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Summary

In this paper, we study blow-up phenomena of the following p-Laplace type nonlinear
parabolic equations

ut = ∇ ⋅
[

�(|∇u|p)|∇u|p−2∇u
]

+ f (x, t, u), in Ω × (0, t∗),

under nonlinear mixed boundary conditions

�(|∇u|p)|∇u|p−2 )u
)n
+ �(z)�(|u|p)|u|p−2u = ℎ(z, t, u), on Γ1 × (0, t∗),

and u = 0 on Γ2 × (0, t∗) such that Γ1 ∪ Γ2 = )Ω, where f and ℎ are real-valued
C1-functions. To discuss blow-up solutions, we introduce new conditions:
For each x ∈ Ω, z ∈ )Ω, t > 0, u > 0, and v > 0,

(Dp 1) ∶
�F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,

�H(z, t, u) ≤ uℎ(z, t, u) + �2up + 
2,

(Dp 2) ∶ �v�(v) ≤ P (v),

for some constants �, �1, �2, 
1, 
2, and � satisfying

� > 2, � > 0, �1 +
�R + 1
�S

�2 ≤
(

��
p
− 1

)

�m�R, and 0 ≤ �2 ≤
(

��
p
− 1

)

�m�S ,

where �m ∶= infw>0 �(w), P (v) = ∫ v0 �(w)dw, F (x, t, u) = ∫ u0 f (x, t, w)dw, and
H(x, t, u) = ∫ u0 ℎ(x, t, w)dw. Here, �R is the first Robin eigenvalue and �S is the
first Steklov eigenvalue for the p-Laplace operator, respectively.
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1 INTRODUCTION

It is well-known that reaction-diffusion equations can describe lots of natural phenomena such as gravitational potentials,
heat flow, and fluid flow (see13). Especially, nonlinear reaction-diffusion equations have been attracted the attention of many
researchers. The most famous example of nonlinearity, there are the p-Laplace operator (∇ ⋅ [|∇u|p−2∇u]) as a diffusion operator
and autonomous function f (u) as a reaction term. i.e.

ut = ∇ ⋅ [|∇u|p−2∇u] + f (u). (1)

Of course, the equation (1) can express a variety of natural and social phenomena and has been studied by many researchers
(see15,20,22 and references therein).
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On the other hand, lots of natural and social phenomena can be also affected by external stimuli. Therefore, it is important
to consider various boundary conditions such as the Dirichlet boundary condition, the Neumann boundary condition, and the
Robin boundary conditions, and so on. Especially, p-Neumann boundary conditions with autonomous function ℎ(u):

|∇u|p−2 )u
)n

= ℎ(u) (2)

have been studied by lots of researchers because of their applicability (see18,23 and references therein).
In this paper, we deal with blow-up phenomena of the following p-Laplace type nonlinear parabolic equations under mixed

nonlinear boundary conditions:
For p > 1,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅
[

�(|∇u|p)|∇u|p−2∇u
]

+ f (x, t, u), in Ω × (0, t∗),
B�[u] = ℎ(z, t, u), on Γ1 × (0, t∗),
u = 0, on Γ2 × (0, t∗),
u(⋅, 0) = u0 ≥ 0, in Ω,

(3)

where Ω is a bounded domain in ℝN (N ≥ 2) with smooth boundary )Ω, Γ1 and Γ2 are disjoint open and closed subset of )Ω,
respectively, such that Γ1 ∪ Γ2 = )Ω, and t∗ is maximal existence time of the solution u. Here, B�[u] = ℎ(z, t, u) on Γ1 × [0, t∗)
stands for the boundary condition

�(|∇u|p)|∇u|p−2 )u
)n
+ �(z)�(|u|p)|u|p−2u = ℎ(z, t, u), on Γ1 × (0, t∗),

where � is nonnegativeC1()Ω)-function.Moreover, we assume that the function � is aC1(ℝ+)-function satisfying infw>0 �(w) >
0, the function f is a C1(Ω × ℝ+ × ℝ+)-function, the function ℎ is a C1()Ω × ℝ+ × ℝ+)-function, where ℝ+ = [0,∞). Also,
the initial data u0 is a nonnegative nontrivial C1(Ω)-function satisfying the compatible condition B�[u0] = ℎ(z, 0, u0) on Γ1 and
u0 = 0 on Γ2.
The equation (3) is generalized version of (1)-(2) which is well-known p-Laplacian parabolic equation under the nonlinear

Neumann boundary condition. The simple versions of the main equation (3) (such as autonomous functions f (u) and ℎ(u)
instead of f (x, t, u) and ℎ(z, t, u), � ≡ 1, and p = 2) were studied by lots of researchers with respect to the blow-up theory
(see6,8,9,10,11,18,19,21,24,25,26,27,28).
Most of blow-up results which discussed nonlinear parabolic equations under nonlinear boundary conditions considered non-

negative functions or non-positive functions in the reaction term and the boundary term (for example, see12,21,29). However,
we consider real-valued functions f and ℎ instead of non-negative functions or non-positive functions. Also, we consider the
non-autonomous terms f and ℎ include various types of functions such as k(t)f (u) or b(x)f (u).
Especially, Messaoudi22 studied the p-Laplacian parabolic equations with the autonomous reaction f (u):

For p > 2,
ut = ∇ ⋅ [|∇u|p−2∇u] + f (u), in Ω × (0, t∗), (4)

under the Dirichlet boundary condition. In this result, the blow-up solutions to the equation (4) were obtained when the function
f satisfied

(Ap) ∶ (p + �)

u

∫
0

f (s)ds ≤ uf (u), u > 0,

and the appropriate initial data condition was satisfied.
In 2016, Ding and Shen12 studied blow-up phenomena to the p-Laplacian parabolic equations under nonlinear boundary

conditions
⎧

⎪

⎨

⎪

⎩

(b(u))t = ∇ ⋅ [|∇u|p−2∇u] + k(t)f (u), in Ω × (0, t∗),
|∇u|p−2 )u

)n
= ℎ(u), on )Ω × (0, t∗),

u(⋅, 0) = u0 ≥ 0, on Ω,
(5)
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where p > 2. In their blow-up conditions, the functions b and k satisfied the condition (7) and the nonnegative functions f and
ℎ satisfied

(Ap)′ ∶

p

u

∫
0

f (s)ds ≤ uf (u), u > 0,

p

u

∫
0

ℎ(s)ds ≤ uℎ(u), u > 0.

In 2018, Zhang, Wang, and Wang30 obtained the blow-up solutions to the p-Laplace type nonlinear parabolic equation:
For p ≥ 2,

(b(u))t = ∇ ⋅ [�(|∇u|p)|∇u|p−2∇u] + a(x)k(t)f (u), in Ω × (0, t∗), (6)
under the Dirichlet boundary condition, where the functions b, �, a, k, and f were some appropriate functions to construct the
nonnegative solutions. In their assumptions for the blow-up phenomena, the functions b, a, and k satisfied

lim
s→0+

s2b′(s) = 0,

b′(s) > 0, b′′(s) ≤ 0, k(0) > 0, k′(s) ≥ 0, a(s) > 0,
(7)

for s > 0 and the functions � and f satisfied

(Ap) ∶ (p + �1)

u

∫
0

f (s)ds ≤ uf (u), u > 0,

(Bp) ∶ v�(v) ≤ (p + �2)

v

∫
0

�(s)ds, u > 0,

where �1 and �2 are positive constants with �1 ≥
�2
p
.

In 2019, Zhang and Tian29 obtained the blow-up solutions to the p-Laplace type parabolic equations under nonlinear boundary
conditions:
For p > 2,

⎧

⎪

⎨

⎪

⎩

(b(u))t = ∇ ⋅ [�(|∇|p)|∇u|p−2∇u] + a(x)k(t)f (u), in Ω × (0, t∗),
�(|∇|p)|∇u|p−2 )u

)n
= ℎ(u), on )Ω × (0, t∗),

u(⋅, 0) = u0 ≥ 0, on Ω,
when the nonnegative functions b, a, and k satisfy the condition (7), the functions f and ℎ satisfy the condition (Ap)′, and the
function � satisfies

(Bp)′ ∶ v�(v) ≤

v

∫
0

�(s)ds.

Now, we introduce new blow-up conditions for the functions �, f , and ℎ to obtain the solutions to the equation (3) as follows:
For each x ∈ Ω, z ∈ )Ω, t > 0, u > 0, and v > 0,

(Dp 1) ∶
�F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,
�H(z, t, u) ≤ uℎ(z, t, u) + �2up + 
2,

(Dp 2) ∶ �v�(v) ≤ P (v),
for some constants �, �1, �2, 
1, 
2, and � satisfying

� > 2, � > 0, �1 +
�R + 1
�S

�2 ≤
(

��
p
− 1

)

�m�R,

and
0 ≤ �2 ≤

(

��
p
− 1

)

�m�S ,

where F (x, t, u) ∶= ∫ u
0 f (x, t, w)dw, H(z, t, u) ∶= ∫ u

0 ℎ(z, t, w)dw, and P (v) = ∫ w
0 �(w)ds. Here, �m ∶= infw>0 �(w), �R is

the first eigenvalue of the Robin eigenvalue problem, and �S is the first eigenvalue of the Steklov eigenvalue problem (which
were introuced in Section 2).
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There were several results that used the first eigenvalue to the blow-up conditions (see2,3,4). Especially, the authors3 obtained
blow-up solutions to the equation (4) for p ≥ 2, under the Dirichlet boundary condition, by using a condition

(Cp) ∶ (p + �)

u

∫
0

f (s)ds ≤ uf (u) + �up + 
, u > 0,

for some constants � > 0, 0 < � ≤ �
p
�D, and 
 > 0, where �D is the first Dirichlet eigenvalue of the p-Laplace operator.

Using the blow-up conditions (Dp 1) and (Dp 2), we obtain the main theorem as follows:

Theorem 1.1. Suppose that the functions f , ℎ, and � satisfy the conditions (Dp 1) and (Dp 2). Also, the functions F andH are
nondecreasing in t. If the initial data u0 satisfies

−1
p ∫
Ω

P (|∇u0(x)|p)dx + ∫
Ω

[

F (x, 0, u0) −

1
�

]

dx − 1
p ∫
Γ1

�(z)P (|u0(z)|p)dS + ∫
Γ1

[

H(z, 0, u0) −

2
�

]

dS > 0, (8)

then every nonnegative solution u to the equation (3) blows up in finite time 0 < t∗ ≤ T .

It is worthwhile to notice that the condition (Dp 1) depends on the domain Ω and the boundary conditions, since �1 and �2
depend on the first eigenvalues �R and �S . In fact, it is natural for blow-up conditions to depend on the domain and the boundary
conditions.
It is easy to see that the conditions (Ap) and (Ap)′ cannot be unified because of the constant � and the parameter p. From

this point of view, our condition (Dp 1), which includes the conditions (Ap), (Ap)′, and (Cp), is the most generalized blow-up
condition known so far.
We investigate the case p > 1, one of our crucial points. As far as the authors know, the case 1 < p < 2 wasn’t discussed

concerning the conditions introduced.
Our main results with p ≥ 2 improve the results known so far. More precisely, the blow-up conditions (Dp 1) and (Dp 2) are

the generalized version of the conditions introduced in this section such as (Ap), (Ap)′, (Bp), (Bp)′, and (Cp). We investigate this
in Remark 2.4.

2 BLOW-UP PHENOMENA

In this section, we deal with the blow-up phenomena of the equation (3). From now on, we assume that the solution u is
nonnegative on Ω × [0, t∗). In order to discuss the blow-up solutions to the equation (3), we introduce the definition of blow-up
solutions as follows:

Definition 2.1. We say that a solution u to the equation (3) blows up in finite time t∗ > 0, if u satisfies

lim
t→t∗−∫

Ω

u2(x, t)dx = ∞.

The blow-up condition (Dp 1) depends on the first eigenvalues �R and �S . These eigenvalues were introduced in the following
lemmas.

Lemma 2.2 (See5,17). Let p > 1. Then there exist �R ≥ 0 and a nonnegative function �0 ∈ W 1,p(Ω) such that

⎧

⎪

⎨

⎪

⎩

−∇ ⋅ [|∇�0|p−2∇�0] = �R|�0|p−2�0, in Ω,
|∇�0|p−2

)�0
)n
+ �(z)|�0|p−2�0 = 0, on Γ1,

�0 = 0, on Γ2.

Moreover, �R is given by

�R ∶= inf
w∈
w≢0

∫Ω |∇w|
pdx + ∫Γ1 �(z)|w|

pdS

∫Ω |w|pdx
,

where ∶= {w ∈ W 1,p(Ω) |w = 0 on Γ2}.
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Lemma 2.3 (See16,17). Let Γ1 ≠ ∅ and p > 1. Then there exist �S > 0 and a nonnegative function �0 ∈ W 1,p(Ω) such that

⎧

⎪

⎨

⎪

⎩

∇ ⋅ [|∇�0|p−2∇�0] = |�0|p−2�0, in Ω,
|∇�0|p−2

)�0
)n
+ �(z)|�0|p−2�0 = �S |�0|p−2�0, on Γ1,

�0 = 0, on Γ2.

Moreover, �S is given by

�S ∶= inf
w∈
w≢0

∫Ω [|∇w|
p + |w|p] dx + ∫Γ1 �(z)|w|

pdS

∫Γ1 |w|
pdS

.

where ∶= {w ∈ W 1,p(Ω) |w = 0 on Γ2}.

Now, we prove Theorem 1.1.

Proof of Theorem 1.1. For a solution u(x, t), we define functions A and B on [0, t∗) by

A(t) ∶= ∫
Ω

u2(x, t)dx

and

B(t) ∶= −1
p ∫
Ω

P (|∇u(x, t)|p)dx + ∫
Ω

[

F (x, t, u(x, t)) −

1
�

]

dx − 1
p ∫
Γ1

�(z)P (|u(z, t)|p)dS + ∫
Γ1

[

H(z, t, u(z, t)) −

2
�

]

dS

for t ≥ 0. Firstly, we consider a case Γ1 ≠ ∅. We note that Γ1 is open subset of )Ω. By the boundary condition, we have

B′(t) =∫
Ω

[

−�(|∇u|p)|∇u|p−2∇u∇ut + f (x, t, u)ut +
)
)t
F (x, t, u)

]

dx

+ ∫
Γ1

[

−�(z)�(|u|p)|u|p−2uut + ℎ(z, t, u)ut +
)
)t
H(z, t, u)

]

dS

≥∫
Ω

−�(|∇u|p)|∇u|p−2∇u∇utdx + ∫
)Ω

�(|∇u|p)|∇u|p−2 )u
)n
ut dS + ∫

Ω

f (x, t, u)utdx

(9)

for all t ∈ (0, t∗). Now, using integration by parts, it follows from (9) and the equation (3) that

B′(t) ≥ ∫
Ω

[

f (x, t, u)ut + ∇ ⋅
[

�(|∇u|p)|∇u|p−2∇u
]

ut
]

dx = ∫
Ω

u2t dx ≥ 0 (10)

for all t ∈ (0, t∗). On the other hand, we have

A′(t) =2∫
Ω

uut dx

=2∫
Ω

u
[

f (x, t, u) + ∇ ⋅ (�(|∇u|p)|∇u|p−2∇u)
]

dx

=2∫
Ω

[

uf (x, t, u) − �(|∇u|p)|∇u|p
]

dx + 2∫
)Ω

u�(|∇u|p)|∇u|p−2 )u
)n
dS

(11)

for all t ∈ (0, t∗). Making use of the condition (Dp 1), we obtain from the boundary condition that

A′(t) =2∫
Ω

[

uf (x, t, u) − �(|∇u|p)|∇u|p
]

dx + 2∫
Γ1

[

uℎ(z, t, u) − �(z)�(|u|p)|u|p
]

dS

≥2∫
Ω

[

�F (x, t, u) − �1up − 
1
]

dx + 2∫
Γ1

[

�H(z, t, u) − �2up − 
2
]

dS

− 2∫
Ω

�(|∇u|p)|∇u|pdx − 2∫
Γ1

�(z)�(|u|p)|u|p dS
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for all t ∈ (0, t∗). It follows that

A′(t) ≥2�B(t) + 2�
p ∫

Ω

P (|∇u|p)dx − 2∫
Ω

�(|∇u|p)|∇u|pdx − 2�1 ∫
Ω

updx

+ 2�
p ∫

Γ1

�(z)P (|u|p)dS − 2∫
Γ1

�(z)�(|u|p)|u|p dS − 2�2 ∫
Γ1

updS
(12)

Thanks to the condition (Dp 2), (12) implies that

A′(t) ≥2�B(t) + 2
(

��
p
− 1

)

�m
⎡

⎢

⎢

⎣

∫
Ω

|∇u|pdx + ∫
Γ1

�(z)updS
⎤

⎥

⎥

⎦

− 2�1 ∫
Ω

updx − 2�2 ∫
Γ1

updS

for all t ∈ (0, t∗), where �m ∶= infw>0 �(w). Applying Lemma 2.2 and 2.3, we obtain that

A′(t) ≥2�B(t) − 2
(

�1 +
�2
�S

)

∫
Ω

updx + 2
[(

��
p
− 1

)

�m −
�2
�S

]

⎡

⎢

⎢

⎣

∫
Ω

|∇u|pdx + ∫
Γ1

�(z)updS
⎤

⎥

⎥

⎦

≥2�B(t) + 2
[[(

��
p
− 1

)

�m −
�2
�S

]

�R −
(

�1 +
�2
�S

)]

∫
Ω

updx

≥2�B(t)

(13)

for all t ∈ (0, t∗). Considering (10), (13), and the initial condition B(0) > 0, it is easy to see that A′(t) > 0 and B′(t) > 0 for all
t ∈ (0, t∗). Therefore, we obtain A(t) > 0 and B(t) > 0 for all t ∈ (0, t∗). Now, we use the Schwarz inequality and (13) to get

�
2
A′(t)B(t) ≤ 1

4
[A′(t)]2 ≤

⎛

⎜

⎜

⎝

∫
Ω

u2dx
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∫
Ω

u2t dx
⎞

⎟

⎟

⎠

≤ A(t)B′(t)

for all t ∈ (0, t∗). Then it follows that
d
dt

[

A−
�
2 (t)B(t)

]

≥ 0
for all t ∈ (0, t∗). Then we have

A−
�
2 (t)A′(t) ≥ 2�A−

�
2 (t)B(t) ≥ 2�A−

�
2 (0)B(0). (14)

Integrating (14) from 0 to t, we finally obtain

A(t) ≥

[

1

A−
�−2
2 (0) − �(� − 2)A−

�
2 (0)B(0)t

]
2
�−2

.

Hence, the solution u blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper bound T of the blow-up time satisfies

T =
A(0)

�(� − 2)B(0)
.

For a case Γ1 = ∅, we easily obtain the blow-up solution u because all integral with respect to Γ1 are 0.

Remark 2.4. (i) Local existence and regularity of the solutions to the equation (3) were discussed in7 with some conditions
for the functions f , ℎ, and �.

(ii) If � = 2, then we obtain from (14) that T = ∞. i.e. the solution u blows up at t = ∞.

(iii) The constant � depends on the function �, but can be any positive number. If we put � ≡ 1, then we can choose � = 1.
Then the conditions for the constants �, �1, and �2 should be

� > 2, �1 +
�R + 1
�S

�2 ≤
(

�
p
− 1

)

�R,

and
0 ≤ �2 ≤

(

�
p
− 1

)

�S .

These imply that the condition (Dp 1) and (Dp 2) are the generalized version of the conditions (Ap), (Ap)′, (Bp), (Bp)′, and
(Cp).
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(iv) We assumed thatF andH are nondecreasing in t. This condition is an improvement condition than the following condition:

ft(x, t, u) ≥ 0, x ∈ Ω, t > 0, u > 0,

which was assumed in8,9,10,12,30. We illustrate this fact in Example 2.11.

(v) If we can choose the constants 
1 and 
2 of negative values while satisfying the conditions (Dp 1) and (Dp 2), then blow-up
may occur even in small initial data.

Next, we introduce simple versions of the equation (3) and corresponding blow-up results. Firstly, we introduce the following
p-Laplacian parabolic equations:
For p > 1,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅
[

|∇u|p−2∇u
]

+ f (x, t, u), in Ω × (0, t∗),
|∇u|p−2 )u

)n
+ �(z)|u|p−2u = 0, on Γ1 × (0, t∗),

u = 0, on Γ2 × (0, t∗),
u(⋅, 0) = u0 ≥ 0, in Ω.

(15)

We obtain blow-up solutions to the equation (15) as follows:

Corollary 2.5. Suppose that the function f satisfies the condition (Dp 1):
For each x ∈ Ω, t > 0, and u > 0,

(Dp 1) ∶ �F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,

for some constants �, �1, and 
1 satisfying � > 2 and �1 ≤
(

�
p
− 1

)

�R. Also, the function F is nondecreasing in t. If the initial
data u0 satisfies

−1
p ∫
Ω

|∇u0(x)|pdx −
1
p ∫
Γ1

�(z)|u0(z)|pdS + ∫
Ω

[

F (x, 0, u0) −

1
�

]

dx > 0,

then every nonnegative solution u to the equation (15) blows up in finite time 0 < t∗ ≤ T .

Next, we introduce p-Laplace type parabolic equations under mixed boundary conditions:
For p > 1,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅
[

�(|∇u|p)|∇u|p−2∇u
]

+ f (x, t, u), in Ω × (0, t∗),
B�[u] = 0, on Γ1 × (0, t∗),
u = 0, on Γ2 × (0, t∗),
u(⋅, 0) = u0 ≥ 0, in Ω.

(16)

We obtain blow-up solutions to the equation (16) as follows:

Corollary 2.6. Suppose that the functions f and � satisfy the conditions (Dp 1) and (Dp 2):
For each x ∈ Ω, t > 0, u > 0, and v > 0,

(Dp 1) ∶ �F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,
(Dp 2) ∶ �v�(v) ≤ P (v),

for some constants �, �1, 
1, and � satisfying � > 2, � > 0, and �1 ≤
(

��
p
− 1

)

�m�R. Also, the function F is nondecreasing in
t. If the initial data u0 satisfies

−1
p ∫
Ω

P (|∇u0(x)|p)dx −
1
p ∫
Γ1

�(z)P (|u0(z)|p)dS + ∫
Ω

[

F (x, 0, u0) −

1
�

]

dx > 0,

then every nonnegative solution u to the equation (16) blows up in finite time 0 < t∗ ≤ T .

In order to understand the nonlinear mixed boundary conditions, we introduce the following p-Laplace type equations under
the nonlinear mixed boundary conditions:



8 S. -Y. Chung ET AL

For p > 1,
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅
[

�(|∇u|p)|∇u|p−2∇u
]

, in Ω × (0, t∗),
B�[u] = ℎ(z, t, u), on Γ1 × (0, t∗),
u = 0, on Γ2 × (0, t∗),
u(⋅, 0) = u0 ≥ 0, in Ω.

(17)

We obtain blow-up solutions to the equation (17) as follows:

Corollary 2.7. Let Γ1 ≠ ∅. Suppose that the functions ℎ and � satisfy the conditions (Dp 1) and (Dp 2):
For each z ∈ )Ω, t > 0, and u > 0,

(Dp 1) ∶ �H(z, t, u) ≤ uℎ(z, t, u) + �2up + 
2,
(Dp 2) ∶ �v�(v) ≤ P (v),

for some constants �, �2, and 
2 satisfying � > 2 and 0 ≤ �2 ≤
(

��
p
− 1

)

�m
�R�S
�R+1

. Also, the functionH is nondecreasing in t. If
the initial data u0 satisfies

−1
p ∫
Ω

P (|∇u0(x)|p)dx −
1
p ∫
Γ1

�(z)P (|u0(z)|p)dS + ∫
Γ1

[

H(z, 0, u0) −

2
�

]

dS > 0,

then every nonnegative solution u to the equation (17) blows up in finite time 0 < t∗ ≤ T .

Now, we consider non-negative functions or non-positive functions, since there were improved blow-up results when f ≤ 0
and ℎ ≥ 0 (see18). We also improve the blow-up condition (Dp 1) when F ≤ 0 orH ≤ 0 in Theorem 2.8 and Theorem 2.9.

Theorem2.8. Let the functionF be non-positive. Also, we suppose that the functions f ,ℎ, and � satisfy the following conditions

(Dp 1)′ ∶
�1F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,
�2H(z, t, u) ≤ uℎ(z, t, u) + �2up + 
2,

(Dp 2) ∶ �v�(v) ≤ P (v),
for all x ∈ Ω, z ∈ )Ω, t > 0, u > 0, and v > 0, for some constants �1, �2, �1, �2, 
1, and 
2 satisfying

�1 +
�R + 1
�S

�2 ≤
(

�2�
p
− 1

)

�m�R, 0 ≤ �2 ≤
(

�2�
p
− 1

)

�m�S ,

and
2 ≤ �1 ≤ �2 with �2 > 2.

Also, the functions F andH are nondecreasing in t. If the initial data u0 satisfies

−1
p ∫
Ω

P (|∇u0(x)|p)dx + ∫
Ω

[

F (x, 0, u0) −

1
�2

]

dx − 1
p ∫
Γ1

�(z)P (|u0(z)|p)dS + ∫
Γ1

[

H(z, 0, u0) −

2
�2

]

dS > 0,

then every solution u to the equation (3) blows up in finite time 0 < t∗ ≤ T .

Proof. The proof is basically similar to the proof of Theorem 1.1. Therefore, we state the main difference of the proof. For a
solution u(x, t), we define functions A and B on [0, t∗) by

A(t) ∶= ∫
Ω

u2(x, t)dx

and

B(t) ∶= −1
p ∫
Ω

P (|∇u(x, t)|p)dx + ∫
Ω

[

F (x, t, u(x, t)) −

1
�2

]

dx − 1
p ∫
Γ1

�(z)P (|u(z, t)|p)dS + ∫
Γ1

[

H(z, t, u(z, t)) −

2
�2

]

dS

for each t ≥ 0. Then it follows from (9) and (10) that

B′(t) = ∫
Ω

u2t dx ≥ 0
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for all t ∈ (0, t∗). On the other hand, we have from (11) that

A′(t) = 2∫
Ω

[

uf (x, t, u) − �(|∇u|p)|∇u|p
]

dx + 2∫
)Ω

�(|∇u|p)|∇u|p−2 )u
)n
u dS

for all t ∈ (0, t∗). Making use of the condition (Dp 1), we obtain from the boundary condition that

A′(t) ≥2∫
Ω

[

uf (x, t, u) − �(|∇u|p)|∇u|p
]

dx + 2∫
Γ1

[

uℎ(z, t, u) − �(z)�(|u|p)|u|p
]

dS

≥2∫
Ω

[

�1F (x, t, u) − �1up − 
1
]

dx + 2∫
Γ1

[

�2H(z, t, u) − �2up − 
2
]

dS

− 2∫
Ω

�(|∇u|p)|∇u|pdx − 2∫
Γ1

�(z)�(|u|p)|u|p dS

for all t ∈ (0, t∗). Since F is non-positive, we have

A′(t) ≥2�2B(t) +
2�2
p ∫

Ω

P (|∇u|p)dx − 2∫
Ω

�(|∇u|p)|∇u|pdx − 2�1 ∫
Ω

updx

+
2�2
p ∫

Γ1

�(z)P (|u|p)dS − 2∫
Γ1

�(z)�(|u|p)|u|p dS − 2�2 ∫
Γ1

updS
(18)

for all t ∈ (0, t∗). Thanks to the condition (Dp 2), (18) implies that

A′(t) ≥ 2�2B(t) + 2
(

�2�
p
− 1

)

�m
⎡

⎢

⎢

⎣

∫
Ω

|∇u|pdx + ∫
Γ1

�(z)updS
⎤

⎥

⎥

⎦

− 2�1 ∫
Ω

updx − 2�2 ∫
Γ1

updS

for all t ∈ (0, t∗), where �m ∶= infw>0 �(w). Applying Lemma 2.2 and 2.3, we obtain that

A′(t) ≥2�2B(t) − 2
(

�1 +
�2
�S

)

∫
Ω

updx + 2
[(

�2�
p
− 1

)

�m −
�2
�S

]

⎡

⎢

⎢

⎣

∫
Ω

|∇u|pdx + ∫
Γ1

�(z)updS
⎤

⎥

⎥

⎦

≥2�2B(t) + 2
[[(

�2�
p
− 1

)

�m −
�2
�S

]

�R −
(

�1 +
�2
�S

)]

∫
Ω

updx

≥2�2B(t)
for all t ∈ (0, t∗). Hence, by similar way to the proof of Theorem 1.1, we can easily obtain

A(t) ≥

[

1

A−
�2−2
2 (0) − �2(�2 − 2)A

− �2
2 (0)B(0)t

]
2

�2−2

.

Hence, the solution u blows up at finite time 0 < t∗ ≤ T . Furthermore, the upper bound T of the blow-up time satisfies

T =
A(0)

�2(�2 − 2)B(0)
.

Theorem 2.9. Let the function H be non-positive. Also, we suppose that the functions f , ℎ, and � satisfy the following
conditions

(Dp 1)′ ∶
�1F (x, t, u) ≤ uf (x, t, u) + �1up + 
1,
�2H(z, t, u) ≤ uℎ(z, t, u) + �2up + 
2,

(Dp 2) ∶ �v�(v) ≤ P (v),
for all x ∈ Ω, z ∈ )Ω, t > 0, u > 0, and v > 0, for some constants �1, �2, �1, �2, 
1, and 
2 satisfying

�1 +
�R + 1
�S

�2 ≤
(

�1�
p
− 1

)

�m�R, 0 ≤ �2 ≤
(

�1�
p
− 1

)

�m�S ,
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and
2 ≤ �2 ≤ �1 with �1 > 2.

Also, the functions F andH are nondecreasing in t. If the initial data u0 satisfies

− 1
p ∫
Ω

P (|∇u0(x)|p)dx + ∫
Ω

[

F (x, 0, u0) −

1
�1

]

dx

− 1
p ∫
Γ1

�(z)P (|u0(z)|p)dS + ∫
Γ1

[

H(z, 0, u0) −

2
�1

]

dS > 0,

then every solution u to the equation (3) blows up in finite time 0 < t∗ ≤ T .

Proof. The proof is basically similar to the proof of Theorem 1.1 and Theorem 2.8. Therefore, one can easily complete this
proof by following the proof of Theorem 1.1 and Theorem 2.8.

Remark 2.10. It is trivial that if f ≤ 0, then F ≤ 0. However, F ≤ 0 does not imply f ≤ 0.

The following example is given to demonstrate the application of Theorem 1.1.

Example 2.11. Let a function u be a nonnegative solution to the equation
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅
((

1
|∇u|

+ 1
)

∇u
)

+ 128u3 + 6u2|x|t

+(�2 − 1)u + 3u2emax{0,−(t−9)3(t−11)3}, in Ω × (0, t∗),
u = 0, on )Ω × [0, t∗),
u(x, 0) = 1 −

∑4
i=1 x

2
i , in Ω.

(19)

Here, the domain Ω is
{

x = (x1, x2, x3, x4) |
∑4
i=1 x

2
i < 1

}

which is a unit ball of ℝ4. Let us consider p = 2, then it is known
that the first eigenvalue �2,0 is �2 − 1 when the dimension of the unit ball is 4, under the Dirichlet boundary condition (see14,1).
It follows that 0 ≤ �1 ≤

(

��
2
− 1

)

(�2 − 1)�m. From the equation (19), we have

�(v) = 1

v
1
2

+ 1,

f (x, t, u) = 128u3 + (�2 − 1)u + 6u2|x|t + 3u2emax{0,−(t−9)3(t−11)3},
ℎ(z, t, u) = 0.

Moreover, we can easily see that the functions � and f satisfy the conditions (Dp 1) and (Dp 2), by choosing � = 3, �1 =
�2−1
2

,

 = 0, and � = 1. Also, the functions b and � satisfy the conditions which we assumed. Now, we obtain by simple calculations
that

A(0) =∫
Ω

u20dx

=2�2
1

∫
0

[

(1 − r2)2
]

r3 dr

≑0.822
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and
B(0)

= − 1
2 ∫
Ω

[

|∇u0|2 + 2|∇u0|
]

dx + ∫
Ω

[

32u40 + u
3
0 +

�2 − 1
2

u20

]

dx

= − �2
1

∫
0

(

4r2 + 4r
)

r3 dr

+ 2�2
1

∫
0

(

32(1 − r2)4 + (1 − r2)3 + �2 − 1
2

(1 − r2)2
)

r3 dr

≑0.193,
since we have from the functions b, �, and f that

F (x, t, u) = 32u4 + u3
[

2|x|t + emax{0,−(t−9)3(t−11)3}
]

+ �2 − 1
2

u2,

P (v) = 2v
1
2 + v.

It follows from Theorem 1.1 that u blows up in finite time 0 < t∗ ≤ T and

T =
A(0)
3B(0)

≑ 1.420.

Remark 2.12. Differentiating the reaction term f (x, t, u) in Example 2.11 with respect to u, we can obtain by simple calculation
that

ft(x, t, u) = 6u2|x|
for 0 < t ≤ 9 or t ≥ 11, and

ft(x, t, u) = 3u2
[

2|x| − 6(t − 9)2(t − 10)(t − 11)2e−(t−9)3(t−11)3
]

(20)

for 9 < t < 11. Then (20) follows that ft(x, t, u) is negative when u > 0 and t satisfies

(t − 9)2(t − 10)(t − 11)2e−(t−9)3(t−11)3 >
|x|
3
.

In fact, if we put t = 10.5, then we have from the fact |x| ≤ 1 that

(t − 9)2(t − 10)(t − 11)2e−(t−9)3(t−11)3 |t=10.5 ≑ 0.428 ≥
|x|
3
,

which implies that ft(x, t, u) is not nonnegative for all x ∈ Ω, t > 0, u > 0.
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