearly, Θ (t ) > 0 for all t ≥ t1 and

Θ′ =
θ′

θ
Θ + θ

(
r (z ′)γ

)′
zγ

− γθ r (z
′)γ

zγ+1
z ′.

It follows from (16) and (21) that

Θ′ =
θ′

θ
Θ + −θδqp̂β (σ) B (σ) − γθ r (z

′)γ

zγ+1
z ′,

from definition Θ, we have

Θ′ ≤ θ
′

θ
Θ − θδqp̂β (σ) B (σ) − γ

r 1/γθ1/γ
Θ1+1/γ .
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Using the inequality (see [18, Lemma 1.2])

Aφ − Bφ (γ+1)/γ ≤ γγ

(γ + 1) (γ+1)
Aγ+1

Bγ
, B > 0,

with A = θ′/θ, B = γ/
(
r 1/γθ1/γ

)
and φ = Θ, we get

Θ′ ≤ −θδqp̂β (σ) B (σ) + 1

(γ + 1) (γ+1)
r
(
θ′+

)γ+1
θγ

.

Integrating this inequality from t1 to t , we get∫ t

t1

(
θ (υ) q (υ) p̂β (σ (υ)) δ (υ) B (σ (υ)) − 1

(γ + 1) (γ+1)
r (υ)

(
θ′+ (υ)

)γ+1
θγ (υ)

)
dυ ≤ Θ (t1) ,

which contradicts (15). This completes the proof.

Theorem 5 Assume that (6) holds for some even positive integer n . If there exists a function ϑ ∈ C 1 ( [t0,∞) , (0,∞)) such
that

lim sup
t→∞

∫ t

t1

(
ϑ (υ) q (υ) p̃β (σ (υ)) δ̃ (υ) B (σ (υ)) − 1

(γ + 1) (γ+1)
r (υ)

(
ϑ′+ (υ)

)γ+1
ϑγ (υ)

)
dυ = ∞,

then (1) is oscillatory, where

η̃t0 (t ) := ηt0 (t ) +
1

γ

∫ t

t0

ηt0 (%) η
γ
t0
(σ (%)) q (%) p̃β (σ (%)) B (σ (%)) d% .

and

δ̃ (t ) := exp
(
−γ

∫ t

σ (t )

1

r 1/γ (υ) η̃t1 (υ)
dυ

)
.

Proof To prove this theorem, it suffices to use (7) instead of (11) in the proof of Theorem 4.

3 | MAIN RESULTS II: ITERATIVE TECHNIQUE

Lemma 5 Assume that x ∈ X +, γ = β and p0 < 1. Then,

z (t ) ≥ Uk (t ) r 1/γ (t ) z ′ (t ) (22)

for k = 0, 1, ..., whereU0 (t ) := η̂t1 (t ) and

Uk+1 (t ) :=
∫ t

t1

(
1

r (s) exp
(∫ t

s
q (υ) p̂γ (σ (υ))U γ

k
(σ (υ)) dυ

))1/γ
ds . (23)
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Proof Suppose that x ∈ X +. Thus, x (t ) , x (τ (t )) and x (σ (t )) are positive for all t ≥ t1, where t1 is sufficiently
large. From Lemma 1, we see that (5) holds. Now, we will prove (22) using induction.
For k = 1, proceeding as in proof of Theorem 4, we obtain that (16) and (20) hold. From (20), we get

z ≥ η̂t1 (t ) r
1/γz ′ = U0 (t ) r 1/γz ′.

Next, we assume that (22) holds at k = n , that is z ≥ Un r 1/γz ′. Thus, since
((
r 1/γz ′

)γ )′
≤ 0, we find

z (σ) ≥ Un (σ) r 1/γ (σ) z ′ (σ) ≥ Un (σ) r 1/γz ′.

which with (16) gives

(
r
(
z ′

)γ )′
+ qp̂γ (σ)U γn (σ) r

(
z ′

)γ ≤ 0. (24)

If we set H := r (z ′)γ , (24) becomes

H ′ (t ) + qp̂γ (σ)U γn (σ) H (t ) ≤ 0. (25)

Applying the Grönwall inequality in (25), we get

H (s) ≥ H (t ) exp
(∫ t

s
q (υ) p̂γ (σ (υ))U γn (σ (υ)) dυ

)
,

for t ≥ s ≥ t1, and so

z ′ (s) ≥ r 1/γ (t ) z ′ (t )
(
1

r (s) exp
(∫ t

s
q (υ) p̂γ (σ (υ))U γn (σ (υ)) dυ

))1/γ
.

Integrating this inequality from t1 to t , we get

z (t ) ≥ r 1/γ (t ) z ′ (t )
∫ t

t1

(
1

r (s) exp
(∫ t

s
q (υ) p̂γ (σ (υ))U γn (σ (υ)) dυ

))1/γ
ds

= Un+1 (t ) r 1/γ (t ) z ′ (t ) .

This completes the proof.

Theorem 6 Assume that γ = β and p0 < 1. If

lim inf
t→∞

∫ t

σ (t )
q (υ) p̂γ (σ (υ))U γ

k
(σ (υ)) dυ > 1

e , (26)

for some integers k ≥ 0, then (1) is oscillatory, where p̂ ,Uk are defined as in (12) and (23), respectively.

Proof Assume the contrary that x is a nonoscillatory solution of (1). Without loss of generality, we suppose that
x ∈ X +. Thus, x (t ) , x (τ (t )) and x (σ (t )) are positive for all t ≥ t1, where t1 is sufficiently large. From Lemma 5, we



10 Moaaz et al.

have that (22) holds. Proceeding as in the proof of Theorem 4, we arrive at (16). Combining (24) and (22), we obtain

(
r
(
z ′

)γ )′ (t ) + q (t ) p̂γ (σ (t ))U γ
k
(σ (t )) r (σ (t ))

(
z ′ (σ (t ))

)γ ≤ 0.
If we set w := r (z ′)γ , we have that w is a positive solution of the delay differential inequality

w ′ (t ) + q (t ) p̂γ (σ (t ))U γ
k
(σ (t ))w (σ (t )) ≤ 0.

Using Theorem 1 in [22], the associated DDE

w ′ (t ) + q (t ) p̂γ (σ (t ))U γ
k
(σ (t ))w (σ (t )) = 0 (27)

has also a positive solution. But, condition (26) ensures oscillation of (27), this is a contradiction. This completes the
proof.

Theorem 7 Assume that γ = β and p0 < 1. If there exists a function ρ ∈ C 1 ( [t0,∞) , (0,∞)) such that

lim sup
t→∞

∫ t

t1

(
ρ (υ) q (υ) p̂γ (σ (υ)) δ̂k (υ) −

1

(γ + 1) (γ+1)
r (υ)

(
ρ′+ (υ)

)γ+1
ργ (υ)

)
dυ = ∞, (28)

for some integers k ≥ 0, then (1) is oscillatory, where

δ̂k (t ) := exp
(
−γ

∫ t

σ (t )

1

r 1/γ (t )Uk (t )
dυ

)
,

and p̂ ,Uk are defined as in (12) and (23), respectively.

Proof Assume the contrary that x is a nonoscillatory solution of (1). Without loss of generality, we suppose that
x ∈ X +. Thus, x (t ) , x (τ (t )) and x (σ (t )) are positive for all t ≥ t1, where t1 is sufficiently large. Now, we define
the function ψ := ρr (z ′/z )γ . Thus, ψ (t ) > 0 and

ψ′ =
ρ′

ρ
ψ + ρ

(
r (z ′)γ

)′
zγ

− γρr
(
z ′

zγ+1

)γ+1
.

From Lemma 5, we have that (22) holds. By replacing (20) with (22) in the proof of Theorem 4, this part of proof is
similar to that of Theorem 2.1 and so we omit it.

Now we give an example to illustrate our main results.

Example Consider the NDDE

( (
(x (t ) + px (µt ))′

)γ )′
+

q0

t γ+1
xγ (λt ) = 0, (29)

where q0 > 0 and µ, λ ∈ (0, 1) . It’s easy to verify that ηt0 (t ) = t , τκ (t ) = µκ t , η̂t1 (t ) =
(
1 + 1

γ p̂
γ
0q0λ

γ
)
t and δ (t ) = λγ̂ ,
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where

p̂ (t ) = (1 − p)
(n−1)/2∑
κ=0

p2κµ2κ+1 := p̂0, γ̂ :=
γ(

1 + 1
γ p̂

γ
0q0λ

γ
) (30)

p̃ (t ) =
n/2∑
κ=1

1

p2κ−1

(
1 − 1

µp

)
:= p̃0 and γ̂ := γ(

1 + 1
γ p̃

γ
0q0λ

γ
) .

Using Theorem 4, we see that (29) is oscillatory if p < 1 and

p̂
γ
0λ
γ̂q0 >

(
γ

γ + 1

)γ+1
. (31)

Using Theorem 5, we see that (29) is oscillatory if

p̃
γ
0λ
γ̃q0 >

(
γ

γ + 1

)γ+1
. (32)

Remark The best-known criteria for oscillation of NDDE (29) are

q0 (1 − p)γ λ
γ/

(
1+ 1γ (1−p )

γq0λ
γ
)
>

(
γ

γ + 1

)γ+1
[see [13, Example 3]] (33)

and

q0λ
γ ln

( µ
λ

)
>
µ + pγ

eµ [see [3, Corollary 2]], (34)

for p < 1 and p > 1, respectively.
Giving values for the parameters p, µ and λ, we can determine the lower bound of the parameter q0 to ensure that
every solution of (29) is oscillatory. The following table shows the lower boundaries of the parameter q0 in different
special cases of (29) when δ = 1 by using the conditions (33) and (31):

(31) (33)
(p, λ, µ) ↓ n = 5 n = 9 n = 49 -

(2/3, 0.1, 0.755) 5.3342 5.2529 5.2474 5.30610

(0.5, 0.5, 0.830) 0.8844 0.8801 0.8799 0.88227

(0.9, 0.5, 0.900) 2.3491 1.9189 1.6857 4.41130

Let another particular case of (29), namely,

(x (t ) + 2x (µt ))′′ + q0
t 2
x

(
9

10
t

)
= 0.

The conditions (34) and (32) reduce to q0 > 6.2587 and q0 > 1.5881, respectively.
So, our results improve the related results in [3, 13].
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Remark Using the boundedness condition p1 ≤ p (t ) ≤ p2, it will be easy to infer results similar to ours if p is a
function in t .
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