REFERENCES
Canty, A. & Ripley B. (2019). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-22.
Backus E.A., Serrano M.S. & Ranger C.M. (2005). Mechanisms of hopper burn: an overview of insect taxonomy, behavior, and physiology. Annual Review of Entomology , 50, 125–151.
Baluska F., Volkmann D. & Menzel D. (2005). Plant synapses: actin-based domains for cell-to-cell communication. Trends in Plant Science , London, v. 10, p. 106111.
Brenner E.D., Stahlberg R., Mancuso S., Vivanco J., Baluska F., Van Volkenburg E. (2006). Plant neurobiology: an integrated view of plant signaling. Trends in Plant Science , 11, 413-419.
Bricchi I., Leitner M., Foti M., Mithöfer A., Boland W. & Maffei M.E. (2010). Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: early signaling and volatile emission in Lima bean (Phaseolus lunatus L .). Planta , 232, 719-729
Bonaventure G., VanDoorn A. & Baldwin I.T. (2011). Herbivore-associated elicitors: FAC signaling and metabolism. Trends in Plant Science , 16, 294–299.
Davies E. & Stankovic B. (2006). Electrical signals, the cytoskeleton and gene expression: a hypothesis on the coherence of the cellular responses to environmental insult. In: Baluska F, Mancuso S, Volkmann D. (Eds.), Communication in Plants. Springer, Berlin, Heidelberg, New York, pp. 309–320.
Demidchik V. & Shabala S. (2018). Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated‘ROS-Ca2þHub’. Functional Plant Biol ogy, 45, 9e27. https://doi.org/10.1071/FP16420.
Dziubinska H., Trebacz K. & Zawadzki T. (2001). Transmission route for action potentials and variation potentials in Helianthus annuus L.Jounal of Plant Physiology , 158, 1167–1172.
Dziubinska H., Filek M., Koscielniak J. & Trebacz K. (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. Journal of Plant Physiology , 160, 1203–1210.
Ebel J. & Mithofer A. (1998). Early events in the elicitation of plant defence. Planta , 206, 335–348.
Evert R.F. (1982). Sieve-tube structure in relation to function. Bioscience , 32, 789–795
Gallé A., Lautner S., Flexas J. & Fromm J. (2015). Environmental stimuli and physiological responses: The current view on electrical signalling, Environmental and Experimental Botany , 114, 15-21.
Hagenbucher S., Wackers F.L., Wettstein F.E., Olson D.M. & Ruberson J.R. (2013). Pest trade-offs in technology: reduced damage by caterpillars in Bt cotton benefits aphids. Proceedings of the Royal Society B: Biological Sciences , 280, http://doi.org/10.1098/rspb.2013.0042
Hilker M. & Schmülling T. (2019). Stress priming, memory, and signalling in plants. Physiologia Plantarum , 42: 753–761.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S. & Kopka, J. (2016). Priming and memory of stress responses in organ-isms lacking a nervous system. Biological Reviews , 91, 1118–1133
Knoblauch M. & van Bel A.J.E. (1998). Sieve tubes in action.Plant Cell , 10, 35–50.
Lautner S, Grams TE, Matyssek R, Fromm J. (2005). Characteristics of electrical signals in poplar and responses in photosynthesis. Plant of Physiology , 138, 2200–2209.
Lenth R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.5. https://CRAN.R-project.org/package=emmeans
Liu X.D., Zhai B.P., Zhang X.X. & Zong J.M. (2005). I mpact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecological Entomology , 30, 307-315.
Maffei M.E., Mithöfer A. & Boland W. (2007). Before gene expression: early events in plant-insect interaction. Trends Plant Science , 12, 310–316.
Maffei M., Bossi S., Spiteller D., Mithofer A. & Boland W. (2004). Effects of feeding Spodoptera littoralis on lima bean leaves. I. Membrane potentials, intracellular calcium variations, oral secretions, and regurgitate components.Plant of Physiology , 134, 1752– 1762.
Maischak H., Grigoriev P.A., Vogel H., Boland W. & Mithofer A. (2007). Oral secretions from herbivorous lepidopteran larvae exhibit ion channel-forming activities. http://doi.org/10.1016/j.febslet.2007.01.067.
Malaquias J.B., Ramalho F.S., Dias C., Brugger B., Lira A., Wilcken C., Pachú J.K.S & Zanúncio J. (2017a). Multivariate approach to quantitative analysis of Aphis gossypiiGlover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings. Scientific Reports,https://doi.org/10.1038/srep41740
Malaquias, J.B., Godoy W.A.C., Garcia A.G., Ramalho F.S. & Omoto C. (2017b). Larval dispersal of Spodoptera frugiperda strains on Bt cotton: a model for understanding resistance evolution and consequences for its management. Scientific Reports , https://doi.org/10.1038/s41598-017-16094-x
Malaquias, J.B., Caprio M.A., Godoy W.A.C., Omoto C., Ramalho F.S. & Pachú J.K.S. (2020). Experimental and theoretical landscape influences on Spodoptera frugiperda movement and resistance evolution in contaminated refuge areas of Bt cotton. Journal of Pest Science , 93: 329-340
Martinez‐Medina A., Flors V., Heil M., Mauch‐Mani B., Pieterse C. M. J., Ton, J., … & Conrath, U. (2016). Recognizing plant defense priming. Trends in Plant Science , 21, 818–822
Mithofer A., Boland W., Maffei M.E. (2009a). Chemical ecology of plant-insect interactions. In: Parker J (ed) Molecular aspects of plant disease resistance. Wiley-Blackwell, Chirchester.
Moral R.A., Hinde J. & Demétrio C.G.B. (2017). “Half-Normal Plots and Overdispersed Models in R: The hnp Package. Journal of Statistical Software , 81(10): 1-23.
Mousavi S.A., Chauvin A., Pascaud F., Kellenberger S. & Farmer E.E. (2013). Gluta-mate receptor-like genes mediate leaf-to-leaf wound signalling. Nature , 500,422e426. https://doi.org/10.1038/nature12478.
Pachu J.K.S., Macedo F.C.O., Silva F.B., Malaquias J.B., Ramalho F.S., Oliveira R.F. & Godoy W.A.C. (2020). Imidacloprid-Mediated Stress on non-Bt and Bt Cotton, Aphid and Ladybug Interaction: Approaches Based on Fluorescence, Dark Respiration and Plant Electrophysiology and Insect Behaviour. Chemosphere , 10, 127561. https://doi.org/10.1016/j.chemosphere.2020.127561
Pearce G., Strydom D., Johnson S. & Ryan C.A. (1991). A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science , 253, 895-898.
Pelagio-Flores R., Ortíz-Castro R., Méndez-Bravo A., Macías-Rodriguez L. & López-Bucio J. (2011). Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant and Cell Physiology , 52: 490-508.
Schulz A. (1998). The phloem. Structure related to function. Progress in Botany , 59, 429–475.
Shabala S. (2006). Non-invasive microelectrode ion flux measurements in plant stress physiology. In Plant Electrophysiology – Theory and Methods (Volkov, A., ed.), pp. 35–71, Springer-Verlag
Stahlberg R., Cleland R.E. & Van Volkenburgh E. (2006). Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communications in plants.
Toyota M., Spencer D., Sawai-Toyota S., Jiaqi W., Zhang T., Koo A.J., Howe G.A. & Gilroy S, (2018). Glutamate triggers long-distance, calcium-based plant defense signaling. Science , 361: 1112e1115. https://doi.org/10.1126/science.aat774.
Udikeri S., Patil V., Basavanagoud K., Khadi M., Kulkarni A. & Vamadevaiah M. (2012). Impact of Bt transgenic cotton on population dynamics of aphids and natural enemies.Indian Journal Agricultural Science , 82, 555-560.
Venables W.N. & Ripley B.D. (2002). Modern Applied Statistics with S. Fourth Edition. Springer, New York. ISBN 0-387-95457-0
Vodeneev V., Akinchits E. & Sukhov V. (2015). Variation potential in higher plants: mechanisms of generation and propagation. Plant Signaling & Behavior , 10 https://doi.org/10.1080/15592324.2015.1057365e1057365.
Vodeneev V., Mudrilov M., Akinchits E., Balalaeva I. & Sukhov V. (2018). Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus. Functional Plant Biol ogy 45, 160e170. https://doi.org/10.1071/FP16342.
Wu J. & Baldwin I.T. (2010). New insights into plants responses to the attack from insect herbivores.Annual Review of Genetics 44,1, 1-24.
Zawadzki T., Dziubinska H. & Davies H. (1995). Characteristics of action potentials generated spontaneously in Helianthus annuus . Physiologia Plantarum , 93, 291-297.
Zebelo S.A. & Maffei M.E. (2015). Role of early signalling events in plant– insect interactions. Journal of Experimental Botany , 66, 435–448.
Zhao Y., Zhang S., Luo J.Y., Wang C.Y., Lv L.M., Wang X.P., Cui J. & Le C.L. (2016). Bt proteins Cry1Ah and Cry2Ab do not affect cotton aphid Aphis gossypii and ladybeetle Propylea japonica . Scientific Reports , 6, https://doi.org/10.1038/srep20368
Zhu-Salzman K., Luthe D.S. & Felton G.W. (2008). Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant of Physiology , 146, 852–858.
Zimmermann M.R., Maischak H., Mithoefer A., Boland W. & Felle H.H. (2009). System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding. Plant Physiology, 149(3): 1593–1600.