REFERENCES
1. Balam SSK, Tamilselvi M, Mondal AK, Rajendran R. An investigation into the cracking of platinum aluminide coated directionally solidified CM247 LC high pressure nozzle guide vanes of an aero engine.Engineering Failure Analysis. 2018;94:24-32.
2. Mart, iacute, nez-Esnaola JM, et al. Crack Initiation in an Aluminide Coated Single Crystal During Thermomechanical Fatigue. In: Verrilli MJ, Castelli MG, eds. West Conshohocken, PA: ASTM International; 1996:68-81.
3. Schlesinger M, Seifert T, Preussner J. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction. International Journal of Fatigue. 2017;99:242-249.
4. Furrer D, Fecht H. Ni-based superalloys for turbine discs.JOM. 1999;51(1):14-17.
5. Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerospace Science and Technology.1999;3(8):513-523.
6. Slámečka K, Pokluda J, Kianicová M, Horníková J, Obrtlík K. Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination. Engineering Fracture Mechanics. 2013;110:459-467.
7. Rajendran R, Ganeshachar MD, Jivankumar, Mohana Rao T. Condition assessment of gas turbine blades and coatings. Engineering Failure Analysis. 2011;18(8):2104-2110.
8. Bhaumik SK, Sujata M, Venkataswamy MA, Parameswara MA. Failure of a low pressure turbine rotor blade of an aeroengine. Engineering Failure Analysis. 2006;13(8):1202-1219.
9. Nie JF, Liu ZL, Liu XM, Zhuang Z. Size effects of γ′ precipitate on the creep properties of directionally solidified nickel-base super-alloys at middle temperature. Computational Materials Science. 2009;46(2):400-406.
10. Xia PC, Yu JJ, Sun XF, Guan HR, Hu ZQ. Influence of γ′ precipitate morphology on the creep property of a directionally solidified nickel-base superalloy. Materials Science and Engineering: A.2008;476(1):39-45.
11. Rai RK, Sahu JK, Das SK, Paulose N, Fernando DC, Srivastava C. Cyclic plastic deformation behaviour of a directionally solidified nickel base superalloy at 850 °C: Damage micromechanisms.Materials Characterization. 2018;141:120-128.
12. Zhang L, Zhao LG, Roy A, Silberschmidt VV, McColvin G. Low-cycle fatigue of single crystal nickel-based superalloy – mechanical testing and TEM characterisation. Materials Science and Engineering: A.2019;744:538-547.
13. Qu S, Fu CM, Dong C, Tian JF, Zhang ZF. Failure analysis of the 1st stage blades in gas turbine engine. Engineering Failure Analysis.2013;32:292-303.
14. Salehnasab B, Poursaeidi E, Mortazavi SA, Farokhian GH. Hot corrosion failure in the first stage nozzle of a gas turbine engine.Engineering Failure Analysis. 2016;60:316-325.
15. Kumari S, Satyanarayana DVV, Srinivas M. Failure analysis of gas turbine rotor blades. Engineering Failure Analysis.2014;45:234-244.
16. Carter TJ. Common failures in gas turbine blades. Engineering Failure Analysis. 2005;12(2):237-247.
17. Salehnasab B, Poursaeidi E. Mechanism and modeling of fatigue crack initiation and propagation in the directionally solidified CM186 LC blade of a gas turbine engine. Engineering Fracture Mechanics.2020;225:106842.
18. Ralph I. Stephens AF, Robert R. Stephens, Henry O. Fuchs.Metal Fatigue in Engineering. 2nd Edition ed: Wiley 2000.
19. Sahu JK, Ravi Kumar B, Das SK, Paulose N, Mannan SL. Isothermal high temperature low cycle fatigue behavior of Nimonic-263: Influence of type I and type II hot corrosion. Materials Science and Engineering: A. 2015;622:131-138.
20. Prasad K, Sarkar R, Ghosal P, Kumar V, Sundararaman M. High temperature low cycle fatigue deformation behaviour of forged IN 718 superalloy turbine disc. Materials Science and Engineering: A.2013;568:239-245.
21. Cano S, Rodríguez JA, Rodríguez JM, et al. Detection of damage in steam turbine blades caused by low cycle and strain cycling fatigue.Engineering Failure Analysis. 2019;97:579-588.
22. Gao H, Fei C, Bai G, Ding L. Reliability-based low-cycle fatigue damage analysis for turbine blade with thermo-structural interaction.Aerospace Science and Technology. 2016;49:289-300.
23. Gustafsson D, Moverare JJ, Johansson S, et al. Influence of high temperature hold times on the fatigue crack propagation in Inconel 718.International Journal of Fatigue. 2011;33(11):1461-1469.
24. Seo SM, Kim IS, Jo CY. Low Cycle Fatigue and Fracture Behavior of Nickel-Base Superalloy CM247LC at 760°C. Materials Science Forum.2004;449-452:561-564.
25. Antolovich SD, Liu S, Baur R. Low cycle fatigue behavior of René 80 at elevated temperature. Metallurgical Transactions A.1981;12(3):473-481.
26. He Z, Zhang Y, Qiu W, Shi H-J, Gu J. Temperature effect on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy. Materials Science and Engineering: A.2016;676:246-252.
27. He L, Zheng Q, Sun X, et al. Effect of Temperature and Strain Amplitude on Dislocation Structure of M963 Superalloy during High-Temperature Low Cycle Fatigue. MATERIALS TRANSACTIONS.2006;47(1):67-71.
28. Deng W, Xu J, Hu Y, Huang Z, Jiang L. Isothermal and thermomechanical fatigue behavior of Inconel 718 superalloy.Materials Science and Engineering: A. 2019;742:813-819.
29. Kashinga RJ, Zhao LG, Silberschmidt VV, et al. Low cycle fatigue of a directionally solidified nickel-based superalloy: Testing, characterisation and modelling. Materials Science and Engineering: A. 2017;708:503-513.
30. Mukherjee S, Barat K, Sivaprasad S, Tarafder S, Kar SK. Elevated temperature low cycle fatigue behaviour of Haynes 282 and its correlation with microstructure – Effect of ageing conditions.Materials Science and Engineering: A. 2019;762:138073.
31. Rao CV, Srinivas NCS, Sastry GVS, Singh V. Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy. Materials Science and Engineering: A. 2019;765:138286.
32. K. Harris GLE, R.E. Schwer. M. Mar, 247 derivations - Cm 247 Lc Ds Alloy Cmsx single crystal alloys properties & performance, Superalloys. In: Cannon-Muskegon Corporation 1984.
33. Zhao JC, Westbrook JH. Ultrahigh-Temperature Materials for Jet Engines. MRS Bulletin. 2003;28(9):622-630.
34. Fan YS, Yang XG, Shi DQ, Han SW, Li SL. A quantitative role of rafting on low cycle fatigue behaviour of a directionally solidified Ni-based superalloy through a cross-correlated image processing method.International Journal of Fatigue. 2020;131:105305.
35. Radonovich D, Gordon AP. Methods of Extrapolating Low Cycle Fatigue Data to High Stress Amplitudes. 2008(43154):159-168.
36. Daubenspeck BR, Gordon AP. Extrapolation Techniques for Very Low Cycle Fatigue Behavior of a Ni-base Superalloy. Journal of Engineering Materials and Technology. 2011;133(2):021023-021023-021029.
37. Nagarjuna S, Srinivas M, Balasubramanian K, Sarmat DS. Effect of alloying content on high cycle fatigue behaviour of CuTi alloys.International Journal of Fatigue. 1997;19(1):51-57.
38. Lai J, Lund T, Rydén K, Gabelli A, Strandell I. The fatigue limit of bearing steels – Part I: A pragmatic approach to predict very high cycle fatigue strength. International Journal of Fatigue.2012;38:155-168.
39. Praveen KVU, Singh VJM, A MT. Effect of Cold Rolling on the Coffin–Manson Relationship in Low-Cycle Fatigue of Superalloy IN718. 2008;39(1):79-86.
40. Suresh S. Fatigue of Materials. 2 ed. Cambridge: Cambridge University Press; 1998.
41. Liu R, Zhang ZJ, Zhang P, Zhang ZF. Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: Damage mechanisms and life prediction. Acta Materialia. 2015;83:341-356.
42. Nip KH, Gardner L, Elghazouli AY. Cyclic testing and numerical modelling of carbon steel and stainless steel tubular bracing members.Engineering Structures. 2010;32(2):424-441.
43. Xue L. A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading.International Journal of Fatigue. 2008;30(10):1691-1698.
44. Kang L, Ge H. Predicting Ductile Crack Initiation of Steel Bridge Structures Due to Extremely Low-Cycle Fatigue Using Local and Non-Local Models. Journal of Earthquake Engineering. 2013;17(3):323-349.
45. Shao CW, Zhang P, Liu R, Zhang ZJ, Pang JC, Zhang ZF. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction.Acta Materialia. 2016;103:781-795.
46. Miao J, Pollock TM, Wayne Jones J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature.Acta Materialia. 2009;57(20):5964-5974.
47. Wang XG, Liu JL, Jin T, et al. Deformation mechanisms of a nickel-based single-crystal superalloy during low-cycle fatigue at different temperatures. Scripta Materialia. 2015;99:57-60.
48. Plumbridge WJ, Dalski ME, Castle PJ. HIGH STRAIN FATIGUE OF A TYPE 316 STAINLESS STEEL. Fatigue & Fracture of Engineering Materials & Structures. 1980;3(2):177-188.