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Abstract

We introduce the concept of generalized norm in linear vector spaces
which extends the classical norm. Using that generalized norm we pro-
vide a generalization of Schauder’s type theorem. Next we give some
applications of this theorem to find solutions of initial value problems.
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1 Introduction and historical coments

In last hundred years were produced many results related to fixed points of a
function F mapping a given set T of a topological space X into itself. The most
popular becomes two: a Banach contraction mapping and a Schauder’s fixed
point theorem. The first is based on properties of F determined by a metric
defined on the set T . The second is based on compactness of the function F and
convexity of T . Since the forties of the former century many extensions of the
Banach contraction theorem were made. Mainly they concern of different gen-
eralizations of constructing metrics on T also of vector type (see Kada et al. [9],
Lin and Du [15], Suzuki [19], Wlodarczyk and Plebaniak [23]). However always
it was assumed that these generalized metrics were of contraction types. Thus a
kind of fixed points theorems were stated. It is worth to stress that not all those
extensions of Banach contractions had nice applications in nonlinear analysis.
The Schauder fixed point theorem had also many extension in that time, the
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first by Tychonoff: the existence of a fixed point for each weakly continuous
self-mapping of a weakly compact convex subset of a Banach space, several by
Browder see [3] using the concept of asymptotic fixed point theorems and of de-
formations of non-compact mapping, weakening the compactness condition by
Darbo [5], Klee [11], Górniewicz and Rozploch-Nowakowska [7], Bonheure and
De Coster [2], Jiang et al. [8], Rachunkov a et al. [17] , Torres [21], [22], Chu
and Torres [4]) to mention a few. It is interesting that in the literature there
are not papers treating extensions of Schauder’s fixed point theorem which deal
with generalizations of metrics or norms in case of normed spaces. Of course,
compactness relates always to topology of X and weakening it means we change
the topology of X. However for applications, in particular in nonlinear analysis,
it is essential to have at hand the type of a metric or a norm we deal with. The
extension of Schauder theorem to semilinear spaces with applications to fuzzy
fractional integral equations we find in[1]. The aim of this paper is just to follow
the ideas related to generalization of a norm in the linear space and to state
a generalization of Schauder’s fixed point theorem for this linear space with a
generalized norm. We would like to stress that our generalized norm is not a
pseudomodular (see [16]) in spite that we assume that it is convex. Next several
applications of that generalized theorem to differential and integral equations
are presented. The paper is organized as follows. In Section 2, in a vector space,
we introduce a concept of generalized norm and some consequences of this idea.
In Section 3, we proved the generalization of Schauder type theorem with re-
spect to the new generalized norm. In Section 4 we present several applications
of that new theorem to differential and integral equations.

2 Preliminaries

Let T be a non-empty, convex subset of a normed space (X, ||·||); Y be a compact
subset of T and let A be a nonlinear operator on T . We recall the Schauder’s
theorem [18], but not in the most general case as we are interested in different
extension - we want to generalize the norm in (X, || · ||) and just for such space
with the generalized norm to extend the classical Schauder’s thoerem.

Theorem 2.1 Assume that:

(S1) AT ⊂ Y ;

(S2) A is continuous on T .

Then there exists a fixed point of A, i.e. there exists u ∈ T such that
Au = u.

It is worth noticing, that Schauder’s fixed point theorem does not require
any contraction assumption. That kind of assumption was required in the Ba-
nach fixed point theorem, it implies uniqeness of fixed point. The Schauder’s
fixed point theorem does not give us the uniqueness of the fixed point. In order
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to get uniqueness we need additional assumptions on A (see [10]). Since solv-
ing nonlinear differential equations, the uniqueness is not always possible, thus
Schauder’s fixed point theory is still useful in this area. As we mentioned in the
former section since 30’ties of the former century appeared in literature a huge
number of differnet type of generalizations of that theorem. These generaliza-
tions mainly weakend in different way the type of compactness of the image of
the operators. We go in different direction of generalization, we generalize the
norm in X. To this effect let us recall ideas of the proof of Theorem 2.1. The
basis of the proof is to reduce the existence of fixed point for A to finite dimen-
sional case i.e. to apply the Brouwer theorem. It is done by a construction of a
finite approximation of the compact set Y and next a finite convex combination
of continuous functions which is used to define a finite approximation of our
operator A. The essential point in all those calculations is the convexity of the
norm || · ||. The homogeneity and the triangle condition of || · || are not used
in its strict form only the convexity property. This is why in this paper we
replace in the space X the norm || · || by a certain convex function and we prove
Schauder’s type theorem in X with a such generalized norm.

Thus we introduce the following concept of generalized norm on X. Through-
out this and next sections X denotes a linear vector space with a topology
determined just by the generalized norm j.

Definition 2.1 A map j : X → [0,∞], is said to be a generalized norm on X
if the following two conditions hold:

(j1) j(0) = 0 and there exists at least one x 6= 0 in X such that 0 < j(x) <∞;

(j2) j is convex i.e. j(ηx+ (1− η)y) ≤ ηj(x) + (1− η)j(y), x, y ∈ X, η ∈ [0, 1].

We observe the following remark.

Remark 2.1 Let the map j : X → [0,∞] be a generalized norm on X. If X is
a normed space (X, || · ||) then || · || : X → [0,∞) is a generalized norm on X.

The idea to generalize the notion of norm in linear space, to some extend,
is not new. It appeared when the measurable function space of Orlicz has been
investigated. Then first so called N -function was defined which has been to be
convex, finite, positive and its derivative right-continuous, at zero equal to zero
and at ∞ equal to ∞. The function j(x) = |x|, x ∈ R does not satisfy the
conditions that its derivative is right-contiuous and at zero is zero. Moreover
many other restrictive conditions are imposed on j and they, in fact, allow to
define a norm on a subset of the space of measurable functions. It is worth to
note that such a subset with that norm not necessary is linear space - additional
restriction on j are imposed, i.e. all is done to build a norm (from j) in this
space of functions. That concept is deeply investigated e.g. in the book [14].
Our approach is different, we keep the conditions on j described in the above
definition and adopt suitable, known theorems to that space - the main theorem
here is the Schauder theorem.
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The generalized norm j allows us to define a new topology in X with respect
to which the operations

(x, y)→ x+ y of X ×X into X, (λ, x)→ λx of R×X into X (2.1)

are continuous.

Definition 2.2 Let a map j : X → [0,∞] be a generalized norm on X. The
topology of X that has as a base the collection of all open balls

Bj(x, ε) = {y : j(x− y) < ε } for all x ∈ X, ε > 0

is said to be generated by j. This topological space will be denoted by (X, j(·)).

We observe that by (j1) and (j2), it is clear that j(·) is continuous in (X, j(·))
on each open set on which it is bounded and the operations (2.1) are continuous
there. However we should have in mind that as we admit the function j to
assume +∞ the space (X, j(·)) may not by linear but it is convex. We provide
the definition of j-bounded and j-compact subset in (X, j(·)).

We assume through the paper that the map j : X → [0,∞] is a generalized
norm on X and (X, j(·)) is a topological space generated by j.

Definition 2.3 A subsets T ⊂ (X, j(·)) is j-bounded if

T ⊂ Bj(0, n) for some n ∈ N

Now we define a j-compactnes in (X, j(·))

Definition 2.4 A space (X, j(·)) with the property that any covering of a set
T ⊂ X by open balls Bj(x, ε) has a finite subcovering i.e. there exists N ∈ N
such that T ⊂ ∪Ni=1Bj(xi, εi) we call j-compact.

Throughout always compact sets will mean compact in (X, j(·)), i.e. j-
compact. Note that, if a map j : X → [0,∞] is a generalized norm on X, then
from (j1) and (j2), we conclude that open balls Bj(x, ε) are convex, for each
ε > 0. Thus, in fact, (X, j(·)) is locally convex space.

According to the above definition of the generalized norm j : X → [0,∞]
and a topological space generated by j, we define the following new natural
concepts of j-completeness of space (X, j(·)) and j-convergent of sequences in
(X, j(·)).

Definition 2.5 (i) We say that a sequence {um}∞m=1 in X is j-Cauchy sequence
in X if

lim
m→∞

sup
n>m

j(un − um) = 0.

(ii) Let u ∈ X and let {um}∞m=1 be a sequence in X. We say that {um}∞m=1 is

j-convergent to u (we denote um
j→ u) if

lim
m→∞

j(um − u) = 0.
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(iii) We say that a sequence {um}∞m=1 ⊂ X is j-convergent in X if there exists
u ∈ X such that {um}∞m=1 is j-convergent to u.

(iv) If all j-Cauchy sequences {um}∞m=1 in X are j-convergent in X, then
(X, j(·)) is a j-complete space.

It is worth noticing, that similar to the classic case, we may define sequen-
tially j-compactness of T ⊂ (X, j(·)). A subset T of topological space (X, j(·))
is sequentially j-compact if any infinite sequence of points sampled from T has
an infinite subsequence that is j-converged to some point of T .

Remark 2.2 A set T ⊂ X is j-compact in (X, j(·)) if and only if it is j-
sequentially compact in (X, j(·)).

Next, we define j-closedness of some subset T ⊂ X.

Definition 2.6 A set T ⊂ X is j-closed in (X, j(·)) if for each sequence {um}∞m=1

in T such that um
j→ u (i.e. {um}∞m=1 is j-convergent to some u ∈ X in (X, j(·)))

we have u ∈ T .

Finally, using generalized norm, we may define the j-continuous and com-
pletely j-continuous map in X.

Definition 2.7 Let A : X → X.
(I) We say that a mapA is a j-continuous in X, if for each sequence {um}∞m=1

in X such that um
j→ u (i.e. {um}∞m=1 is j-convergent to u ∈ X in (X, j(·))) we

have

lim
m→∞

j(Aum −Au) = 0.

(II) We say that a map A is completely j-continuous in X, if the image by A of
each j-bounded set in (X, j(·)) is contained in a j-compact subset of (X, j(·)).
(III) We say that a map A is j-compact inX if A(X) is contained in a j-compact
subset of (X, j(·))

3 Schauder typ theorem

The main result of this paper is to show that a kind of a fixed point theorem may
be proved in the space (X, j(·)) under additional assumption on the topological
structure of the image of the operator A.

Theorem 3.1 (Schauder type) Let T be a j-bounded, convex subset of (X, j(·))
and A a map acting in (X, j(·)). Assume that:

(Sj1) AT ⊂ T ;

(Sj2) A is completely j-continuous on T.

Moreover assume for some j-compact subset Y such that AT ⊂ Y ⊂ T
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(Sj3) j(y) > 0 at each point of y ∈ Y, y 6= 0.

Then there exists a fixed point of A, i.e. there exists u ∈ T such that
Au = u.

Proof: In spite of the fact that the proof of this theorem sounds as the proofs
of most classical Schauder theorems we proceed it in details. Let AT ⊂ Y , Y
- j-compact. Since T is j-bounded, so j is continuous in T and in particular in
Y ⊂ T as well j(y) > 0, y ∈ Y, y 6= 0. Choose sufficiently small ε > 0. Now we
can successively, pick y1, y2, y3, ... in Y so that

j(yi − yk) ≥ ε for 1 ≤ i < k ≤ n. (3.1)

We keep picking new points yn as long as we can. It is clear we stop with some
finite n; for otherwise one could pick an infinite sequence of points y1, y2, y3, ...
that satisfied the inequalities (3.1) and this violates our assumption that Y is
j-compact. The finite set y1, ...yn is ε-j-dense in Y in j topology i.e. for every
y ∈ Y we have

j(yi − y) < ε for some i ∈ {1, ..., n}.

Define the convex set

Tε =

{
η1y1 + ...+ ηnyn :

n∑
i=1

ηi = 1, ηi ≥ 0

}
.

Of course, Tε ⊂ T as T is convex. Recall also that Y ⊂ T . We construct a
j-continuous function pε(y) that approximates y:

j(pε(y)− y) < ε for all y ∈ Y. (3.2)

To do it we define, for i = 1, ..., n, y ∈ Y ,

ϕi(y) =

{
0 if j(yi − y) ≥ ε,

ε− j(yi − y) if j(yi − y) < ε.
(3.3)

Each of these n functions ϕi(y) is j-continuous (as j is bounded and convex
in T and thus continuous in T in topology of (X, j(·))), and (3.1) guarantees
ϕi(y) > 0 for some i = 1, ..., n. Next we construct the n j-continuous functions

ηi(y) = ϕi(y)/s(y), i = 1, ..., n, y ∈ Y

where

s(y) = ϕ1(y) + ...+ ϕn(y) > 0.

Notice that ηi(y), i = 1, ..., n satisfy
∑n
i=1 ηi(y) = 1, ηi(y) ≥ 0. Hence we can

define j-continuous function

pε(y) = η1(y)y1 + ...+ ηn(y)yn.
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It is clear that pε : Y → Tε, moreover by (3.3) ηi(y) = 0 unless j(yi − y) <
ε. Therefore, pε(y) is a convex combination of just those points yi for which
j(yi − y) < ε and so by (j2) we have

j(pε(y)− y) = j(

n∑
i=1

ηi(y)(yi − y)) ≤
n∑
i=1

ηi(y)j(yi − y) < ε.

Thus we get (3.2). Put fε(x) = pε(Ax), x ∈ Tε, fε is j-continuous in Tε.
Note that Tε lies in the finite-dimensional linear subspace L spanned by points
y1, ..., ynÂ· If this subspace has dimension n, it can be put in one-to-one con-
tinuous correspondence with the familiar Euclidian vector space Rn. Explicitly,
if bl, ..., bn are a basis for the subspace L of X we set up the correspondence

c1b1 + ...+ cnbn ↔


c1
·
·
·
cn

 in Rn.

Hence the set Tε in X corresponds bicontinuously to the convex hull Cz of some
z1, ..., zn from Rn with the correspondence

y1 ↔ z1, ..., yn ↔ zn

and

y = η1y1 + ...+ ηnyn ↔ η1z1 + ...+ ηnzn.

The j-continuous mapping fε of Tε, into itself corresponds to a continuous
mapping gε of the Euclidian set Cz into itself. The set Cz in Rn is a closed,
bounded, convex set. The Brouwer fixed-point theorem guarantees a fixed point

zε = gε(zε) in Rn.

The corresponding point is a fixed point in X

fε(xε) = xε.

Set yε = Axε. Now let ε → 0. Take a sequence {εn}∞n=1 for which yn is
j-converging to a limit in y∗ ∈ Y (since Y is j-compact)

Axεn = yεn
j→ y∗, as εn → 0. (3.4)

We have

xε = fε(xε) = pε(Axε) = pε(yε), xε = yε + [pε(yε)− yε]. (3.5)

But we have

j(pε(y)− y) < ε for all y ∈ Y
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so (3.4) and (3.5) imply

j(xεn − y∗)→ 0, as εn → 0.

Since A is j-continuous (3.4) yields the fixed point: Ay∗ = y∗.

In applications - next section we use in some cases stronger assumption on
the topological structure of X i.e. on the generalized norm j:

(j3) j(x) = 0 implies x = 0.

Proposition 3.1 Under (j1) − j(3) a linear map A : (X, j(·)) → (X, j(·)) is
j-continuous if and only if there exists a real number c such that j(Ax) ≤ cj(x)
for all x ∈ X.

Proof: First, we assume that there exists a real number c such that j(Ax) ≤
cj(x) for all x ∈ X. Then for each u, v ∈ X we have

j(Au−Av) ≤ j(A(u− v)) ≤ cj(u− v).

Hence, the linear map A is j-continuous. Now, we assume that the linear map
A is j-continuous. Thus A is j-continuous at 0. Hence, there exists r > 0, such
that u ∈ Bj(0, r) implies Au ∈ Bj(0, 1). On another words, if j(u) ≤ r, then
j(Au) ≤ 1. Let u ∈ X, such that j(u) > r and j(Au) > 1 be arbitrary and fixed.
Put r̄ = max{j(u), j(Au)}, s = r/(r̄)2. Then j(su) ≤ sj(u) ≤ r, so j(A(su)) ≤
1, which means sj(Au) ≤ 1. In consequence j(A(u)) ≤ 1/s = r−1j(u). Thus
there exists c = 1/r such that j(Ax) ≤ cj(x) for all x ∈ X. �

Definition 3.1 The j-norm of a linear operator A acting in (X, j(·)) we define
as:

j(A)N = inf{c ≥ 0 : j(Ax) ≤ cj(x) for all x ∈ X}

or equivalently

j(A)N = sup{j(Ax) : x ∈ X with j(x) ≤ 1}.

It is worth noticing, that j(A)N satisfies (j1), (j2) and by Proposition 3.1
we have that

j(Ax) ≤ j(A)N j(x), x ∈ X.

4 Some applications of main ideas

Now, we provide examples to illustrate the value of the generalized norm.
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4.1 j-compactness of derivatives

First we give some examples of j-compact and j-completely continuous opera-
tors.

Let (X, j(·)) be the space with the generalized norm j such that j does not
disappear in some neighborhood of 0. Let U ⊂ X be open in j topology, and
F : U → X be a j-compact map that has derivative G = F ′(x0) at the point
x0 ∈ U in (X, j(·)) i.e.

F (x0 + h)− F (x0) = G(h) + ω(h)

in a neighborhood of x0, where

lim
h→0

j(ω(h))

j(h)
= 0. (4.1)

Theorem 4.1 Let (X, j(·)) be the space with the generalized norm j such that
j is not zero in some neighborhood of 0. Let U ⊂ X be open in j topology,
and F : U → X be a j-compact map that has derivative G = F ′(x0) at the
point x0 ∈ U in (X, j(·)). Then G is a j-completely continuous linear map from
(X, j(·)) to (X, j(·)).

Proof: Assume contradiction, that G is not a j-completely continuous linear
map. Then for some ε > 0 there is a sequence {hn} in X with j(hn) ≤ 1 such
that

j(
1

2
G(hn − hm)) ≥ ε, for all n,m = 1, 2, ... (n 6= m). (4.2)

By (4.1) there is a 1 > δ > 0 such that x0 + δhn ∈ U for all n = 1, 2, ... and
j(h) < δ implies j(ω(h)) ≤ (ε/4)j(h). Hence we infer that for all n,m with
n 6= m,

1

2
j(F (x0 + δhn)− F (x0 + δhm)) =

1

2
j([F (x0 + δhn)− F (x0)]

−[F (x0 + δhm)− F (x0)]) ≥ δj(1

2
G(hn − hm))− 1

2
j(ω(δhn)− ω(δhm))

≥ δε− δε/2 = δε/2.

The last is in contradiction with the assumption that F is j-compact.�

4.2 Applications of generalized Schauder’s thoerm to or-
dinary differential equation.

Now, we use the generalized Schauder theorem, to find a solution of some initial
value problem. Let (X, j(·)) be the space with the generalized norm j and I a
closed subset of R. Let Z be the space of continuous functions I → (X, j(·))
with the generalized norm ‖y‖Z = maxx∈I j(y(x)). It is clear that ‖·‖Z satisfies
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conditions (j1), (j2) of the generalized norm. Let (x0, y0) ∈ I × X. Consider
the initial value problem

y′ = f(x, y), y(x0) = y0, (4.3)

where f : R×(X, j(·)) ⊇ Q → (X, j(·)) is j-continuous and j-bounded on some
region

Q = {(x, y) : |x− x0| ≤ a, j(y − y0) ≤ b} , a, b > 0,

where j is finite

Theorem 4.2 There exists δ > 0 and a j-continuous function φ : I ⊇ Ī =
[x0−δ, x+δ]→ (X, j(·)) such that y = φ(x) is a (not necessary unique) solution
to the initial value problem 4.3.

Proof: The proof of this fact is very similar to the classical initial value
problem i.e. when it is considered in the space (X, || · ||). However we repeat
that proof for the case of the space Z.

Put K = max(x,y)∈Q j(f(x, y)) and define δ = min(a, b/K), M = {y ∈
Z : ‖y − y0‖Z ≤ b}. Assume for technical reason that δ < 1. The set M is
nonempty, convex, closed and bounded in Z. Define the map A : M → Z by

A(y(x)) = y0 +

∫ x

x0

f(t, y(t))dt. (4.4)

We have ‖A(y)− y0‖Z ≤ maxx∈I j(
∫ x
x0
f(t, y(t))dt) ≤ δK ≤ b. Thus A(M) ⊆

M . Next, we show that A is continuous in Z. Take {yn} ⊆ M such that
yn → y in Z. Then ‖A(yn)−A(y)‖Z = maxx∈I j(A(yn(x)) − A(y(x))) =

maxx∈I j(
∫ x
x0

[f(t, yn(t)) − f(t, y(t))]dt) ≤
∫ x0+δ

x0−δ j(f(t, yn(t)) − f(t, y(t)))dt. As

t → f(t, yn(t)) − f(t, y(t)) is j-continuous on the compact interval I thus it is
j-uniformly continuous and hence

lim
n→∞

‖A(yn)−A(y)‖Z ≤
∫ x0+δ

x0−δ
lim
n→∞

j(f(t, yn(t))− f(t, y(t)))dt = 0.

Therefore A is continuous in Z.
Next we show that A(S) is j-equicontinuous for every bounded in Z set

S ⊆M . Really, for |x1 − x2| → 0, we have

sup
y∈S

j((A(y(x1))−A(y(x2))) ≤ K |x1 − x2| → 0.

A(S) is bounded in Z since supy∈S j((A(y(x))) = supy∈S j(y0+
∫ x
x0
f(t, y(t))dt) ≤

j(x0) + b. The last means by Ascoli-Arzela theorem that A(S) is precompact
for each bounded in Z set S ⊆M .

By Schauder type theorem A has a fixed point φ ∈ M . From (4.4) we infer
φ : I → (X, j(·)) is continuous solution to our initial value problem.�
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Remark 4.1 One can wonder does the above theorem make sense i.e. can it
be applied to any useful problem. We should have in mind that in mathematics
there exist many spaces of functions which can not be normed or locally convex
e.g.: the space D(U) of smooth functions with compact support in U ⊆ Rn, the
spaces Lp(µ) with an atomless, finite measure µ and 0 < p < 1.

We observe, that in Definition 2.1, the condition (j1), (j2) are very general.
By replacing this condition by more restrictive condition, we may define different
generalized norms. This tool will be very useful in solution of some differential
equations.

Definition 4.1 A map ̂ : X → [0,∞), is said to be a generalized metric on
X if it satisfies instead of (j1) and (j2) the conditions:

(j1′) j(0) = 0,

(j2′) j(x+ y) ≤ j(x) + j(y), x, y ∈ X.

We show the advantage of considering (4.3) in the space (X, j(·)).
Example 4.1. Let X = R2, ̂(s) = arctan |s|, s ∈ R and for y = (y1, y2) ∈

R2 we define

j(y) = |y2| .

Notice that ̂ satisfies (j1′), (j2) and j satisfies (j1) and (j2), but j is not
standard norm. Take I = [−π/2, π/2] and two spaces of continuous func-
tions: C(I, ̂(·)) i.e. z ∈ C(I, ̂(·)) if I 3 x → ̂(z(x)) is continuous and the
usual space of continuous functions C(I,R). Note, they are not the same space,
C(I,R)  C(I, ̂(·)). Next denote by Z = (C(I, ̂(·))× C(I,R)) the space with
the generalized norm ‖y‖Z = maxx∈I j(y(x)), y = (y1, y2) ∈ Z. Suppose that
f1 : I × I × Q → R is continuous and f2 : I × I × Q → R is j-continuous and
j-bounded where

Q =
{
y2 :

∣∣y2 − y0
2

∣∣ ≤ b} , b > 0, y0 = (y0
1 , y

0
2)

so (4.3) assumes the form

y′1 = f1(x, y), y1(x0) = y0
1 , (4.5)

y′2 = f2(x, y), y2(x0) = y0
2 .

Note that because ̂(·) is forming j(·) it is enough to consider f in I × I × Q
and the quantity K = max(x,y)∈I×I×Q j(f(x, y)) depends mainly on

max
(x,y)∈I×I×Q

|f2(x, y1, y2)| .

Hence δ = min(a, b/K) depends, in fact, only on the behavior of f2. Thus f1

has not any influence on the size of δ i.e. on the length of I1 = [x0−δ, x+δ] ⊂ I
on which the solution y = φ(x) = (φ1(x), φ2(x)) of (4.5) exists (by Theorem
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4.2). However, we must emphasis φ ∈ C(I, ̂(·))× C(I,R) and this means that
φ1 ∈ C(I, ̂(·)) but C(I, ̂(·)) is the space of functions with may be bad behavior
at the ends of I. Nevertheless, if the second equation in (4.5) causes that δ < π/2
then the functions φ2 ∈ C(I,R)) are continuous in C(I, ̂(·)).

Remark 4.2 One can consider the above example as trivial. However it shows
that the generalized norm allows to consider some equations of which only some
unknown coordinate of solutions we are interested and other we can skip in spite
of that they are appearing in all equations.

In the next example we show that the generalized norm can be used to find
solution of (4.3) having values in some ball.
Example 4.2. Let X = R and B(0, r), r > 1 some ball in X. Define
j : X → R+∪+{∞} as j(y) = |y| if y ∈ clB(0, 1) and j(y) = +∞ if y /∈ clB(0, 1).
It is clear that j satisfies conditions (j1) and (j2). Let (x0, y0) ∈ R × B(0, r).
Consider the initial value problem

y′ = f(x, y), y(x0) = y0, (4.6)

where f : R×(X, j(·)) → (X, j(·)) is measurable in x and j-continuous in y.
Denote by D(R) the space of continuous functions in R with compact support
and by Dx0

(R) its subset of functions with y(x0) = y0 and having values in
clB(0, r) with the generalized norm ‖y‖Dx0

= maxx∈R j(y(x)). In Dx0(R) the

generalized norm ‖·‖Dx0
is finite. The set Dx0

(R) is nonempty, convex and

bounded in (X, j(·)). Assume that |f | is bounded by r in R×B(0, r). The map
A : Dx0

(R)→ D(R) defined by

A(y(x)) = y0 +

∫ x

x0

f(t, y(t))dt, x ∈ [x0 − δ, x0 + δ], (4.7)

where δ is such that 2δ < r maps Dδ
x0

(R) into itself; Dδ
x0

(R) is the set of
functions from Dx0

(R) restricted to the interval [x0 − δ, x0 + δ]. Then similarly
as in the proof of Theorem 4.2 we prove that all assumptions of Schauder type
theorem are satisfied and thus the equation (4.6) has a solution in Dδ

x0
(R).

4.2.1 The Hammerstein operators.

Definition 4.2 Let Ω be a bounded domain in Rn, and letK : Ω̄×Ω̄×R→ R be
Borel measurable. For convenient we assume that vol Ω = 1. By C(Ω̄) we denote
the space of continuous real-valued functions on Ω̄ with ‖u‖ = supx∈Ω̄ |u(x)|.
The Urysohn operator is a nonlinear map F : C(Ω̄) → C(Ω̄), such that for
x ∈ Ω̄, u ∈ C(Ω̄)

(Fu)(x) =

∫
Ω

K(x, y, u(y))dy.

Let ̂ : R→ R+∪{∞} satisfy (j1) and (j2), then ̂ as finite and convex
is continuous in the dom of ̂ (the set on which ̂ is finite). We assume that
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(x, y, u)→ ̂(K(x, y, u)) is continuous in Ω̄×Ω̄×R and when K(x, y, u) ∈ dom ̂.
Let x ∈ Ω̄, u ∈ C(Ω̄). Define

j(u) = sup
x∈Ω̄

̂(u(x)).

Of course, j satisfies (j1) and (j2), thus it is a generalized norm for C(Ω̄).
Now, we introduce the concept of j-equicontinuity of a set K ⊂ (C(Ω̄), j(·)).

Definition 4.3 The set K is j-equicontinuous provided for every ε > 0 there
is a δ > 0 such that |x1 − x2|Rn < δ implies j(u(x1) − u(x2)) < ε for every
x1, x2 ∈ Ω̄ and every u ∈ K.

Remark 4.3 A subset of (C(Ω̄), j(·)) is relatively j-compact if and only if it is
bounded in (C(Ω̄), j(·)) and j-equicontinuous (compare Arzelà-Ascoli theorem).

We proof the following property of the Hammerstein operator.

Proposition 4.1 The Urysohn operator F is j-completely continuous when
K(x, y, u) ∈ dom ̂.

Proof:
Let {um}∞m=1 be an arbitrary sequence in C(Ω̄) such that um

j→ u, u ∈ C(Ω̄)
and K(x, y, um(y)) ∈ dom̂, m = 1, 2, ..... Then

j(Fum(x)− Fu(x)) = j(

∫
Ω

K(x, y, um(y))dy −
∫

Ω

K(x, y, u(y))dy)

= j(

∫
Ω

[K(x, y, um(y))−K(x, y, u(y))]dy)

≤
∫

Ω

j(K(x, y, um(y))−K(x, y, u(y)))dy.

Since (x, y, u)→ ̂(K(x, y, u)) is continuous in Ω̄× Ω̄× R, thus

lim
m→∞

j(Fum(x)− Fu(x)) = lim
m→∞

∫
Ω

j(K(x, y, um(y))−K(x, y, u(y)))dy

=

∫
Ω

lim
m→∞

[j(K(x, y, um(y))−K(x, y, u(y)))]dy

= 0

In consequence, limm→∞ j(Fum(x)− Fu(x)) = 0.
Next we prove, that the image of each bounded set in (C(Ω̄), j(·)) is con-

tained in a j-compact subset of (C(Ω̄), j(·)), i.e. is relatively j-compact. Let T
be any bounded set in (C(Ω̄), j(·)) and let n be such that supu∈T j(u) ≤ n. Let
{un} be an arbitrary element of T and v = F (u). We show that:
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(i) v is bounded in (C(Ω̄), j(·)): put Mn = sup{̂(K(x, y, u)) : x, y ∈ Ω̄,
u ∈ B(0, n)} <∞. We have (as ̂ is continuous and satisfies (j2))

j(v) = sup
x∈Ω̄

̂(v(x)) ≤ sup
x∈Ω̄

∫
Ω

̂(K(x, y, u(y)))dy ≤Mnµ(Ω).

(ii) v is j-equicontinuous: take ε > 0; because (x, y, u) → ̂(K(x, y, u)) is
uniformly continuous in Ω̄×Ω̄×[−n, n] there is a δ > 0 such that |x1 − x2|Rn < δ
implies ̂(K(x1, y, u)−K(x2, y, u)) < ε for all y ∈ Ω̄ and every u ∈ [−n, n], and
consequently,

̂ (v(x1)− v(x2)) ≤
∫

Ω

̂(K(x1, y, u(y))−K(x2, y, u(y)))dy ≤ εµ(Ω)

whenever |x1 − x2|Rn < δ.
Thus, by Remark 4.3, the set

{v : v = F (u), u ∈ T}

is j-equicontinuous.�

Example 4.2. The Hammerstein operator is of the form

(Fu)(x) =

∫
Ω

K(x, y)f(y, u(y))dy

where f : Ω̄ × R→ R and K : Ω̄ × Ω̄→ R, Ω ⊂ Rn be open, bounded and
vol Ω = 1.

Now, using the generalized norm, we define Niemytzki operator with respect
to j.

Let ̂ : R→ R+ ∪ {∞} satisfy (j1),(j2), then ̂ as finite and convex is also
continuous in the standard topology of R in the dom ̂. Denote by (Lj(Ω, ̂(·))
the generalized space of Lebesgue measurable functions which are ̂-integrable
i.e.

∫
Ω
̂(v(s))ds <∞ with the generalized norm

j(v) =

∫
Ω

̂(v(s))ds. (4.8)

We introduce also the Fenchel conjugate ̂∗ of ̂ and the space (Lj(Ω, ̂∗(·)) of
Lebesgue measurable functions which are ̂∗-integrable i.e.

∫
Ω
̂∗(v(s))ds < ∞

with the generalized norm

j∗(v) =

∫
Ω

̂∗(v(s))ds. (4.9)

Let us observe that by Fenchel-Young ineguality:

uv ≤ ̂(u) + ̂∗(v)

if u ∈ Lj(Ω, ̂(·)) and v ∈ Lj(Ω, ̂∗(·)) then uv is integrable. Note that the space
Lj(Ω, ̂(·)) extends the type of Orlicz space namely if ̂ satisfies, in addition,
growth conditions at∞ and at 0 (i.e. ̂ is a Young function) and taking in (4.8)
|v| instead of v.
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Definition 4.4 Assume that:
(i) v → f(s, v) is continuous for almost all s ∈ Ω,
(ii) s→ f(s, v) is Lebesgue measurable for all v ∈ R.
Additionally we assume that:
(iii) for all x, y ∈ Ω̄ the functions x → K(x, y), y → K(x, y) are Lebesgue

measurable and ̂-integrable,
(iv) the following inequality holds∫

Ω

∫
Ω

̂(K(x, y))dxdy <∞.

We define the nonlinear map f̂ : (Lj(Ω, ̂(·)) → (Lj(Ω, ̂∗(·)), (Niemytzki op-
eraor) by

(f̂u)(y) = f(y, u(y)), y ∈ Ω̄ (4.10)

and K a linear integral operator

(Kv)(x) =

∫
Ω

K(x, y)v(y)dy. (4.11)

Remark 4.4 Under (iii) and (iv) the linear operator (4.11) K : Lj(Ω, ̂∗(·))→
Lj(Ω, ̂(·)) is complete continuous.

First we prove j-continuity of f̂ .

Theorem 4.3 Let f̂ : Lj(Ω, ̂(·)) → Lj(Ω, ̂∗(·)), i.e. for each u ∈ Lj(Ω, ̂(·)),
(f̂u)(·) ∈ Lj(Ω, ̂∗(·)). Then f̂ is j-continuous.

Proof. We follow the proof of Krasnosielski [13] for classical Niemytzki op-

eraor. Thus, first consider the case (f̂0)(·) = 0 and we show that f̂ is continuous
at zero in Lj(Ω, ̂(·)). For suppose not; then there exist a sequence of functions
vn ∈ Lj(Ω, ̂(·)), n = 1, ... convergent to zero such that∫

Ω

̂∗(f(s, vn(s)))ds > α > 0, n = 1, ...

and

∞∑
n=1

∫
Ω

̂(vn(s))ds <∞. (4.12)

Next we construct sequences of numbers εk > 0, functions vnk
(·) and sets Ωk ⊂

Ω, k = 1, ...satisfying conditions:
(a) εk+1 <

1
2εk

(b) meas Ωk ≤ εk,
(c)
∫

Ωk
̂∗(f(s, vn(s)))ds > 2

3α,

(d) for each D ⊂ Ω with meas D ≤ 2εk+1implies
∫

Ω
̂∗(f(s, vnk

(s)))ds < α
3 .
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The above construction is described in [13] and we refer the reader to this
book. Consider the sets: Dk = Ωk\

⋃∞
i=k+1 Ωi, k = 1, 2, ... By (a) and (b)

meas

∞⋃
i=k+1

Ωi ≤
∞∑

i=k+1

εi < 2εk+1, k = 1, 2, .... (4.13)

Define

ψ(s) =

{
vnk

(s), if s ∈ Dk, k = 1, 2, ...
0, if s /∈

⋃∞
i=1Di .

From (c), (d) and (4.13) we infer that∫
Dk

̂∗(f(s, ψ(s)))ds =

∫
Dk

̂∗(f(s, vnk
(s)))ds

≥
∫

Ωk

̂∗(f(s, vnk
(s)))ds−

∫
Ωk\Dk

̂∗(f(s, vnk
(s)))ds >

α

3
, k = 1, .... (4.14)

By (4.12) ψ ∈ (Lj(Ω, ̂(·)) and so (f̂ψ)(·) ∈ (Lj(Ω, ̂∗(·)). But from (4.14) we

see that (f̂ψ)(·) /∈ (Lj(Ω, ̂∗(·)), as Di ∩Dj = � for i 6= j and therefore∫
Ω

̂∗(f(s, vnk
(s)))ds ≥

∞∑
k=1

∫
Dk

̂∗(f(s, ψ(s)))ds =∞.

Hence we infer the continuity of f̂ at zero in (Lj(Ω, ̂(·)). For general case we

prove that f̂ is continuous at u0 ∈ (Lj(Ω, ̂(·)). Consider

g(s, u) = f(s, u0(s) + u)− f(s, u0(s)), s ∈ Ω, u ∈ R.

Put (ĝu)(s) = g(s, u(s)). Notice that (ĝ0)(s) = 0. The last and the above imply
the assertion of the theorem.�

In next theorem we prove j-boundedness of f̂ .

Theorem 4.4 Let f̂ map (Lj(Ω, ̂(·)) into (Lj(Ω, ̂∗(·)) i.e. for each u ∈ (Lj(Ω, ̂(·)),
(f̂u)(·) ∈ (Lj(Ω, ̂∗(·)). Then f̂ : (Lj(Ω, ̂(·))→ (Lj(Ω, ̂∗(·)) is j-bounded.

Proof. We again assume that (f̂0)(·) = 0, the general case follows in the

same way as in the proof of the former theorem. By the above theorem f̂ is
continuous at zero. It means there exists r > 0, that if∫

Ω

̂(ϕ(s))ds ≤ r

then ∫
Ω

̂∗(f(s, ϕ(s)))ds ≤ 1, (4.15)
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where ϕ ∈ (Lj(Ω, ̂∗(·)).
For general case we prove that f̂ is j-bounded at u0 ∈ (Lj(Ω, ̂(·)).
Let u(·) ∈ Lj(Ω, ̂(·)) and nr ≤

∫
Ω
̂(u(s))ds ≤ (n+ 1)r, where n ∈ N. Then

there exist Ω1, ...,Ωn+1, Ω =
⋃n+1
i=1 Ωi, such that∫

Ωi

̂(u(s))ds ≤ r, i = 1, ..., n+ 1.

Thus by (4.15)∫
Ω

̂∗(f(s, u(s)))ds ≤
n+1∑
i=1

∫
Ωi

̂∗(f(s, u(s))ds ≤ n+ 1.

Hence

j∗((f̂u)(·)) =

∫
Ω

̂∗(f(s, u(s)))ds ≤ j(u)

r
+ 1.

Therefore theorem is proved.�
It is important to give sufficient conditions for continuity of the operator

f̂ : Lj(Ω, ̂(·))→ Lj(Ω, ̂∗(·)).

Theorem 4.5 If f̂ maps Lj(Ω, ̂(·)) into Lj(Ω, ̂∗(·)) then

̂∗(f(s, u)) ≤ ̂∗(a(s)) + b̂(u),

for some b > 0 and a(·) ∈ (Lj(Ω, ̂∗(·)).

Proof. By Theorem 4.3 there exists b > 0 such that for u ∈ Lj(Ω, ̂(·))
satisfying

∫
Ω
̂(u(s))ds ≤ 1 we have∫

Ω

̂∗(f(s, u(s)))ds ≤ b.

We define ϕ : Ω× C(Ω)→ R, such that

̂∗(ϕ(s, u)) =

{
̂∗(f(s, u))− b̂(u), if ̂∗(f(s, u)) ≥ b̂(u),

0, if ̂∗(f(s, u)) < b̂(u).

We see that if ϕ(s, u) 6= 0 then

̂∗(ϕ(s, u)) ≤ ̂∗(f(s, u))− b̂(u).

Take any u ∈ Lj(Ω, ̂(·)). Put Ω̃ = {s ∈ Ω : ̂∗(ϕ(s, u(s))) > 0}. Let∫
Ω
̂(u(s))ds = n+ε, where n ∈ N and 0 ≤ ε < 1. Then there exist Ω1, ...,Ωn+1,

Ω =
⋃n+1
i=1 Ωi, such that∫
Ωi

̂(u(s))ds < 1, i = 1, ..., n+ 1.
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Hence∫
Ω

̂∗(f(s, u(s)))ds =

n+1∑
i=1

∫
Ωi

̂∗(f(s, u(s))ds ≤ (n+ 1)b

and ∫
Ω

̂∗(ϕ(s, u(s))) ≤
∫

Ω̃

̂∗(f(s, u(s)))ds− b
∫

Ω̃

̂(u(s))ds (4.16)

≤ (n+ 1)b− (n+ ε)b ≤ b.

Let Ωk+1 ⊂ Ωk ⊂ Ω, k = 1, ..., be such that Ω =
⋃∞
k=1 Ωk. Notice that for

almost all s ∈ Ω the function u → ̂(ϕ(s, u)) is continuous therefore for almost
all s ∈ Ω we can define a sequence of functions uk(s), k = 1, ..., such that
uk(s) = 0 for s /∈ Ω and ̂∗(ϕ(s, uk(s))) = max−k≤u≤k ̂

∗(ϕ(s, u)). It is easily to
see that uk(·) ∈ Lj(Ω, ̂(·)). Define the function a(s), s ∈ Ω by

̂∗(a(s)) = sup
−∞<u<∞

̂∗(ϕ(s, u)) = lim
k→∞

̂∗(ϕ(s, uk(s))).

By(4.16) and Fatou Lemma∫
Ω

̂∗(a(s))ds ≤ sup
k

∫
Ω

̂∗(ϕ(s, uk(s))) ≤ b.

Hence a(·) ∈ Lj(Ω, ̂∗(·)). Since

̂∗(a(s)) = sup
−∞<u<∞

̂∗(ϕ(s, u)) ≥ sup
−∞<u<∞

{̂∗(f(s, u))− b̂(u)} ,

therefore

̂∗(f(s, u)) ≤ ̂∗(a(s)) + b̂(u), s ∈ Ω, −∞ < u <∞

and the theorem is proved.�

Remark 4.5 Let us recall that the necessary and sufficient conditions that the
operator f̂ acts from the space Lp into Lq, 1/p+1/q = 1 is the growth condition
for f :

|f(s, u)| ≤ a(s) + b|u|p/q,

where a(·) is in Lq. Note that this implies a polynomial growth of f(s, ·).
The above approach with ̂ and j allows to extend that assumption. However
there is a price we must pay for that: we have to consider different space of
functions, but still functions not their generalizations. For example let us take
for ̂(u) = exp(u2) − 1. Then this ̂ satisfies (j1),(j2). According to Theorem
4.5 and Fenchel inequality (applying to left hand side)

−̂(u) + uf(s, u) ≤ ̂∗(f(s, u)) ≤ ̂∗(a(s)) + b̂(u),
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and then taking into account the definition of ̂

uf(s, u) ≤ ̂∗(a(s)) + (b+ 1) exp(u2).

The last implies that uf(s, u) can be of exponential growth. Thus a new type of
nonlinearity for Hammerstein equation may be investigated. However, we have
to recall that the kernel K has to satisfied then stronger integrability assumption∫

Ω

∫
Ω

exp(K(x, y))2dxdy <∞.
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