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Abstract: In this paper, we developed a meshless collocation method by using barycentric rational interpolation basis function based on the Chebyshev to deduce the scheme for solving the Helmholtz equation defined in arbitrary domain with complex boundary shapes. Firstly, the spatial variables and their partial derivatives are treated by interpolation basis functions, and the collocation method for solving second order differential equations is established. Then the differential matrix is used to simplify the differential equations on a given test node. Finally, numerical experiments based on three kinds of test nodes show that the proposed method can be used to calculate not only the high wave numbers problems, but also the variable wave numbers problems. Moreover, the algorithm has the advantages of high calculation accuracy, good numerical stability and the less CPU time consuming.
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Introduction
In the present work, we consider the following two-dimensional Helmholtz equation,
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where
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is the problem region,
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is an unknown function of
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is the wave number, which could be either a constant or a function.
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is a source term. The Dirichlet boundary conditions are given as 
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or the Neumann boundary conditions are given as 

[image: image8.wmf](,)

|(,)

uxy

hxy

n

¶W

=

¶

                                                     (1.3)

In which,
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is the boundary of
[image: image10.wmf],

W



 EMBED Equation.DSMT4  \* MERGEFORMAT [image: image11.wmf]n

is the outer normal direction,
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are the value of given functions.
Helmholtz equation is an elliptical partial differential equation which indicates the solution of the wave equation is time-independent. This equation can simulate varieties of physical phenomena, such as vibration analysis, water wave propagation, acoustic scattering, and radar scattering etc. With the extensive application of Helmholtz equation in scientific and engineering world, there are a variety of numerical methods have been developed to solve the equation, such as the finite element method, boundary element method, finite difference method, meshless method and so on[1-4]. Among them, the finite element method is the most widely used method, but the calculation accuracy of the finite element method will decrease sharply with the increase of the wave number of the equation. At the same time, the meshless method is favored by many researchers in recent years because of its many advantages, such as simple discretization, easy format derivation, easy implementation of calculation program, high computational accuracy and good numerical stability[5-10]. Because of the complexity of Helmholtz equation, it brings great difficulties to numerical calculation, especially the problems of variable wave number and high wave number, which need further study. So, it is of great theoretical and practical significance to study the numerical solutions of Helmholtz equations
In recent years, researchers have proposed many meshless methods for solving Helmholtz equations. He et al.[11] constructed an improved meshless weighted least square method which is more effective than Galerkin meshless method to solve the Helmholtz equation, and analyzed the dispersion and pollution. Chen and Qiu[12] put forward a first-order system least square method for solving high wave number problems, which was a meshless method different from the standard finite element method. A spectral collocation method developed by Bialecki and Karageorghis[13] is a Legendre Gauss spectral collocation on a rectangle and subject to inhomogeneous Robin boundary conditions. Assari et al.[14] presented a kind of meshless method for solving the logarithmic Fredholm integral equation about Helmholtz equation, which approximated the discrete collocation method of locally supported thin plate splines to a kind of radial basis function method with free shape parameters under Robin boundary conditions on the unit circle. Dogan et al.[15] studied the dispersion error of the Helmholtz equation by using the local meshless boundary integral equation method and the radial basis integral equation method. The two kinds of numerical methods have a better accuracy with other meshless method in the literature. Based on the Burton Miller formula, Chen and Li[16] proposed a boundless Burton Miller method for meshless and boundless analysis of Helmholtz problem. This meshless method can find the unique solution for all wave numbers, and can also deal with Helmholtz problem under the high wave numbers.   

For other methods to solve Helmholtz problem, Wang et al.[17] proposed an effective difference scheme in polar or spherical coordinates to solve the high wave number problems in the outer domain. This approach can significantly reduce computational storage while maintaining nearly the same numerical accuracy. Haber and Maclachlan[18] put forward a fast multigrid method derived from the study of the wave equation in the frequency domain to solve the Helmholtz equation, which was based on a decomposition and was an efficient algorithm as well. A combined methodology was considered by Britt et al.[19], this method that can keep high order convergence even if there is singular solution for Helmholtz equation. Khalilov and Aliev [20] developed the proof of quadrature method to solve Helmholtz equation with Neumann problem, which is a novel method for external problem.
In this paper, the meshless method for solving the Helmholtz equation in an irregular domain is derived by using barycentric rational interpolation basis function based on the Chebyshev nodes. This method is simple in theory, needs a few interpolation nodes, and the final discrete matrix is easy to be dealt with. It can calculate not only the high wave number problems, but also the variable wave number problems. It has the advantages including short calculation time, high accuracy and good stability. The remainder of this paper is arranged as follows the calculation formula of the barycentric rational interpolation and some theoretical knowledge of the simplified matrix are introduced in Section 2; In Section 3, the interpolation collocation method and its discrete matrix for calculating the two-dimensional Helmholtz equation (1.1) are derived; In Section 4, the numerical results for some test problems are given and compared with the results in the literature; Finally, conclusions are drawn in Section 5.

2. Barycentric rational interpolation
2.1 Barycentric rational interpolation formula
Firstly, we introduce the Lagrange interpolation formula. Let
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be a given interpolation node on the boundary
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, and the corresponding function value is
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, then Lagrange polynomial interpolation formula can be expressed as
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Where
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is Lagrange interpolation basis function, in the form of
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Set
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Defines weight of the barycentric Lagrange interpolation function as
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Then, the interpolation basis function (2.2) can be changed to
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Substitute Eq. (2.5) into Eq. (2.1) to get
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The Eq. (2.6) is called the improved Lagrange interpolation formula. When number of Lagrange interpolation nodes increases, the computation amount of it decreases a lot, from
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 By using Eq. (2.6) to interpolate the constant 1 with
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then we have 
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 After simplification, it can be obtained
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Substituting Eq. (2.7) into Eq. (2.6), we have
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The Eq. (2.8) is called the barycenter Lagrange interpolation formula[21]. Comparing with Eq. (2.6), Eq. (2.8) overcomes the Runge phenomenon effectively while maintaining the same computational cost
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Next, we will introduce the barycentric rational interpolation formula. Barycenter rational interpolation and barycenter Lagrange interpolation are similar. The most obvious difference between them is that using rational function to replace Lagrange function for interpolation. Let
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be a given interpolation node, and the corresponding function value is
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And then, we construct the barycenter rational interpolation basis function. 

 Firstly, select a positive integer
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to calculate the corresponding barycenter Lagrange interpolation polynomial,
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Then, according to Eq. (2.9) construct a weight function,
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Finally, employing
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to construct barycenter rational interpolation function,
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In which,
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By using the Lagrange interpolation formula of constant 1, there are
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Leads to

[image: image46.wmf]00

()

mdrm

k

i

ik

k

x

xx

w

l

-

==

=

-

åå

                                                  (2.13)

Substituting Eq. (2.13) into Eq. (2.11), we have
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Let
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then Eq. (2.14) can express as
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The Eq. (2.15) is called the barycenter rational interpolation formula [22]. What should be noted is that on the one hand, the interpolation errors has been analysed in the literature [23], so we did not repeat it again in present work. On the other hand, as the optimal selection theory of parameter
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has been proposed and proved in the literature [22-24], so the optimal parameters for the two-dimensional Helmholtz equation are given directly in numerical experiments part of this paper.
2.2 Bivariate barycenter rational interpolation formula

 Finally, we will deduce the bivariate barycenter rational interpolation formula. Let the
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According to Eq. (2.15), then the barycentric rational interpolation formula of the
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Where
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Where the weight is
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2.3 Interpolation nodes
We can see from the expression of the barycentric rational interpolation weight function Eq. (2.12) or Eq. (2.18) that the selection of the interpolation weight is related to the parameter
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and the distribution of the nodes. Because
[image: image65.wmf]dr

can be decided by the number of interpolation nodes. Therefore we consider the three kinds of nodes as interpolation nodes and test nodes. They are random nodes, uniform nodes and Chebyshev nodes. Because random nodes and uniforms nodes can be directly implemented in programming language, this part only gives the Chebyshev nodes formula: 

 Chebyshev nodes of the first kind:
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 Chebyshev nodes of the second kind:
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What needs to be explained is that for two types of Chebyshev node formulas, the defined interval is
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As for the general interval
[image: image69.wmf][,],

ab

ÎW

the coordinate transformation formula 
[image: image70.wmf]()()

22

xbaba

x

-+

=+

of the interval can be used.  

2.4 Differential matrix of barycenter rational interpolation 

 The differential matrix was found in the study of Chebyshev quasi-spectral method[25]. The barycentric rational interpolated differential matrix can directly obtain the derivative function of the unknown function in the Helmholtz equation at the computing node. Therefore, the differential matrix is a very important part in the solution of the barycentric interpolation rational collocation method. 
Using Eq. (2.15), the
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In the form of a matrix as
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Where
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are the vector. The matrix
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When the solution of some partial differential equation is obtained by numerical method, it is also necessary to use the differential matrix to calculate the derivative values of the unknown function on calculating nodes. 

2.5 Kronecker product of a matrix

Kronecker product is an operation form between two matrices of any size and a special form of tensor product. The Kronecker product of any matrix
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Where
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 Using the Kronecker product of the barycentric rational interpolation differential matrix, the discrete equation of the Helmholtz equation can be expressed as a simple matrix form. 

2.6 Relationship between partial derivative of differential equation and differential matrix

 The Kronecker product with the barycentric rational interpolated differential matrix can also be used. The unknown function in the Helmholtz equation has the following corresponding relation between the partial derivative of the variable and the Kronecker product of the corresponding differential matrix. 

The number of nodes for the unknown function
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Where
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Using the above marks, the discrete forms of partial differential equations and boundary conditions can be written directly into matrix form, which makes programming much easier. 

3. Discrete equations of the two-dimensional Helmholtz equation
  By substituting the barycenter rational interpolation Eq. (2.16) into Eq. (1.1), we can obtain
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If Eq. (3.1) holds at the nodes of
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Set
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and using Eq. (2.23) and Eq. (2.24), then Eq. (3.2) can also be expressed as
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Let
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Then Eq. (3.3) can be written into 
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 The above two-dimensional Helmholtz equation is discretized by the barycentric rational interpolation method, and the final scheme is Eq. (3.5). In addition, the boundary conditions need to be discretized, and the following discrete formulas for boundary conditions are elaborated. 

By employing Eq. (2.23) and Eq. (2.24), we obtain the matrix form of the Dirichlet boundary condition in Eq. (1.2)
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By employing Eq. (2.23) and Eq. (2.24), we obtain the matrix form of the Neumann boundary condition in Eq. (1.3)
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Where
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Combining Eq. (3.5) and Eq. (3.6) or Eq.(3.7), we can obtain the value of the function
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on each node.

Numerical examples

In this section, we solve some test problems to demonstrate the effectiveness and accuracy of the barycentric rational interpolation method. Five numerical examples of Helmholtz equation including high wavenumber and variable wavenumber problems are given. In which, the maximum absolute error (
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) are defined as follows:
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                (4.1)
Where
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represent numerical and exact solutions, respectively.
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Example 1[26]:
Consider the following non-homogeneous high wavenumber Helmholtz equation:
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with the Dirichlet boundary condition. The computational domain is a heart-shape domain(see Fig.1.) with the boundary defined by the parametric equation:
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The analytic solution of this equation is
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Table 1 gives the calculation results of
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for the four kinds of interpolation nodes when
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 In which,
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is the number of interpolation nodes in the domain,
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are the numbers of test nodes, and the test nodes are the second kind of Chebyshev nodes (that is Chebyshev II) rather than the first kind of Chebyshev nodes (that is Chebyshev I). The results show that the random interpolation nodes are bad for our proposed method, the uniform interpolation nodes are not good while the two kinds of Chebyshev interpolation nodes are very good. What’s more, the numerical results show that the accuracy of the Chebyshev node is highest, the stability is best, and the calculation error is smallest. Therefore, we use the two kinds of Chebyshev nodes rather than the random or uniform nodes as the interpolation nodes to calculate the Table 2 and Table 3 for Example 1. In addition, the numerical results of the Chebyshev II is a little better than the Chebyshev I when the number of interpolation nodes is relatively small.

Then the
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is given in Table 2 and Table 3, respectively. What should we know is that the two kinds of interpolation nodes here are Chebyshev I and the Chebyshev II. Three kinds of test nodes are random test nodes, uniform test nodes and Chebyshev II test nodes all the time. According to the calculation results, firstly, we can know that the results of Chebyshev II are better than that of Chebyshev I and has no distinct difference between three kinds of test nodes. In addition, the error is almost constant as
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change, which means that the number of test nodes has little influence on error. So we can take the value of
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with any reasonable number in the left numerical examples. What’s more, the numerical results of the Chebyshev II are a little bit better than the Chebyshev I, therefore, we use the Chebyshev II interpolation nods and three kinds of test nodes to calculate the left numerical examples in our work. 

Finally, the calculation results of
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with EB-6 method in Ref. [26] and in present method are compared when
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in Table 4. It should be noted that the error of the meshless method proposed in this paper will be increased due to the large number of interpolation nodes. Therefore,
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is selected to ensure the effectiveness and accuracy of present method. The results show that the error order of the proposed method reaches
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the error order with present method decreases to
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while that in the literature is
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In addition, we notice the error order of the proposed method decreases gradually and the error increase gradually with the increase of the number of nodes
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but the overall calculation result is better than that in the literature. Compared with the finite difference method, the barycentric rational interpolation collocation method does not mean that the more nodes there are, the better the calculation results will be. Sometimes, we can obtain the better results with comparably a few nodes. 

The heart-shape domain with different test nodes: random (a), uniform (b) and Chebyshev (c) when
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is shown in Fig.1. We can observe that the random nodes are distributed randomly within the domain, uniform nodes are distributed equably in the domain and the Chebyshev nodes are concentrated at the boundaries while the middle is sparse relatively.
Then the exact solution with Chebyshev test nodes (a-III), numerical solutions with random test nodes (b-I), uniform test nodes (b-II) and Chebyshev test nodes (b-III); errors with random test nodes (c-I), uniform test nodes (c-II) and Chebyshev test nodes (c-III) with
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are plotted in Fig.2. We observe that all numerical solutions with the three kinds of test nodes agree well with the exact solution, and the numeical errors are equivalent. It shows that the numerical solutions with three kinds of test nodes have the similar shape and are in good agreement with the exact solution as well. What’s more, Fig.2.(c-I), (c-II) and (c-III) show that the error order reaches
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Example 2[ 27]:
Consider the following non-homogeneous Helmholtz equation:
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with the Dirichlet boundary condition. The computational domain is a ameba-shape domain(see Fig.3.) with the boundary defined by the parametric equation:
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The analytical solution is given by
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Table 5 gives the
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computed by the present method and compares with EB-6 method in Ref. [27] when
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The results show that the error order of the proposed method reaches
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when the number of collocation points are
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while that in the literature, the error order only reaches
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Therefore, the number of calculation points needed in the present method is much less than that in the literature and we can save more computational cost.  
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 are given in Table 6. It shows that the proposed method can approximate the exact solution with a few nodes. It is necessary to note that for the determination of CPU time in our work, we select the longest time taken by the three test nodes. Even so, we still find that for the two-dimensional Helmholtz equation, the CPU time with the present method is very small when the number of collocation points is less, which shows that this method is less CPU time-consuming and can save calculation time effectively. 

The ameba-shape domain with different test nodes: random (a), uniform (b) and Chebyshev (c) when
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is shown in Fig.3. We can observe that the distribution of three test nodes within the domain. Then Fig.4 gives the exact (a) and numerical (b) solutions and error (c) with different test nodes: random (I), uniform (II) and Chebyshev (III) with
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It shows that the numerical solutions with three kinds of test nodes have the similar shape and are in good agreement with the exact solution as well and the error order reaches
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Example 3[28]:
Consider the following non-homogeneous variable wavenumber Helmholtz equation:
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with the Dirichlet boundary condition. The computational domain is a star-shape domain(see Fig.5.) with the boundary defined by the parametric equation:
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The exact solution of this problem is
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Table 7 shows the
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with variable wavenumber 
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Compared with the MHADI method in Ref. [28], the error order of the present method is
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 the error order with present method is
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So the present method has higher calculation accuracy compared with that in the literature. Then the
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are given in Table 8. The numerical results show that compared with the finite difference, the barycentric rational interpolation method is more suitable for solving the problems with variable wavenumber. 

The star-shape domain with different test nodes: random (a), uniform (b) and Chebyshev (c) when
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is shown in Fig.5. We can observe that the distribution of three test nodes within the domain. Then Fig.6 gives the exact (a) and numerical (b) solutions and error (c) with different test nodes: random (I), uniform (II) and Chebyshev (III) with
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It shows that the numerical solutions are also in good agreement with the exact solution for the variable wavenumber problem, and the error order reaches
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Example 4[29]:
Consider the following non-homogeneous modified Helmholtz equation:
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with the Dirichlet boundary condition. The computational domain is a peanut-shape domain(see Fig.7.) with the boundary defined by the parametric equation:
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The analytical solution is
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We consider the non-homogeneous modified Helmholtz equation for Example 4. Table 9 gives the compared calculation results of
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The results show that the error order of the proposed method has reached
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while that in the literature is only
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It is obvious that the calculation accuracy and error of the present method are much better than that in the literature. Then the
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is given in Table 10. It shows the advantages of the method in this paper, such as small number of collocation points, short calculation time, high accuracy and small error. 

The peanut-shape domain with different test nodes: random (a), uniform (b) and Chebyshev (c) when
[image: image204.wmf]50,12,28

NtMtdrN

====

is shown in Fig.7. We can observe that the distribution of three test nodes within the domain. Then Fig.8 gives the exact (a), numerical (b) solutions and error (c) with different test nodes: random (I), uniform (II) and Chebyshev (III) when 
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It is interesting that the proposed method is also suitable for non-homogeneous modified Helmholtz equation, and the numerical solution and the exact solution are in good agreement as well.
Example 5[30]:
Consider the following non-homogeneous problem:
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With the mixed boundary conditions:
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Where the boundary
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denote the boundaries on which the Neumann and Dirichlet conditions are applied. The portion of boundary above the
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axis has the Neumann boundary condition and other portion of the boundary has the Dirichlet boundary condition. 

The exact solution is given by
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Table 11 gives the
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computed by the present method and compares with Kumar’s et al. method in Ref. [30] when
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with the mixed boundary conditions. The results show that the error order of the proposed method reaches
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In addition, although the error order with present method is decrease to
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we can use fewer nodes to achieve higher accuracy, thereby saving more computation than the method in the literature. Then the
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is given in Table 12. It shows the advantages of the method in this paper, such as small number of collocation points, short calculation time, high accuracy and small error. 

Fig.9 gives the exact (a), numerical (b) solutions and error (c) with different test nodes: random (I), uniform (II) and Chebyshev (III) with
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It shows that the numerical solution and the exact solution are in good agreement, and the error order has reached
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Conclusion
Based on the Chebyshev interpolation nodes, a meshless collocation method for solving the two-dimensional Helmholtz equations defined in arbitrary domain with complex boundary shapes is established by using the barycentric rational interpolation basis function. According to our research, we can draw the following conclusions: 

Firstly, this meshless collocation method is applicable not only to the Helmholtz equation of rules domain but also to the case of arbitrary domain with complex boundary shapes. It is worth mentioning that the regions in the literature are regular regions, our present work extends that to the irregular area. Then as for the choice of interpolation nodes, the numerical results show that Chebyshev II is better than Chebyshev I for the present scheme. As for test nodes, there is almost no difference for the numerical results with three kinds of test nodes. In addition, with the change of the number of test nodes
[image: image223.wmf]and,
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the error is almost unchanged. That is say that the number of test nodes has little influence for the numerical results. 

Secondly, compared with the methods in the literature, the present method can calculate not only the high wavenumber problems, but also the variable wavenumber problems, and the numerical results are better than those in the literature. For modified Helmholtz equation, the results computed by the present scheme are far better than those in the literature as well. Moreover, the present scheme can obtain high-precision numerical results and keep good stability compared with those methods in the literature by using comparably fewer nodes. It shows the advantages of the present scheme, such as less number of collocation points, so short calculation time needed, high precision, small error and high efficiency. What’s more, the numerical solutions agree well with the exact solutions. 
Finally, the present method can be extended to solve the 3D Helmholtz equations. We are engaged in this study and we will report it in the near future.
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	6th-order[26]
	Present method

	
	
	Random
	Uniform
	Chebyshev

	64
	4.60(-3)
	3.895(-8)
	3.623(-8)
	3.456(-8)

	128
	5.99(-5)
	1.699(-5)
	1.378(-5)
	1.385(-5)
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	EB-6[27]
	Present method

	
	
	Random
	Uniform
	Chebyshev

	16
	8.58(-7)
	1.311(-9)
	1.312(-9)
	1.309(-9)

	32
	1.31(-9)
	1.441(-9)
	1.573(-9)
	1.390(-9)
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	CPU time

	
	Random
	Uniform
	Chebyshev
	
	Random
	Uniform
	Chebyshev
	

	16
	6.922(-10)
	6.573(-10)
	6.750(-10)
	
	1.294(-10)
	1.191(-10)
	1.140(-10)
	0.539

	24
	2.533(-11)
	2.852(-11)
	2.654(-11)
	
	2.820(-12)
	2.823(-12)
	2.721(-12)
	1.117

	32
	1.180(-9)
	1.904(-9)
	1.166(-9)
	
	4.097(-11)
	5.367(-11)
	5.020(-11)
	2.674
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	MHADI[28]
	Present method

	
	
	Random
	Uniform
	Chebyshev

	16
	1.7(-2)
	1.671(-5)
	1.754(-5)
	1.461(-5)

	32
	1.3(-3)
	6.389(-10)
	6.424(-10)
	6.426(-10)


Table 8 The
[image: image247.wmf],

Lerrorrelerror

¥

--

and CPU time when
[image: image248.wmf]50,14,(,)sin()

y

NtMtdrkxyxe

====+

for Example 3
	
[image: image249.wmf]N


	
[image: image250.wmf]Lerror

¥

-


	
	
[image: image251.wmf]relerror

-


	CPU time

	
	Random
	Uniform
	Chebyshev
	
	Random
	Uniform
	Chebyshev
	

	16
	1.158(-5)
	1.430(-5)
	1.707(-5)
	
	3.760(-6)
	3.884(-6)
	4.273(-6)
	0.551

	24
	4.598(-8)
	4.447(-8)
	4.552(-8)
	
	1.463(-8)
	1.598(-8)
	1.523(-8)
	1.161

	32
	6.564(-10)
	6.978(-10)
	6.394(-10)
	
	1.957(-10)
	1.815(-10)
	1.892(-10)
	2.768
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	Liu[29]
	Present method

	
	
	Random
	Uniform
	Chebyshev

	20
	1.7(-2)
	6.847(-8)
	6.452(-8)
	8.691(-8)
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	CPU time

	
	Random
	Uniform
	Chebyshev
	
	Random
	Uniform
	Chebyshev
	

	16
	7.708(-8)
	6.559(-8)
	9.829(-8)
	
	5.569(-8)
	5.808(-8)
	6.663(-8)
	0.872

	24
	6.824(-9)
	6.266(-9)
	7.018(-9)
	
	4.633(-9)
	4.628(-9)
	3.907(-9)
	1.513

	28
	1.115(-8)
	6.266(-9)
	1.077(-8)
	
	8.684(-9)
	4.628(-9)
	5.096(-9)
	2.038
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	Kumar[30]
	Present method

	
	
	Random
	Uniform
	Chebyshev II

	16
	4.20(-9)
	3.939(-12)
	3.943(-12)
	3.941(-12)

	32
	6.50(-11)
	2.829(-8)
	2.866(-8)
	2.908(-8)
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	CPU time

	
	Random
	Uniform
	Chebyshev
	
	Random
	Uniform
	Chebyshev
	

	12
	1.753(-9)
	1.771(-9)
	1.759(-9)
	
	1.367(-9)
	1.312(-9)
	1.120(-9)
	0.307

	16
	4.665(-11)
	5.112(-11)
	5.061(-11)
	
	3.057(-11)
	3.239(-11)
	2.599(-11)
	0.435

	24
	2.206(-10)
	2.304(-10)
	2.586(-10)
	
	7.127(-11)
	6.327(-11)
	4.420(-11)
	0.519



*Corresponding author.

E-mail：gyb@nxu.edu.cn.
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