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The article is concerned with the analytical solution to the integro-differential sys-
tem of balance and kinetic equations that describe the crystal growth phenomenon
in a binary system for various nucleation kinetics. The effect of impurity concentra-
tion on the evolutionary behavior of crystals is shown. The nonlinear dynamics of a
supercooled binary melt is studied with allowance for the withdrawal mechanism of
product crystals from a metastable liquid of the crystallizer.
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1 INTRODUCTION

The phase and structural transitions occurring from metastable and nonequilibrium states underlie various physical processes
and natural phenomena. These include, for example, the processes of freezing of water in nature,1−5 solidification of melts in
metallurgy and lava in magma chambers,6−11 the growth of crystals from supersaturated solutions in the chemical industry and
medicine.12−18
The processes of nucleation and growth of crystallites occur at high supersaturation or supercooling of the liquid, when

small elements of the new phase appear on tiny inclusions (impurities), grow and reduce the metastability degree of the liquid
(solution or melt). As this takes place, at the initial stages, the growth of crystals occurs independently of each other due to the
small size of the nucleating particles.19−21 When growing in supersaturated solutions, crystals decrease the supersaturation of
the surrounding solution. When crystals grow in supercooled melts, they emit latent heat of crystallization, which compensates
for the liquid supercooling. Thus, the supersaturation (or supercooling) of liquid decreases with time and the number and size of
evolving crystals increase.22−24 In the later stages of the process, when the degree of liquid metastability is almost completely
removed, and the number of crystals is large, they can interact with each other using processes such as coagulation, Ostwald
ripening and fragmentation.25−30
Since at different stages of phase transitions the evolving system of crystals is controlled by different physical processes,

the mathematical models of such processes differ for different stages. Thus, for example, at the intermediate stage of phase
transformation, nucleation and crystal growth are controlled by the kinetic equation for the particle size distribution function and
the balance equation for heat (or impurity concentration). In this case, collisions, mergers, and decay of particles are not taken
into account. At the next final stage of the phase transformation, such processes become possible and the mathematical model
becomes much more complicated. The kinetic equation, for example, should take into account the possibility of coagulation
and/or fragmentation of particles when their concentration in a metastable liquid becomes high.
Since each individual mathematical model is an integro-differential system of equations with moving boundaries of growing

crystals, there are no general methods for solving such problems. Each separate statement of the problem requires the devel-
opment of individual approaches to the solution, usually based on the development of approximate methods of analysis of the
mathematical model. In this work, we develop the theory of nucleation and crystal growth in a metastable binary melt, where
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the evolution of crystallites is controlled simultaneously by the temperature and concentration fields. The mathematical model
of the process also takes into account the presence of a crystallizer, i.e. processes such as removal of product crystals from
a metastable melt, impurity inflow, and heat removal in balance equations. Our approximate analytical theory is based on the
previously developed theories31−33 of crystal growth in pure melts, as well as on the saddle point method for the Laplace-type
integrals.34

2 THE MODEL

Let us assume that the melt supercooling is uniform throughout the entire volume of the crystallizer. In addition, we assume
that the time and spatial coordinates do not affect the physical properties of the liquid and solid phases. Considering a binary
system, the heat and mass balance equations can be written as
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where �l and �l represent the temperature of a supercooled melt and the concentration of impurity, �m and Cm are the mixture
density and specific heat of the melt, L is the latent heat, �s designate the solid phase density, Q� and Q� are the external mass
and heat fluxes, k0 is the impurity distribution factor, � > 0 is time, r is the radial coordinate of growing crystals, f is the
distribution function, dr∕d� = g is the particle growth rate, r∗ is the radius of critical nuclei, rp is the radius of particles removed
from the crystallizer (product crystals), and D is a function representing the rate of particle fluctuations. To simplify the matter
let us consider that D is proportional to the growth rate25 D = d1dr∕d� = d1g = d1�∗Δ�, where d1 is a pertinent factor, �∗ is
the kinetic coefficient, Δ� = �∗ − �l − m�l is the supercooling, and m is the liquidus slope.
The Fokker-Planck equation determines the crystal size distribution function f :
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Here ℎ(r) is the crystal removal rate. For simplicity, we assume that ℎ is constant. The system of equations (1)-(3) must be
supplemented with the initial and boundary conditions
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Here the frequency of nucleation I has the form18
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Note that the first line defines the Weber-Volmer-Frenkel-Zeldovich kinetics while the second one describes the Meirs kinetics.
For convenience, we introduce the following dimensionless variables:
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Substituting the dimensionless parameters (6) into the model equations (1)-(5), we rewrite the governing equations in
dimensionless form as
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Here, as above, the first and second lines define the function '(w) for the Weber-Volmer-Frenkel-Zeldovich and Meirs kinetic
mechanisms, respectively.

3 ANALYTICAL SOLUTIONS

Let us solve the equation (9) using the variable separation method. The auxiliary function can be written out as

F1(x, t) = F (x, t) −
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, (13)

where J = 1 at t = 0 (at w = 1).
As a result, after mathematical transformations, F1 takes the form
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As S′(t) is positive, we can estimate the aforementioned integrals using the saddle-point method as34
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Substitution (17) into (16) leads to
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To simplify the formulas, let’s make the following replacement:

I =

x0

∫
0

(x + s∗)2
(

F − u0
)F
)x

)

, M =
m�0
Δ�0

. (20)

From (19), we express dC∕dt as
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From (8), we express C as

C = −
Q1 + U ′′ + b1U ′I +Q2M

Mb2wI
. (22)

Differentiating the last formula and combining it with (21), we arrive at the expression

(Q′
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2)U
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= (Q1 + U ′′ + b1U ′I)b2U ′2I2. (24)

Finally, combining (18) and (24), we come to the following Cauchy problem

U ′′′ = P (U ′′, U ′, U , t), U ′′ = Usd , U ′ = 1, U = 0, t = 0, (25)

where the functions P and Usd are determined in the Appendix.

4 CONCLUSION

FIGURE 1 The dimensionless supercooling versus the dimensionless time t.

Let us summarize in conclusion the main outcomes following from our analysis. So, the mathematical model under consid-
eration describes a metastable binary system in a crystallizer, where the solid phase particles nucleate and evolve. Using the
saddle-point method for calculating the Laplace-type integral, an analytical solution is constructed. This solution determines
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FIGURE 2 The dimensionless distribution function versus the dimensionless radius x.

FIGURE 3 The dimensionless distribution function versus the dimensionless time t.

the dynamic dependencies for the melt supercooling and the crystal-size distribution function. The theory presented can be
applied to any nucleation kinetics. As special cases, two important mechanisms of the Weber-Volmer-Frenkel-Zel’dovich and
Meirs kinetics are considered. Figure 1 demonstrates how dimensionless supercooling changes with time. Here the desupercol-
ing behavior is presented for different values of the system parameterM that determines the impurity concentration of a binary
melt. It is easy to see that supercooling is removed faster with an increase in the impurity concentration of a binary melt. This
is explained by the fact that the more impurities in the supercooled system, the more intensively the nucleation of a new phase
occurs on impurity particles. In Figure 2, we can see that there are more crystals with a smaller radius than crystals with a larger
radius in a supercooled melt. In addition, larger impurity concentrations (larger values of the parameter M) lead to smaller
particle-radius distribution function. Also note, that this function vanishes at a certain value of x as the product crystals are
removed from the crystallizer (at x = x0). Figure 3 shows the dimensionless distribution function versus the dimensionless time.
It is easy to see that the distribution function plotted for a fixed particle size x becomes smaller over time because the crystals
grow and leave the metastable liquid of a crystallizer when their radius becomes equal to the radius of product crystals.
In conclusion, we especially note that the theory of nucleation and growth of crystals in a supercooled binary melt considered

in this article can be combined with the theory of directional crystallization in the presence of a two-phase zone using the
mathematical theories of directional solidification developed earlier.35−43
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APPENDIX

P (U ′′, U ′, U , t) =
R1b2U ′2I2 − R2U ′I + R3(U ′′I + U ′B)
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