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ABSTRACT

In this paper, for the first time, the distributed order time-fractional forced
Korteweg-de Vries equation is studied. We use a numerical method based on the
shifted Legendre operational matrix of distributed order fractional derivative with
Tau method to find approximate solution of distributed order forced Korteweg-de
Vries equation. This shifted Legendre operational matrix of distributed order frac-
tional derivative with Tau method are used to reduce the solution of the distributed
order time-fractional forced Korteweg-de Vries equations to a system of algebraic
equations. An error analysis and convergence are obtained. Finally, to display the
applicability and validity of the numerical method some examples are implemented.
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1. Introduction

In 1870 for the first time Korteweg-de Vries (KdV) equation was derived by Boussi-
nesq [13] and then in 1895 by Korteweg and de Vries [11], as a pattern for long-crested
small-amplitude long waves propagating on the surface of water. The same partial
differential equation (PDE) works as a pattern for unidirectional propagation of waves
in a diversity of physical systems. In the last century, the study and discussion of these
kinds of waves, somewhen called solitons, has expanded into a wealthy region of inves-
tigation in physics [9, 10, 26, 27, 48, 64], applied mathematics [11, 35], electrochemistry
[46], optimal mobile sensing [59] and biosciences [44].

Free surface waves of a two-dimensional channel flow for an inviscid incompressible
fluid model have been studied when the rigid bottom of the channel has some obstacles
[17, 64]. This free surface waves of shallow water with obstacles can be shaped by the
forced Korteweg-de Vries (fKdV) equations [19, 20, 55, 61].

In 2003 by Pelinovsky et al. [61] a differential equation of Tsunami propagation
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equation was defined as:

M+ e+ anng + Blree = fz ) (1)
—~ =~ =~ S~

n(z,t) c%(gh)% a= 23100 ﬁ:gh% f:%“z(g:,t)

where fi(z,t) # 0 in Eq. (1) is called forcing part and the parameters 7, z, h, ¢, g in
Eq. (1) are difined in Table 1. In this paper we consider two cases for function f,(x,1)
in (1) as follows:

i) If fo(z,t) =0, then Eq. (1) is called the KdV equation. Also, in this case the KdV
equation is completely integrable.

ii) If fy(z,t) # 0, then Eq. (1) is called the fKdV equation or the KAV equation with
forcing part. Also, in this case Eq. (1) is difficult to be integrable.

In this paper, we consider a fKdV equation as follows:
ug(x,t) + u(z, t)ug(x,t) + Pugee(z,t) = afy(x,t), (2)

where the Eq. (2) is an other model by putting u(z,t) = ¢ + an(z,t). The Eq.(2) is a
other model in explaining the governing equations for the fundamental hydrodynamic
form of Tsunami generation, for instance, by atmospheric disturbance [8, 31] and
different forms of these kind of equations are displayed in [23, 50]. The numerical and
analytical solutions for the fKdV equations are surveyed when one bump or two bumps
are given as forcing, that their are in the form of sech? or sech* functions [16]. In [31]
by giving different values to the function f(x,t) the analytical solutions for these type
equations were obtained that these solutions were the soliton solutions. In this paper

Table 1. Definitions of parameters for the Eq. (1).

n(x,t) | elevation of free water surface
z(x,t) solid bottom

h mean water depth

c measure wave speed

g gravity acceleration

we focus on the following distributed order time fractional fKdV equation:

D u(x, t) + u(z, t)uy(z,t) + Buges(z,t) = afs(z,t),
u(x,0) = up(z), = € (0,1), (3)
u(0,1) = tho(t),
u(1,t) = i(t), ua(1,t) =n(t), t €(0,1),

where D}'u(z,t) is defined by:

1
Dfu(x,t) = /Q(/,L)”Dfu(x,t)d,u, (4)
0

where o(p) > 0 in Eq. (4) shows the fractional order weight function and

1
/0 o(p)du =K, K > 0. (5)
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In Eq. (4), D}u(z,t) denotes the Caputo fractional derivative of order u, such that
n—1<pu<n,n €N and it’s given by [49]:

1 t 1y dn
Dl u(x, t) = { T(n—p) Jo(t —d:)n ru(e,T)dT, n—1<p<n,

6

WU(ZL’,I&), n=mn, ( )
where T'(.) is the Gamma function. In this paper, we use a numerical method based
on the shifted Legendre operational matrix of distributed order fractional derivative
with Tau method to obtain the numerical solution of Eq. (3). One of the reasons
that caused we used the numerical approach to obtain the approximate solutions
of this type equation is that for them we are obtained the best approximation for
solutions by numerical model and other are important applications of these equations
in physical phenomena and engineering sciences, for example, nonlinear progressive
waves [38], free oscillations of self excited systems [39], magnetohydrodynamic flows of
non-Newtonian fluids [40], transcritical flow over obstacles and holes [24], geostrophic
turbulence [29], superthermal plasmas [7] and unmagnetized collisional dusty plasma
[43]. Numerous papers were investigated about the solutions of forced Korteweg-de
Vries equations using numerical methods and analytical techniques, for instance, the
homotopy analysis technique [32], the decomposition technique [60], an approximate
analytical based on the differential transform technique [36], the variational iteration
technique [25], the reduced differential transform technique [52], the finite difference
method [62], the lattice Boltzmann technique [65], the semi-implicit finite difference
scheme [41], the homogeneous balance scheme [12] and the multiple-scale perturbation
method [28]. The fractional differential equations (FDEs) of distributed order can serve
as a normal extension of the single order and multi-term FDEs. This FDEs rise in the
designing of different physics and engineering models, for example, viscoelasticity and
wave model [37]. Caputo [15] applied the fractional derivatives of distributed order
to popularize the stress-strain relation in dielectrics. Chechkin [14] used the kinetic
explanation of anomalous diffusion and relaxation model. Atanackovic [3] presented a
derivative model of distributed order for the viscoelastic model by putting the finite
sums with integrals in the domain of orders. According to this model, Atanackovic
has studied the various equations as the fractional equation oscillator of distributed
order [4] and the fractional wave equation of distributed order [5, 6]. While many
numerical methods have been used to obtain the solutions of FDEs [34, 47, 57, 58],
there has been fewer work into the survey of FDEs of distributed order. Most of FDEs
of distributed order do not have exact solutions, so to get solutions of these type
of equations numerical methods must be applied, for example, Kharazmi et al. [33]
studied the Petrov-Galerkin and spectral collocation methods to solve the FDEs of
distributed order, Abbaszadeh et al. [2] used an improved meshless method, Dehghan
et al. [18] provided a Legendre spectral element method to obtain the solutions of the
neutral delay distributed-order fractional damped diffusion-wave equation, Morgado
et al. [42] presented a Chebyshev collocation method to solve the diffusion equations of
distributed order and Gorenflo et al. [22] used the Laplace and Fourier transforms to
solve the distributed order time-fractional diffusion-wave equation. For this purpose,
this article is divided into eight Sections. In Section 2 the lemmas and important
definitions are introduced. Also, in this Section we expressed the property of Legendre
and shifted Legendre polynomials. In Section 3 the approximation function is obtained.
In Section 4, by using the approximation function obtained in Section 3, we solve the
equation introduced by (3). For the proposed method in this paper, the error estimate



is established in Section 5. In Section 6, the convergence analyses is given. Illustrative
examples are displayed in Section 7. A brief conclusions is written in Section 8.

2. Preliminaries

In this section, we introduce some fundamental definitions, lemmas and properties of
Legendre polynomials which are next applied in this paper.

Definition 2.1. The Legendre polynomial L, (x) of degree n are given by a recurrence
formula as follows [56]:

1
n+1

n

Lo (z) = (1 o 1)3:Ln(x) - (1 - )Ln,l(x),x e [-1,1], (7)

Lo(z)=1,Li(z) =2z, n=1,2,....
Also, the Legendre polynomial of degree n is displayed with a finite series as:

ntk—1

Lp(z) = 2”271:(2)( 2 )xk (8)

k=0

Definition 2.2. Let L,(z) be the Legendre polynomial. Then the shifted Legendre
polynomial of degree n on the interval [0, 1] are difined with the following recurrence
formula [56]:

Baaly) = VO 1

]PO(y) = 17P1(y) = 2y - 17

where P, (y) = L,(2y —1). The shifted Legendre polynomial of degree n is shown with
a finite series as:

n

Po(y) = ;(_1)%%7 (10)

and the orthogonal conditions for the shifted Legendre polynomial is given by:
1 1 =3
Pi(y)Pi(y)dy = < 2417 11
| rwrwa = { w2 )
Lemma 2.3. Let &€ > [u],&€ € N. Then Dt is given in [49] as:

0, §<[ul,
DI = I(e+1 _ (12)
t { p(g(Jril,)u)’tg Hog > [ul,

also for &€ =0, we have DI't¢ = 0.



Lemma 2.4. For any integrable function H(t),t € (v1,12), the following relation holds

[30]:
Vo s
/ H(dt ~ 3 W H(S,), (13)
V1 p=0
where 0y, p=0,...,s are the Legendre-Gauss quadrature nodes and Wy, p=10,...,s

are the weight functions which are given by:

Vo — 11 vy + 11

517 - 2 gp 2 ) (14)
vy — V1
W, = 3
(1=3) [z
where g5, p=1,2,..., 8 are the various roots of Ls(x).

3. Approximation function

For any function u(z,t) € L?[0,1] x [0, 1], we approximate the function u(z,t) with
the following infinite series:

ZZul LP ()P, (1) (15)

1;=01>=0

By multiplying Eq. (15) in P;(z)P;(¢) and integration from both sides, we obtain:

u(z, t)P; (Z Z g, 1,1, ()P, ( ))]P’ ()P (1),

ll—O l2—0

/Ol/olu(az,t)]Pi() t)dadt = // Z;H;UHQPZI

P, (t))Pi(m)IP’j (t)dadt. (16)

By using Eq. (11) into Eq. (16), we have:
1 1 ) )
/0 / w(e, OP )P (dedt = iy | Pi(a) 2ol P (8) 1201

1 wij
/O/Ou(x,t)m(xmj(t)dxdt - GG (17)

thus,

1 1
gy = (20 4+ 1)(2) + 1) /0 /0 (e, )P ()P, (t)dadt, (18)



where the coefficients w;; are calculated. To approximate the fKdV equation, we use
the first n + 1 sentences of the series (15), then we have:

w(@,t) =t = Y Y, Py ()P, (1) = T(H) T (), (19)

l1:0 12:0

where ®(z) = [Po(),P1(z),...,Pa(x)]",®(t) = [Po(t),Pi(t), ..., Pa(z)]” and T =

(ul 12> such that the coefficients w;; for ¢ = 0,...,n, j =0,...,n, of Eq.
(n+1)x(n+1)
(19) are calculated.

Theorem 3.1. [58] Suppose ®(z) = [IP’O(:L‘),IP’l(a:),...,Pn(x)]T. Then the integer
derivative of vector ®(x) is given by :

D’f(@(x)) - [D(l)r@(x), (=1,2,..., (20)

where DY = dd—; and D = 6,.; is an operational matriz which is given by:

[=1,3,...,n, n s odd,
2(2s 4+ 1), S‘Fl—r’{l:l,?,,_..,n—l, n s even, (21)
0, otherwise.

ers —

Theorem 3.2. [57] Let ®(t) = [Po(t),]P’l(t),...,IP’n(t)]T. Then for 0 < p <1, we
have:

DLD(t) = PWo(1), (22)
where PW s given as:
_ . . . ]
0 0 0
[1] [1] ]
il €ror Xilpn € o Xl Eulng
P = : : : (23)
D G0 Xipu Sl D= Sind
Y [ $n.0. POy ru] §n.Ll Dt Snanid
where
j . . .
. — 1)ttt i+ DG+ )
Gju=25+1)> (=1 (i + D' +29) (24)

S (=D = p+ )G =0+ —p+ 1)



Theorem 3.3. Let ®(t) = [IP’O(t),IP’l(t), . ,IP’n(t)]T. Then for 0 < u <1, the follow-
ing formula holds:

DD (t) = PO d(t), (25)

where PO») = > p=0 W,0(8,) P,

Proof. Using Egs. (4) and (22), we have:

1 1
D a(t) = /0 o) e(t)dp = /0 o P ) (1), (26)

by applying Eq. (22), we obtain:
DED(t (Zw 0(6,) P ) (t) = POI(1), (27)
where P (%) = 0 Wpo(d ,)P%). So, the desired result is proved. O

4. The proposed method to solve the fKdV of distributed order
In this section, we use the operational matrix that is presented in Eq. (25) to solve the

fKdV of distributed order. To solve Eq. (3), we use a direct computational method as
[21, 42]. Then, we approximate the function f,(x,t) as

Z Z fo)uP (2)Py, () = @1 () Fe (), (28)

l1—0 12—0

where F'is a known matrix. Applaying Egs. (19), (20) and (28) into Eq. (3), we obtain:

( / 1 g(u)@f@T(t)d/L)T(I)(x) + o7 ()Y ®(2)dT (1) YDV ()
0
+ 83T () TDO®(2) ~ adT (1) FD(z:), (29)

so, using Eq. (25). we obtain:

T ()P TD () + T (8)YD(2)dT (1) Y DV ()
+ 83T () YDO®(z) — ad” () FO(z) ~ 0. (30)

Using Eq. (30) and it can be written the residual function Resp,(z,t) for Eq. (3) as:

Resp(x,t) = &7 (1) [POIYT + Y& (2)dT (1) Y DY + TDG) — oF | ®(2)
= T (YHD(x), (31)



where H = [75(5P)T+T<I>(x)<I>T(t)TD(1) +BYD®) —aF|. Applying the Tau technique,

we can create n(n — 1) linear algebraic systems as:
Hrs=0,r=0,....n—1, s=0,...,n—2. (32)

Also, by substituting Eq. (19) into the initial and boundary conditions of Eq. (3), we
obtain:

t)T(0) = ¢o(t), (33)

here, the roots of P, are applied as a collocation points. We can solve this system
for Y. Then the function u(z,t) in Eq. (19) is obtained.

5. Error estimate

In the real world problems, that we usually don’t have the information of the exact
solution, it is significant to have an error estimate. In this section, we determine an
appropriate bound for Resy which is obtained by the proposed method and it’s defined
as:

Resn(u(x.1)) = 3 Wyo(8,)(D)"u(z, 1))y
p=0
+ un(z,t) (ug(z, t)) N + Buges(z,t)) N — a(fz(z, t)) N, (34)

where upy(z,t) is the N'* approximation solution of w(z,t), (uz(z,t))y and
(tgee(x,t)) N are the N approximation solution of ug(x,t) and .. (z,t), respec-
tively.

Theorem 5.1. [/5] Let uy(x,t) is the N approzimation solution of u(z,t) that is
given by un (z,t) = 27]:[:0 Z%:o A P ()P (1), also assume u(x,t) be the sufficiently
smooth function. Then, we have:

A1

[ u(z,t) —un(z,t) [[2< (N )12+ € (

0,1), (35)

where A1 18 a constant.

Theorem 5.2. [/9] Let (Dfu(x,t))y be the approzimation of Diu(x,t) such that

a;;(gt’?\ < Ao, that X9 is a constant. Then, we have:

3\
(2N —3)I'(2 —

I DFu(e, t) — (Dfulw, D)n ll2< g 0 HE (0,1). (36)



Theorem 5.3. [51] Let (M)N be the approrimation of WUT(f’t), such that

ox™
4
%t?é)%| < A3, that A3 is a real positive constant. Then, we have:

H Ou(z,t) (8”u(a:,t)) I2< o2
oz oz 2= 65536

(37)

where © = F3(52 + N) and F,(t) is the polygamma function which is given in [54].
Theorem 5.4. [51] Let (%)N be the approximation of 83;;;§7t)} such that

88t1§g;?| < A4, that A4 is a real positive constant. Then, we have:

H OBu(x,t) B (83u(x,t)) 2< PVICE
03 ox3 NV 12= Gr536°

(38)

We consider the following functions:

1
Li(u(x,t)) = /0 o(pw) D u(z, t)dp + u(z, t)ug(z,t)
+ Buxm(m t) — afz(z,t), (39)
ZWPQ 33 u(z,t)
+ UN(% ) (ug(x,1))N + B(ueae (2, )N — a(fe(z,t))N- (40)
Suppose L1 (u(x,t)) — La(u(z,t)) = P(s,x,t). Then, as showed in [42], P(s,z,t) is the

error for applying s point Legendre-Gauss quadrature relation that error for ¢ € [0, 1]
is given by:

( ')482SZ("E¢,§) 82SZ((E,t,§)
P(S . t) _ S s ~ ou?s . (41)
Y (2s+1)((2s))* — 4s

Here, we consider Z(z,t,¢) = o(p)D4u(x,t). If Z(x,t,5) € C?5([0,1]), we obtain:

2SZ t
HPsxtHQ// P(s,z,t) |* dedt = //425 af”g)|2ddt

- 42s (42)

where \ = max{ | % |, z €[0,1], t € [0,1], p € [0, 1]} Thus, using Eq. (34)



and (40), we obtain:
| 52( (z,1)) — Resy (u(z, 1)) |2
| prg [@ (e, t) — (@fpu(x,t))N]

+ (u (x t)ug(z,t) — un (2, ) (ue (2, 1)) N) + B(Uaza (1) — (U (T, 1)) N)
- a(fz(xat) - (fa&(m?t))N) H2

< prg@p) [Fu(, 1) — (@ ulz, )] Il

+ |l (93 t)u (2,t) = un (@, 1) (uz (2, )N 2+ [| Buae(@,) = (taze (@, 1))N) [|2
+ (fx(fv t) = (falz, 1)) |2

(
<> W06 [P uta, ) — (D u(z. )] I
p=0

+ H uN(x7t)(u$(x’t) - (ux(x,t))N) ”2 + H (u(x,t) - UN(xvt))uﬂC(x7t) H2
+ || Bugas(z,t) — (Uawa(z,t))N) |2
+ | el falz, t) = (folz, 0)n) ll2 - (43)

Using Holder inequality for Eq. (43), we obtain:

| £atu(z. ) = Resw(u(z.t) I
<HZWp@ ) [ u(e,t) — (@ u(z, H)x] Iz

+ |l UN($ t) lloll ua(@,t) = (ua(@, O)) N ll2 + || ua(z,?) |2l w(z,t) —un(z,t) |2
+ || B(uzaa(w,t) — (Uzza(z, ) N) |2
+ [ a(fa(z,t) = (fa(z, 0))N) |2 - (44)

Let ug(z,t) = > 020> o0 o GnmPr(2)Pp(t), since [Py(z)] < 1, |Pn(t)] < 1, n =
0,1,..., m=20,1,..., then, we obtain:

| ua(@,t) [loo =l Z Z GnmPr (@) P (t) [loo

n=0m=0

<> anml, (45)

n=0m=0
applying Theorem 5.3 for a,,, in [51], we have:

(| < 3K
a
"= 8(2n — 3)2(2m — 3)2]

10



then,

Huxthoo<ZZ 2m 32

nOmO

N /0 /o 8(2z — 3)2(2y —apdedy = % (47)
lustet) I = [ | 1 / o)l

1 1 2 % K
<| | ae,t) % dadt]* <Jluala, 1) oo 520 (48)
o Jo 96

Hence,

Also, using Theorem 5.3 for aym, in [51], we obtain:

e ||2—/ / IS o @)Po) s

n=0m=0

K2
_ZZ 2n—|—1 2m—|—1 Zzﬁun— A(2m — 3)1’ (49)

nOmO

taking the squared root of both sides of Eq. (49), we obtain:

K2

|l un(@,t) fl2< 2264 — Tam 3 (50)

Then, by employing theorems 5.1, 5.2, 5.3 and 5.4 on Eq. (44), also using Eqs. (48)
and (50) on Eq. (44), we obtain:

| La(u(z,t)) = Resn (u(z,1)) |2

N K2 250

N
3hesK1 K
2811 K2 + Z

~ 8(2N - 3)I'(2 = — 64(2n — 3)4(2m — 3)* /65536
K\ pVIC)
* 96(N + 1)122N+1 + 161 65536
A6©
+ o , 51
| ’\/ 65536 (51
where in Eq. (51), K;, Ky are considered K1 = max{|W,, p = 1,2,..., s|} and
Ky = max{|o(dp), p=1,2,..., s|} respectively. Thus, using Eqs. (42) and (51), we

11



obtain a suitable bound for the function || Resy(u(z,t)) |2, then we have:

I Resn (u(z, 1)) |2 =[1 0 = Resn (u(, 1)) [la=] L1(u(z,t)) — Resn (u(z, 1)) |2
<|| Li(u(z,t)) = La(u(z, 1)) [l2 + || L2(u(z, 1)) — Resy (u(z, 1)) |2
< L7T2 4 3)\QSK1K2
= 42 T 8(2N —3)[(2 — p)

Z Z K? A50 n KX\
64(2n — 3)4(2m — 3)* /65536  96(N + 1)!122N+1

T 1510 \o o rﬂ (52)
V65536 V65536

Then, we obtain the required result for || Resy(u(x,t)) ||o.

6. Convergence analysis

In this section, we study convergence of shifted Legendre polynomial bases. Applying
discussion similar to the ones used in [53] and we prove the convergence of the series
of shifted Legendre polynomial. To prove convergence, we show that the sequence of
partial sums uy(z,t) = 2711\7:0 Z%:o AnmPr (2)Pp,(t) is a Cauchy sequence in Hilbert

space L2<[0, 1] x [0, 1]) Then, for N > N, we obtain:

Il un (2, t) = ug(z,t) |13

N N
=1 Y Y tumPul@)B() |13

n= N+1m N+1

- Z Z 2n+ 2m+1)

n= N+1m N+l

Z Z (2n+1 2m +1) (53)

n=N+1m=N+1

IN

By using Theorem 5.3 for ay,, in [51] of Eq. (53), we have:

K2
| un (2, t) —ug(z,t) |5 < Z Z 64(2n — 3)4(2m — 3)*

n=N+1m=N+1

K? dx * d
N 964(/N+1 (22 — 3)4> (/NH (2y —y3)4>

K2

= 256028 — 1) (54)

Thus, || un(z,t) — ug(z,t) [|3— 0 as N, N — oo, that this show the sequence of

partial sums uy(z,t) is a Cauchy sequence in Hilbert space L2<[O, 1] x [0, 1]) and it

12



converges to say Z. To complete the proof, we show that u(t) = =, then we have:
(E = (@, 1), Pa(@)P(t)) = (2, Pa(@)Pr(t) — (u(z, £), Po(z)Pon(t))
lim <uN(:L'a t a]P)n(x)Pm(t» — Gpm
N—oo
Anm — G, = 0. (55)

Then upy(z,t) converges to u(z,t) as N — co.

7. Illustrative examples

In this section, to present the efficiency and accuracy of the numerical method showed
in this paper, we consider some numerical examples of fKdV equation. The values of
the absolute errors are calculated as below:

Epn(z,t) = |u(z,t) — upn(z,t)], 1€ (0,1], (56)

where u(x,t) is the exact solution and uy,(z,t) is the approximate solution which is
obtained by the proposed numerical method.

Table 2. Absolute error results for example 7.1 at s = 20.

(x,t) Eso 50 E100,100 E150,150 E200,200

( ) | 1.3379¢ — 07 | 6.7569¢ — 08 | 2.5423e¢ — 08 | 8.4884¢ — 09
( ) | 1.3370e — 07 | 6.7523e — 08 | 2.5405e¢ — 08 | 8.4825¢ — 09
(0.4,0.5) | 1.3322e — 07 | 6.7281e — 08 | 2.5314e — 08 | 8.4521e — 09
( )

( )

1.3235¢ — 07 | 6.6843e — 08 | 2.5150e — 08 | 8.3971e — 09
1.3111e — 07 | 6.6215e — 08 | 2.4913e — 08 | 8.3182e — 09
(1,0.9) | 1.2844e — 07 | 6.4870e — 08 | 2.4407e — 08 | 8.1492¢ — 09

Example 7.1. Consider the following distributed order KdV equation on the interval
(x,t) € [0,1] x [0,1]:

1
/ F(g — ) D u(z, t)dp + u(x, t)ug (2, ) + Ugee(z,t) = 0,
0
u(z,0) = 12k2sech?(kx — xg), = € (0,1), (57)
u(0,t) = 0,

u(1,t) = uz(1,t) =0, t € (0,1).

The exact solution for this problem is u(x,t) = 12x%sech?(kz—4r3t—x0) which is given
in [1]. We consider k = 0.3 and 2y = 0, and compute the approximate solution on the
intervals z € [0,1] and t € [0, 1], respectively. A surface diagram of this approximate
solution is drawn in Fig. 1 with parameters n = 100 and p = 0.5,0.75,0.85,0.99. The
absolute errors for this problem are reported in Table 2 and is drawn in Fig. 2. Fig.
3, shows the behaviour of the approximate and exact solutions for different values of
i at t = 0.5. Also, the behavior of velocity field is shown for an approximate solution
of this problem for different values of p with n = 100 in Fig. 4.
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(a) Surfaces of the approximate solution for y = 0.5,0.75 and n = 100.

11=0.85 11=0.99

(b) Surfaces of the approximate solution for = 0.85,0.99 and n = 100.

Figure 1. Diagrams of the approximate solution for Ex. 7.1 with different values of p and n = 100 .
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(b) Surfaces of the absolute error for n = 150, 200.

Figure 2. Plots of the absolute error for Ex. 7.1 at n = 50, 100, 150, 200 .
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Figure 3. Approximate solution for Ex. 7.1 at different values of p and ¢t = 0.5.

Table 3. Absolute error results for example 7.2 at s = 20.
(z,1) Es0.50 FE100,100 E150,150 FE200,200

(0.1,0.2) | 1.4394e — 07 | 7.2696e — 08 | 2.7352¢ — 08 | 9.1324¢ — 09
(0.2,0.3) | 1.9751e — 07 | 9.9753e — 08 | 3.7532¢ — 08 | 1.2531e — 08
(0.4,0.5) | 3.3676e — 07 | 1.7008¢ — 07 | 6.3992¢ — 08 | 2.1366¢ — 08
(0.6,0.7) | 5.3074e — 07 | 2.6805¢ — 07 | 1.0085¢ — 07 | 3.3673e¢ — 08
(0.8,0.9) | 7.9744e — 07 | 4.0274e — 07 | 1.5153e — 07 | 5.0594e — 08

(1,0.9) | 9.5797e — 07 | 4.8382¢ — 07 | 1.8204e — 07 | 6.0779¢ — 08

Example 7.2. Consider the distributed order fKdV equation as follows:

1
/0 F(g — )@ u(z, t)du — 6u(z, t)ug(z,t) + Uzee(x, t) = sin(z),
2e”
u(z,0) = —ma z € (0,1), (58)
u(0,t) =0,
u(1l,t) = ugy(1,¢) =0, t > 0.

This example is solved using the proposed method and the obtained solution for this
problem is excited by the forcing source f(xz,t) = —cos(x). Fig. 5 illustrates the
approximate solution of Eq. (58) with different values of p and n. In Table. 3, we
report the absolute errors obtained with the proposed method for this problem with
different values of p and n and is illustrated in Fig. 6. Fig. 7, shows the behaviour
of the approximate and exact solutions for different values of p at t = 0.5. Also, the
behavior of velocity field is ploted for an approximate solution of this problem for

16
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(a) Surfaces of the approximate solution for y = 0.5,0.75 and n = 100.

11=0.85 14=0.99
|

(b) Surfaces of the approximate solution for = 0.85,0.99 and n = 100.

Figure 5. Diagrams of the approximate solution for Ex. 7.2 with different values of p and n = 100 .
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(b) Surfaces of the absolute error for n = 150, 200.

Figure 6. Plots of the absolute error for Ex. 7.2 at n = 50, 100, 150, 200.
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Figure 7. Approximate solution for Ex. 7.2 at different values of p and ¢t = 0.5.

different values of p with n = 100 in Fig. 8.

8. Conclusions

In this paper, we have studied the distributed order time-fractional forced Korteweg-de
Vries equation. A numerical method based on the shifted Legendre operational matrix
of distributed order fractional derivative with Tau method to find approximate solution
of distributed order forced Korteweg-de Vries equation is presented. Convergence and
error analysis are investigated. Also, some numerical examples are displayed, to show
the accuracy and precision of the provided numerical method.
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