REFERENCES
Askov-Hansen, C., Jeppesen, P. B., Lund, P., Hartmann, B., Holst, J. J., & Henriksen, D. B. (2013). Effect of glucagon-like peptide-2 exposure on bone resorption: Effectiveness of high concentration versus prolonged exposure. Regulatory Peptides , 181 (1), 4–8. https://doi.org/10.1016/j.regpep.2012.11.002
Baker, J. G., & Hill, S. J. (2007). Multiple GPCR conformations and signalling pathways: implications for antagonist affinity estimates.Trends in Pharmacological Sciences , 28 (8), 374–381. https://doi.org/10.1016/j.tips.2007.06.011
Bjerknes, M., & Cheng, H. (2002). Modulation of specific intestinal epithelial progenitors by enteric neurons. Proceedings of the National Academy of Sciences , 98 (22), 12497–12502. https://doi.org/10.1073/pnas.211278098
Black, S. D., & Mould, D. R. (1991). Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Analytical Biochemistry , 193 (1), 72–82. https://doi.org/10.1016/0003-2697(91)90045-U
Chao, C. C., Ma, Y. S., & Stadtman, E. R. (1997). Modification of protein surface hydrophobicity and methionine oxidation by oxidative systems. Proceedings of the National Academy of Sciences of the United States of America , 94 (7), 2969–2974. https://doi.org/10.1073/pnas.94.7.2969
Correll, C. C., & McKittrick, B. A. (2014). Biased ligand modulation of seven transmembrane receptors (7TMRs): Functional implications for drug discovery. Journal of Medicinal Chemistry , Vol. 57, pp. 6887–6896. https://doi.org/10.1021/jm401677g
Coskun, T., Sloop, K. W., Loghin, C., Alsina-Fernandez, J., Urva, S., Bokvist, K. B., … Haupt, A. (2018). LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Molecular Metabolism , 18 , 3–14. https://doi.org/10.1016/j.molmet.2018.09.009
Couvineau, A., & Laburthe, M. (2011). The Family B1 GPCR: Structural Aspects and Interaction with Accessory Proteins. Current Drug Targets , 13 (1), 103–115. https://doi.org/10.2174/138945012798868434
Culhane, K. J., Liu, Y., Cai, Y., & Yan, E. C. Y. (2015). Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Frontiers in Pharmacology , Vol. 6. https://doi.org/10.3389/fphar.2015.00264
Dacambra, M. P., Yusta, B., Sumner-smith, M., Crivici, A., Drucker, D. J., & Brubaker, P. L. (2000). Structural Determinants for Activity of Glucagon-like Peptide-2 † . 8888–8894. https://doi.org/10.1021/bi000497p
De Heer, J., Pedersen, J., Ørskov, C., & Holst, J. J. (2007). The alpha cell expresses glucagon-like peptide-2 receptors and glucagon-like peptide-2 stimulates glucagon secretion from the rat pancreas.Diabetologia , 50 (2135–2142). https://doi.org/10.1007/s00125-007-0761-6
Deblasi, A., Reilly, K. O., & Harvey, J. (1989). Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends in Biochemical Sciences , 10 , 1989–1991. Retrieved from https://pubmed.ncbi.nlm.nih.gov/2773043/
Drucker, D. J., Erlich, P., Asa, S. L., & Brubaker, P. L. (1996). Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proceedings of the National Academy of Sciences of the United States of America , 93 (15), 7911–7916. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8755576%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC38848
Drucker, D. J., & Yusta, B. (2013). Physiology and Pharmacology of the Enteroendocrine Hormone Glucagon-Like Peptide-2. Annual Review of Physiology , 76 (1), 561–583. https://doi.org/10.1146/annurev-physiol-021113-170317
Dubé, P. E., Forse, C. L., Bahrami, J., & Brubaker, P. L. (2006). The Essential Role of Insulin-Like Growth Factor-1 in the Intestinal Tropic Effects of Glucagon-Like Peptide-2 in Mice. Gastroenterology ,131 (2), 589–605. https://doi.org/10.1053/j.gastro.2006.05.055
El-Jamal, N., Erdual, E., Neunlist, M., Koriche, D., Dubuquoy, C., Maggiotto, F., … Desreumaux, P. (2014). Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am J Physiol Gastrointest Liver Physiol , 307 , 274–285. https://doi.org/10.1152/ajpgi.00389.2012.-The
Estall, J. L., Koehler, J. A., Yusta, B., & Drucker, D. J. (2005).The Glucagon-like Peptide-2 Receptor C Terminus Modulates beta-Arrestin-2 Association but Is Dispensable for Ligand-induced Effector Activation . 280 (23), 22124–22134. https://doi.org/10.1074/jbc.M500078200
Gabe, M. B. N., Sparre-Ulrich, A. H., Pedersen, M. F., Gasbjerg, L. S., Inoue, A., Bräuner-Osborne, H., … Rosenkilde, M. M. (2018). Human GIP(3-30)NH2 inhibits G protein-dependent as well as G protein-independent signaling and is selective for the GIP receptor with high-affinity binding to primate but not rodent GIP receptors.Biochemical Pharmacology , 150 , 97–107. https://doi.org/10.1016/j.bcp.2018.01.040
Gabe, M. B. N., van der Velden, W. J. C., & Smit, F. X. (2020, March 1). Molecular interactions of full-length and truncated GIP peptides with the GIP receptor – A comprehensive review. Peptides , Vol. 125, p. 170224. https://doi.org/10.1016/j.peptides.2019.170224
Gasbjerg, L. S., Christensen, M. B., Hartmann, B., Lanng, A. R., Sparre-Ulrich, A. H., Gabe, M. B. N., … Knop, F. K. (2018). GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study.Diabetologia , 61 (2), 413–423. https://doi.org/10.1007/s00125-017-4447-4
Gottschalck, I. B., Jeppesen, P. B., Hartmann, B., Holst, J. J., & Henriksen, D. B. (2008). Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scandinavian Journal of Gastroenterology , 43 (11), 1304–1310. https://doi.org/10.1080/00365520802200028
Gottschalck, I. B., Jeppesen, P. B., Holst, J. J., & Henriksen, D. B. (2008). Reduction in bone resorption by exogenous glucagon-like peptide-2 administration requires an intact gastrointestinal tract.Scandinavian Journal of Gastroenterology , 43 (8), 929–937. Retrieved from https://pubmed.ncbi.nlm.nih.gov/25900980/
Gu, S. X., Stevens, J. W., & Lentz, S. R. (2015). Regulation of thrombosis and vascular function by protein methionine oxidation . https://doi.org/10.1182/blood-2015-01
Guan, X., Karpen, H. E., Stephens, J., Bukowski, J. T., Niu, S., Zhang, G., … Burrin, D. G. (2006). GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology , 130 (1), 150–164. https://doi.org/10.1053/j.gastro.2005.11.005
Hartmann, B., Harr, M. B., Jeppesen, P. B., Wojdemann, M., Deacon, C. F., Mortensen, P. B., & Holst, J. J. (2000). In vivo and in vitro degradation of glucagon-like peptide-2 in humans. Journal of Clinical Endocrinology and Metabolism , 85 (8), 2884–2888. https://doi.org/10.1210/jc.85.8.2884
Henriksen, D. B., & Alexandersen, P. (2009). Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone ,45 (5), 833–842. https://doi.org/10.1016/j.bone.2009.07.008
Henriksen, D. B., Alexandersen, P., Bjarnason, N. H., Vilsbøll, T., Hartmann, B., Henriksen, E. E. G., … Christiansen, C. (2003). Role of gastrointestinal hormones in postprandial reduction of bone resorption. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research ,18 (12), 2180–2189. https://doi.org/10.1359/jbmr.2003.18.12.2180
Henriksen, D. B., Alexandersen, P., & Hartmann, B. (2007). Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone , 40 (3), 723–729. https://doi.org/10.1016/j.bone.2006.09.025
Holst, Jens J., Albrechtsen, N. J. W., Gabe, M. B. N., & Rosenkilde, M. M. (2018, February 1). Oxyntomodulin: Actions and role in diabetes.Peptides , Vol. 100, pp. 48–53. https://doi.org/10.1016/j.peptides.2017.09.018
Holst, Jens Juul. (2000, September 25). Gut hormones as pharmaceuticals From enteroglucagon to GLP-1 and GLP-2. Regulatory Peptides , Vol. 93, pp. 45–51. https://doi.org/10.1016/S0167-0115(00)00185-3
Hoshi, T., & Heinemann, S. H. (2001, February 15). Regulation of cell function by methionine oxidation and reduction. Journal of Physiology , Vol. 531, pp. 1–11. https://doi.org/10.1111/j.1469-7793.2001.0001j.x
Jensen, P. C., Nygaard, R., Thiele, S., Elder, A., Zhu, G., Kolbeck, R., … Rosenkilde, M. M. (2008). Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Molecular Pharmacology . https://doi.org/10.1124/mol.107.035543.two
Jeppesen, P. B., Hartmann, B., Thulesen, J., Graff, J., Lohmann, J., Hansen, B. S., … Mortensen, P. B. (2001). Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology , 120 (4), 806–815. https://doi.org/10.1053/gast.2001.22555
Jorgensen, R., Kubale, V., Vrecl, M., Schwartz, T. W., & Elling, C. E. (2007). Oxyntomodulin differentially affects glucagon-like peptide-1 receptor β-arrestin recruitment and signaling through Gαs. Journal of Pharmacology and Experimental Therapeutics , 322 (1), 148–154. https://doi.org/10.1124/jpet.107.120006
Kenakin, T. (2010, October). G protein coupled receptors as allosteric proteins and the role of allosteric modulators. Journal of Receptors and Signal Transduction , Vol. 30, pp. 313–321. https://doi.org/10.3109/10799893.2010.503964
Kim, E. S., & Keam, S. J. (2017). Teduglutide: A Review in Short Bowel Syndrome. Drugs , 77 (3), 345–352. https://doi.org/10.1007/s40265-017-0703-7
Kim, G., Weiss, S. J., & Levine, R. L. (2014). Methionine oxidation and reduction in proteins. Biochimica et Biophysica Acta - General Subjects , Vol. 1840, pp. 901–905. https://doi.org/10.1016/j.bbagen.2013.04.038
Liang, Y. L., Khoshouei, M., Deganutti, G., Glukhova, A., Koole, C., Peat, T. S., … Sexton, P. M. (2018). Cryo-EM structure of the active, G s -protein complexed, human CGRP receptor. Nature ,561 (7724), 492–497. https://doi.org/10.1038/s41586-018-0535-y
Liang, Y. L., Khoshouei, M., Glukhova, A., Furness, S. G. B., Zhao, P., Clydesdale, L., … Wootten, D. (2018). Phase-plate cryo-EM structure of a biased agonistbound human GLP-1 receptor-Gs complex.Nature , 555 (7694), 121–125. https://doi.org/10.1038/nature25773
Mette M. Rosenkilde, Marie Cahir, Ulrik Gether, Siv A. worth, & Thue W. Schwartz. (1994). Mutations along Transmembrane Segment I1 of the NK-1 Receptor Affect Substance P Competition with Non-peptide Antagonists but Not Substance P Binding. The Journal of Biological Chemst ,269 (45), 28160–28164. Retrieved from https://pubmed.ncbi.nlm.nih.gov/7525569/
Munroe, D. G., Gupta, A. K., Kooshesh, F., Vyas, T. B., Rizkalla, G., Wang, H., … Steiner, D. F. (1999). Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. InMedical Sciences (Vol. 96). Retrieved from https://pubmed.ncbi.nlm.nih.gov/9990065/
Ørskov, C., Hartmann, B., Poulsen, S. S., Thulesen, J., Hare, K. J., & Holst, J. J. (2005). GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regulatory Peptides , 124 (1–3), 105–112. https://doi.org/10.1016/j.regpep.2004.07.009
Parthier, C., Kleinschmidt, M., Neumann, P., Rudolph, R., Manhart, S., Schlenzig, D., … Stubbs, M. T. (2007). Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor.Proceedings of the National Academy of Sciences of the United States of America , 104 (35), 13942–13947. https://doi.org/10.1073/pnas.0706404104
Parthier, C., Reedtz-Runge, S., Rudolph, R., & Stubbs, M. T. (2009). Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends in Biochemical Sciences , Vol. 34, pp. 303–310. https://doi.org/10.1016/j.tibs.2009.02.004
Pedersen, J., Pedersen, N. B., Brix, S. W., Grunddal, K. V., Rosenkilde, M. M., Hartmann, B., … Holst, J. J. (2015). The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides , 67 , 20–28. https://doi.org/10.1016/j.peptides.2015.02.007
Qiao, A., Han, S., Li, X., Li, Z., Zhao, P., Dai, A., … Wu, B. (2020). Structural basis of Gs and Gi recognition by the human glucagon receptor. Nature , 1352 (March), 1346–1352. Retrieved from https://pubmed.ncbi.nlm.nih.gov/32193322/
Richards, P., Parker, H. E., Adriaenssens, A. E., Hodgson, J. M., Cork, S. C., Trapp, S., … Reimann, F. (2014). Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes , 63 (4), 1224–1233. https://doi.org/10.2337/db13-1440
Roussel, M., Mathieu, J., & Dalle, S. (2016, May 1). Molecular mechanisms redirecting the GLP-1 receptor signalling profile in pancreatic β-cells during type 2 diabetes. Hormone Molecular Biology and Clinical Investigation , Vol. 26, pp. 87–95. https://doi.org/10.1515/hmbci-2015-0071
Sandoval, D. A., & D’Alessio, D. A. (2015). Physiology of Proglucagon Peptides: Role of Glucagon and GLP-1 in Health and Disease.Physiological Reviews , 95 (2), 513–548. https://doi.org/10.1152/physrev.00013.2014
Sasaki, K., Dockerill, S., Adamiak, D. A., Tickle, I. J., & Blundell, T. (1975). X-ray analysis of glucagon and its relationship to receptor binding. Nature , 257 (5529), 751–757. https://doi.org/10.1038/257751a0
Schiellerup, S. P., Skov-Jeppesen, K., Windelov, J. A., Svane, M. S., Holst, J. J., Hartmann, B., & Rosenkilde, M. M. (2019). Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment. Frontiers in Endocrinology , 10 , 75. https://doi.org/10.3389/fendo.2019.00075
Schirra, J., Sturm, K., Leicht, P., Arnold, R., Göke, B., & Katschinski, M. (1998). Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. Journal of Clinical Investigation , 101 (7), 1421–1430. https://doi.org/10.1172/jci1349
Schwartz, T. W., & Frimurer, T. M. (2017). Structural biology: Full monty of family B GPCRs. Nature Chemical Biology , 13 (8), 819–821. https://doi.org/10.1038/nchembio.2438
Skov-Jeppesen, K., Svane, M. S., Martinussen, C., Gabe, M. B. N., Gasbjerg, L. S., Veedfald, S., … Hartmann, B. (2019). GLP-2 and GIP exert separate effects on bone turnover: A randomized, placebo-controlled, crossover study in healthy young men. Bone ,125 , 178–185. https://doi.org/10.1016/j.bone.2019.05.014
Song, G., Yang, D., Wang, Y., De Graaf, C., Zhou, Q., Jiang, S., … Stevens, R. C. (2017). Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature ,546 (7657), 312–315. https://doi.org/10.1038/nature22378
Sparre-Ulrich, A. H., Gabe, M. N., Gasbjerg, L. S., Christiansen, C. B., Svendsen, B., Hartmann, B., … Rosenkilde, M. M. (2017). GIP(3–30)NH2 is a potent competitive antagonist of the GIP receptor and effectively inhibits GIP-mediated insulin, glucagon, and somatostatin release. Biochemical Pharmacology , 131 , 78–88. https://doi.org/10.1016/j.bcp.2017.02.012
Sparre-Ulrich, A. H., Hansen, L. S., Svendsen, B., Christensen, M., Knop, F. K., Hartmann, B., … Rosenkilde, M. M. (2016). Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. British Journal of Pharmacology ,173 (1), 27–38. https://doi.org/10.1111/bph.13323
Sugamura, K., & Keaney, J. F. (2011). Reactive oxygen species in cardiovascular disease. Free Radical Biology and Medicine , Vol. 51, pp. 978–992. https://doi.org/10.1016/j.freeradbiomed.2011.05.004
Svendsen, B., Larsen, O., Buur, M., Gabe, N., Christiansen, C. B., Rosenkilde, M. M., … Holst, J. J. (2018). Insulin Secretion Depends on Intra-islet Glucagon Signaling. Cell Reports ,25 . https://doi.org/10.1016/j.celrep.2018.10.018
Thulesen, J., Knudsen, L. B., Hartmann, B., Hastrup, S., Kissow, H., Jeppesen, P. B., … Poulsen, S. S. (2002). The truncated metabolite GLP-2 (3-33) interacts with the GLP-2 receptor as a partial agonist. Regulatory Peptides , 103 (1), 9–15. https://doi.org/10.1016/S0167-0115(01)00316-0
Velden, W. J. C. Van Der, Heitman, L. H., & Rosenkilde, M. M. (2020).Perspective: Implications of Ligand − Receptor Binding Kinetics for Therapeutic Targeting of G Protein-Coupled Receptors . (1). https://doi.org/10.1021/acsptsci.0c00012
Venneti, K. C., & Hewage, C. M. (2011). Conformational and molecular interaction studies of glucagon-like peptide-2 with its N-terminal extracellular receptor domain. FEBS Letters , 585 (2), 346–352. https://doi.org/10.1016/j.febslet.2010.12.011
Whalen, E. J., Rajagopal, S., & Lefkowitz, R. J. (2011, March). Therapeutic potential of β-arrestin- and G protein-biased agonists.Trends in Molecular Medicine , Vol. 17, pp. 126–139. https://doi.org/10.1016/j.molmed.2010.11.004
Willard, F. S., Campbell, J. E., & Sloop, K. W. (2020).Tirzepatide is an imbalanced and biased dual GIP and GLP-1 receptor agonist .
Wisniewski, K., Sueiras-diaz, J., Jiang, G., Galyean, R., Lu, M., Thompson, D., … Schteingart, C. D. (2016). Synthesis and Pharmacological Characterization of Novel Glucagon- like Peptide ‑ 2 (GLP-2) Analogues with Low Systemic Clearance . 2 . https://doi.org/10.1021/acs.jmedchem.5b01909
Wu, F., Yang, L., Hang, K., Laursen, M., Wu, L., Han, G. W., … Stevens, R. C. (2020). Full-length human GLP-1 receptor structure without orthosteric ligands. Nature Communications , 11 (1), 1–10. https://doi.org/10.1038/s41467-020-14934-5
Yamazaki, K., Kagaya, T., Watanabe, M., Terauchi, H., Iida, D., Fukumoto, H., … Nagakawa, J. (2013). A novel truncated glucagon-like peptide 2 (GLP-2) as a tool for analyzing GLP-2 receptor agonists. Biomedical Research (Tokyo, Japan) , 34 (3), 129–136.
Yusta, B., Huang, L., Munroe, D., Wolff, G., Fantaske, R., Sharma, S., … Drucker, D. J. (2000). Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology . https://doi.org/10.1053/gast.2000.16489
Yusta, B., Matthews, D., & Koehler, J. A. (2019). Localization of Glucagon-Like Peptide-2 Receptor Expression in the Mouse.Endocrinology , 160 (8), 1950–1963. https://doi.org/10.1210/en.2019-00398
Zhang, H., Qiao, A., Yang, L., Van Eps, N., Frederiksen, K. S., Yang, D., … Wu, B. (2018). Structure of the glucagon receptor in complex with a glucagon analogue. Nature , 553 (7686), 106–110. https://doi.org/10.1038/nature25153
Zhang, Y., Sun, B., Feng, D., Hu, H., Chu, M., Qu, Q., … Skiniotis, G. (2017). Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature , 546 (7657), 248–253. https://doi.org/10.1038/nature22394
Zhao, L. H., Ma, S., Sutkeviciute, I., Shen, D. D., Edward Zhou, X., De Waal, P. W., … Zhang, Y. (2019). Structure and dynamics of the active human parathyroid hormone receptor-1. Science ,364 (6436), 148–153. https://doi.org/10.1126/science.aav7942
Zhao, P., Liang, Y. L., Belousoff, M. J., Deganutti, G., Fletcher, M. M., Willard, F. S., … Wootten, D. (2020). Activation of the GLP-1 receptor by a non-peptidic agonist. Nature , 577 (7790), 432–436. https://doi.org/10.1038/s41586-019-1902-z