Stuart Willis

and 3 more

Whole genome sequencing data allow survey of variation from across the genome, reducing the constraint of balancing genome sub-sampling with recombination rates and linkage between sampled markers and target loci. As sequencing costs decrease, low coverage whole genome sequencing of pooled or indexed-individual samples is commonly utilized to identify loci associated with phenotypes or environmental axes in non-model organisms. There are, however, relatively few publicly available bioinformatic pipelines designed explicitly to analyze these types of data, and fewer still that process the raw sequencing data, provide useful metrics of quality control, and then execute analyses. Here, we present an updated version of a bioinformatics pipeline called POOLPARTY2 that can effectively handle either pooled or indexed DNA samples and includes new features to improve computational efficiency. Using simulated data, we demonstrate the ability of our pipeline to recover segregating variants, estimate their allele frequencies accurately, and identify genomic regions harboring loci under selection. Based on the simulated data set, we benchmark the efficacy of our pipeline with another bioinformatic suite, ANGSD, and illustrate the compatibility and complementarity of these suites by using ANGSD to generate genotype likelihoods as input for identifying linkage outlier regions using alignment files and variants provided by POOLPARTY2. Finally, we apply our updated pipeline to an empirical dataset of low coverage whole genomic data from uncurated population samples of Columbia River steelhead trout (Oncorhynchus mykiss), results from which demonstrate the genomic impacts of decades of artificial selection in a prominent hatchery stock.

Stuart Willis

and 5 more

Polyploidization has played a critical role in the evolution of several major organism groups, including vertebrates, but much of our knowledge of the evolution of polyploids comes from allopolyploid and often rediploidized lineages, which partly reflects the difficulty of obtaining genotype data from polysomic genomes. We combined several contemporary methods to develop markers for single nucleotide polymorphisms compatible with simultaneous ploidy estimation and high throughput genotyping, and analyzed these data with recent software developments that accept polysomic data. We demonstrate the utility of this combination to develop genetic resources for polysomic species by applying it to the ploidy-variable and polysomic white sturgeon (Acipenser transmontanus), an imperiled species under conservation management in the Pacific Northwest. We introduce a primer and probe set for 325 SNP markers for use with the ‘Genotyping-by-thousands’ (GT-seq) method, and provide updated scripts that incorporate a function to estimate ploidy from each individual using read count data. We examine the reliability of tetrasomic inheritance in a large sample of paleo-octoploid individuals and the expected Mendelian inheritance patterns in known cross families. We then demonstrate our ability to use these data to infer parentage, relatedness, and other population genetic parameters. Our combined process thus improves the accessibility of genetic information to facilitate future investigations of white sturgeon and is expected to be widely applicable to other polyploid species.