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Considering an ecological Allee-like dynamics under linearly uncorrelated perturbations with ran-
dom and nonrandom temporal arrangements we show that a complexity measure, rather than the
standard autocorrelation function, is able to properly explain the fate of extinction and to what
extent the threshold establishing the risk of extinction. Accordingly, these results allows compre-
hending how randomness jeopardises the long-run proliferation of organisms.

I. INTRODUCTION

The study of Ecological problems – namely, population
dynamics – can be easily placed at the spotlight of Com-
plexity. Besides the hard-core interaction between the
biotic and abiotic elements, it is possible to find several
layers of further interactions and dependencies that im-
pact in the evolution of the system. With that respect,
extinction is still the subject of great academic debate
and in the spotlight of opinion public and mass media
because of the rising interest in environmental preserva-
tion and conservation. Several ecological mechanisms of
extinction were discussed in Ref. [1], like distinct rates of
population increase (e.g., fecundity, survival rates, gener-
ation times), differential vulnerability of lineages to habi-
tat loss, introduction of predators, mobility among other
features. Those mechanisms often influence one another
and can also affect and be affected by macroscopic mea-
sures of the ecosystem like the population size/density.
One of those cases is the Allee effect that describes the
relation between population measures and the fitness of
a species [2]. Moreover, mechanisms as those we have
listed are usually translated into parameters when we es-
tablish quantitative descriptions of Ecology. However,
quantities like survival, fecundity, etc., are not fixed in
time and generically subjected to randomness.

Mathematically, randomness can assume alternative
origins implying in different dynamical and statistical
features, namely correlation and dependence. In this
manuscript, we aim at shedding light on the effects cre-
ated by different non-linear proprieties of the randomness
of the ‘parameters’ of a standard Allee effect dynamical
model.

II. LITERATURE REVIEW

From molecular biology [3, 4] (eg, cell mitosis, morpho-
genesis) to collective behaviour [5], passing by evolution
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[6, 7], randomness – including disorder – has shown to be
a key ingredient in Biology [8, 9]. Actually, it is well es-
tablished several of the most important milestones in bi-
ology reached during the last two centuries were achieved
by acknowledging the importance of random dynamics
[10], namely adaptive Brownian motion processes.

For instance, in respect of flocking it is known that
one of the main functions of the collective behavior of
a bird is protection against predators. It is known that
randomness – in the form of bird reshuffling in the flock
– contributes to the alignment order of the flock [11].

Understanding the ecological mechanisms that lead to
the extinction of a species is thus fundamental to con-
serve it. The impact of the different sources of ecological
evolution – particularly those we have made mention to –
have been consistently surveyed in the literature. Consid-
ering the ancestry issue it was observed different lineages
are threatened by distinct mechanisms of extinction, and
unrelated ecological factors predispose taxa to different
sources of extinction risk [12]. In Ref. [13], its authors
pointed that population size and trend in population size
were clearly the best predictors of extinction risk. Mathe-
matical and computational models were widely proposed
to explain the phenomenon of extinction [14–16].

At the level of the resources in ecological systems, it
is possible to find randomness and stochasticity as well.
Namely, simple models incorporating the key features of
time-dependent resources and specific descriptions of sur-
vivorship for consumer species show the importance of
the time dependence of available resources and the role
that allochthonous inputs play on the temporal and spa-
tial abundances of species [17, 18].

Extinction is a major ecological event. Because it cor-
responds to the termination of a species, extinction can
be understood within a Physics framework as a phase
transition event with the emergence of an absorving
state. The Contact Process (CP) is the paradigmatic
model for phase transitions into absorbing states [19]. In
the CP, temporal disorder can be introduced by allowing
the control parameter to be time dependent. For exam-
ple, the authors in [20] showed that in contrast to spatial
disorder, uncorrelated temporal disorder does not for-
bid the existence of discontinuous absorbing phase tran-
sitions, and it can also turn a discontinuous transition
into a continuous one when disorder is sufficiently strong,
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even for low-dimensional systems [21]. Also considering
the CP, the authors in [22, 23] considered the temporal
disorder as an external environmental noise. The results
suggest that the temporal disorder gives rise to an ex-
otic critical point, where the average density and sur-
vival probability decay only logarithmically with time.
In nonequilibrium magnetic models, temporal disorder
acting as a time-dependent magnetic field leads to rich
critical phenomena, with the occurrence of dynamical tri-
critical points [24, 25].

Ecosystems have been regarded as the quintessential
complex system since the interactions between its compo-
nents can feed back to impact such interactions by means
of the macroscopic state that gets established [26]. Ac-
cordingly, considering tools like agent-based or cellular
automata models, a new understanding arises of ecosys-
tems as wholes that emerge in novel ways from possibly
simple, mechanical rules governing interactions among
their parts [27].

Finding robust methods for quantifying spatio-
temporal signals in the presence of noise, nonstationar-
ity and short data series is an active area of research in
many disciplines. For ecosystem applications, we would
expect these methods to detect pattern transitions (i.e.,
sequences of stable, periodic, quasi-periodic, chaotic, or
random trends) as well as where and when they occur
[28].

III. MODEL

A. Extinction dynamics

We consider an ecological dynamics for the propor-
tion of individuals in a given population, p(t), that takes
into account the Allee effect by means of the minimal
ODE [29]

dp(t)

dt
= λ [1− p(t)] p2(t)− α(t) p(t). (1)

The first term on the right hand side is related to repro-
duction occurring at rate λ and the second term is related
to death rate α(t). While in Ref. [29] the death rate is a
constant, here we consider that it is time-dependent.

The reproduction-death dynamics described by
Eq. (III B) also includes the Allee effect [30, 31] that is
an important class of density-dependent phenomenon
which has been widely observed in nature [32]. Apart
from Ecology, the Allee effect is also important in several
research areas such as conservation biology [2], invasion
biology [33] as well as biofilm formation [34, 35],
epidemiology [36–38] and cancer biology [39–42]. Such
variety of domains wherein the Allee effect plays a role
highlights the significance and broad interest of our
work.

An initial insight into Eq. (III B) is obtained from the
steady-state solution for the case with constant death

rate α(t) = a

P∞ =

{
1
2 + 1

2

√
1− 4 aλ Po ≥ P oc and a ≥ λ

4

0 otherwise
(2)

where P oc is the initial density required for the long-run
survival

P oc =
1

2

(
1−

√
1− 4

a

λ

)
. (3)

From Eq. (2), we see that the time-independent model
with α(t) = a presents a discontinuous absorbing
transition[19, 43, 44]. Equation (3) yields the Allee
threshold, ie, the population fraction below which extinc-
tion is the eventual scenario. Thus, the bistable nature
incorporated in Eq. (III B) is the mechanism responsi-
ble for the Allee effect. Frameworks more general than
Eq. (III B) could be considered [45], but we are inter-
ested in a fundamental question: What makes the pure
randomness increase the vulnerability of populations?

B. Protocol for α(t)

As we aim at studying the possible effects of random-
ness on the dynamics of we assume the simplest of the
instances where α alternates between α0 and α1. In or-
der to assess the role of non-linearities in that process we
assume that α(t) sequences are given by either purely or
Rudin-Shapiro protocols. In such binary arrays we map
0 → α0 and 1 → α1. In all the cases, we start from 0,
subsequently we apply one of the following rules:

• Rudin-Shapiro: first, we generate a sequence with
four letters by means of the substitution rule A→
AB, B → AC, C → DB and D → DC. Then we
set A = B → 0 and C = D → 1;

• Random: we first generate a sequence with the
Rudin-Shapiro protocol until tmax, then we shuffle
it. This procedure is done to make a fair compari-
son between such sequences.

For further details on the Rudin-Shapiro (RS) se-
quences we point the reader to Refs. [46, 47]. From such
references, we see that aperiodic series have been used for
a long time in Physics, but these sequences remain un-
deremployed in Ecology. Here, we show that the pure RS
and the randomly rearranged RS sequences work as an
insightful platform that enables setting a new perspective
on the subject of how extinction is molded by correlation
versus complexity.

IV. RESULTS AND DISCUSSION

In this section, we show our results obtained by solving
the ODE in Eq. III B, where we employ the solveivp of
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FIG. 1. Time-dependent death rate α(t) = {α0, α1} considering the protocols: (a) nonrandom and (b) random. Both time
series have the same mean value ᾱ, since the case (b) is just a shuffle of the case (a).

FIG. 2. Main properties of the time-dependent binary sequences used for α(t) = {α0, α1}. (a) Autocorrelation (ACF) versus
lags. (b) Lempel-Ziv complexity (LZC) over time. The LZC is able to detect hidden patterns that are not recognized by the
ACF.

python. Concretely, we apply the RK45 routine that
performs the Runge-Kutta method of order 5(4). Thus,
the time evolution takes place with a 4-order accurate
control of errors and 5-order accurate formula for steps.
In such procedure, we set the increment with maximum
value dtmax = 0.1 and between each interval [i, i+ 1[ we
keep the same α(i), where i = 0, 1, 2, . . . , tmax.

Before delving into the analysis of the population dy-
namics per se, let us discuss the properties of α(t). In
Fig.1 we illustrate the setups for α(t) and in Fig.2 we
evaluate the architectural characteristics of the sequences
we use for each protocol. Firstly, we compute the auto-
correlation function (ACF) considering several lags. In
Fig.2(a) we see that the overall behavior of the nonran-
dom RS array presents values for the ACF that resem-

bles the ACF values for the random series, although with
weak fluctuations.

Additionally, we quantify the Lempel-Ziv complexity
(LZC) of the sequences we use. The LZC is is a nonlinear
measure that provides information about the abundance
of nonidentical patterns in an array when examined from
t0 to tmax [48, 49]. In this sense, the minimum and maxi-
mum values for the LZC are obtained for the periodic and
random sequences, respectively. Although the Rudin-
Shapiro chain has a correlation pattern comparable to
random series [Fig.2(a)], its LZC presents considerable
differences [Fig.2(b)].

In Fig. 3, we observe how the bistability embedded in
Eq.III B is impacted by the presence or not of random-
ness in α(t). On the one hand, if the initial density Po
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FIG. 3. Time series for the population fraction considering (a) nonrandom and (b) random perturbations. Each curve is
obtained with increasing initial population densities P0 = {0.1, 0.2, . . . , 1}. Parameters: λ = 0.9 and α0 = 0.2.

FIG. 4. Time series for the population fraction considering nonrandom and random perturbations. (a) Linear scale and (b)
Semi-log scale. We use 100 samples for the protocol with randomness. Parameters: P0 = 0.5, λ = 0.9, α0 = 0.1 and α1 = 0.3.

is high enough, the population survives regardless of the
type of perturbation. On the other hand, if the initial
density Po is too low, the extinction takes place inde-
pendently of the kind of perturbation. Between both
cases, it is clear the ecological outcome depends on how
the perturbation is temporally arranged. In such setting
(Po = 0.2) the time evolution leads to extinct state for
the random protocol, whereas it leads to a survival state
for the nonrandom protocol. If α(t) exhibits the same
autocorrelation pattern and the same mean ᾱ, why do
the random and nonrandom protocols lead to different
outcomes? The answer in our controlled computational
experiment relies on the complexity pattern incorporated
in α(t), as shown in Fig.2(b). Thus, the dynamics of a

species on the verge of extinction is strongly influenced
by the complexity of time-dependent perturbation. This
is an important finding because at present there several
species at risk of extinction [50, 51].

In Fig.4, we see the long-run scenarios arising from the
random and nonrandom setups considering a fixed initial
condition Po = 0.5. Both time evolutions are marked
by fluctuations that are driven by the switches between
{α0, α1}. We emphasize that all the curves (blue or
red) are obtained considering sequences that display null
Pearson’s correlation and have the same mean ᾱ. Despite
that the nonrandom perturbation promotes a long-run
survival of the population, however the presence of ran-
domness compromise the population persistence. That
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FIG. 5. Barplot with the fraction of populations undergoing extinction, fext, among the total of time series obtained with
P0 = {0.1, 0.2, . . . , 1}. Parameters: α0 = 0.1.

is, the Rudin-Shapiro protocol for time-dependent per-
turbations in α(t) is less prone to induce a transition to
an absorbing state. This adds new understanding of the
field of nonequilibrium absorbing-state phase transitions
[19, 43, 44].

In Fig. 5, we see how the outcomes regarding fraction
of extinction fext are affected by different values for the
reproduction rate as well as the death rate α1. We note
an agreement between the long-run scenarios for some
combinations of parameters meaning that in such cases
the underlying birth-death dynamics is more important
than the type of patterns in α(t). For other cases, we
see a disagreement between fext, meaning that for such
settings the temporal arrangement of the patterns in the
perturbation α(t) plays an important role on the final
ecological outcome. Thus, it is clear a competition be-
tween dynamics (reproduction and death) and structure
of α(t).

Taking a broad view of the information conveyed in
Figs. 1-5, we note that the random and nonrandom per-
turbations can lead to different scenarios depending on
the balance between the birth-death dynamics and the
disposition of the patterns in α(t). When the imbalance
between structure and dynamics sets the arrangement
of patterns as a relevant feature, we see that the ACF
fails to provide an explanation for the fate of extinction
in the random perturbation, whereas the LZC allows us
to explain the distinct emergent phenomenon observed
in the time evolution of the population. In such cases,
the mass extinction events are triggered by cumulative
effects arising from hidden patterns in α(t) that are de-
tected by a complexity quantifier. Mathematically, this
can be traced back to the fact that the time series can
be embedded with nonlinear dependencies that are not
recognized by a single measure (see e.g. Ref. [52]).

While we could have employed an agent-based simula-
tion [53–55], in this work we have used a mean-field ap-
proach because we avoid the presence of multiple sources
of randomness. With a single source of randomness we

can make controlled computational experiments. Equa-
tion III B – valid in the limit of infinitely large population
size – enables us to understand how large populations
respond to random and nonrandom perturbations. In
relation to that, we note in Figs.3-5 that uncorrelated se-
quences do not necessarily endanger the sustainability of
a population, but non-trivial and hidden patterns – pro-
duced by randomness – are the great villain of population
survival in our controlled setup.

The relation between correlation and complexity is
subtle. For instance, consider an ordinary situation of
a coin with probability q for head. After many tosses,
we observe correlated results if q 6= 0.5, thus we say
the outcome has some predictability. The unbiased case
(q = 0.5), produces the minimal absolute value for the
correlation that coincides with the maximum complex-
ity. This is an intuitive notion. The proposal we have
worked is rather different since correlation and complex-
ity are not strictly related. In this sense, our results
point out that what makes the pure randomness increase
the vulnerability of populations is not strictly its lack
of linear self-dependence but its high-level complexity
though. Thus, our results contribute with fresh perspec-
tives about the underlying foundations that lead to ex-
tinction.

Previously, it was shown [21] that temporal randomly
distributed disorder does not destroy the bistable nature
of dynamics described by models similar to Eq.III B. Our
results exhibited in Fig.3 and in Fig.5 expand such claim
regarding the robustness of the bistability for the realm
of nonrandom aperiodic disorder incorporated as a time-
dependent perturbation.

V. FINAL REMARKS

The minimal and universal set of ingredients embedded
in Eq.III B puts us in a position to provide fundamental
comprehension on how the notion of chance shapes the
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ecology of extinctions [1, 56, 57]. Specifically, we show
that a complexity measure, rather than the standard au-
tocorrelation function, is able to properly explain the fate
of extinction for Allee-like dynamics under linearly un-
correlated perturbations with random and nonrandom
temporal arrangements. Thus, our work opens the door
for the possibility of new bridges between the theory of
complexity and ecological dynamics beyond the already
existing connections [58–63].

While our work is not designed to address practical
puzzles related to species loss, our results provide us with
the evidence that complexity measures [64] can be an
ally in combating species extinction by monitoring and
detecting hidden patterns that are not detected by usual
measures.

As previously mentioned, the Allee effect has been con-
sidered as an important phenomenon in several fields in-
cluding cancer research [39–42]. For instance, in Ref. [39]
it was proposed that the presence of the Allee effect in the
tumor growth dynamics may offer a window for therapeu-
tics. In that sense, the results shown herein can provide
insights into this kind of dynamics since they show how
randomness becomes a threat for the long-run prolifera-
tion of organisms. Effects of diffusion were analyzed in
the context of models similar to Eq.III B with temporal
disorder [65]. Such temporal disorder was considered as
a time-dependent diffusion rate D(t). The results suggest
a strong effect of such time dependence on the phase di-
agrams of the CP. It can be interesting to also consider
diffusion in our model with a time-dependent rate D(t),
and analyze the impact of such disorder in the extinction
patterns.

From an experimental point of view, the few number

of parameters in our proposal – basically related to re-
production and death – is an advantage in terms of the
build-to-understand approach in Synthetic Biology[66–
69]. For instance, we mention that in such a new field
bacteria can be engineered to display the Allee effect [66]
as well other new behaviors [67–69]. In other words, our
take-home message that complexity jeopardizes popula-
tion survival can be biologically programmed within the
current technology. Still taking into account that Syn-
thetic Biology [66–69] is a fastly-growing field, we suggest
that bacteria can possibly be programmed to perform
pattern detection algorithms in a way that the long-run
survival or not is a sign of the character of the complex-
ity embedded in a natural time-dependent perturbation.
The feasibility of such proposal will require controlled
setups. If this challenge is surpassed, biologically engi-
neered devices may provide a compelling opportunity to
develop natural complexity recognition sensors.

Complexity plays a major role across science and tech-
nology [70]. Therefore, we have adopted a widespread
and practical measure of complexity that is based on the
number of unlike patterns [48, 49]. By using the paradig-
matic Rudin-Shapiro sequence and its shuffled version we
have disentangled how correlation and complexity impact
extinction dynamics. In future works, it would be inter-
esting to engineer new sequences for α(t) that capture
further nuances of complexity [71].
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