REFERENCES
Aldesuquy, H. S., Baka, Z. A.,
El-Shehaby, O., & Ghanem, H. E. (2013). Growth, Lipid peroxidation and
antioxidant enzyme activities as a Selection Criterion for the salt
tolerance of wheat cultivars irrigated by seawater. Phyton, 53 ,
153-165.
Apel, K., & Hirt, H. (2004). Reactive
oxygen species: Metabolism, oxidative stress, and signal transduction.Annual Review of Plant Biology, 55 , 373-399.
Asada, K. (1996). Photosynthesis and
the Environment. by NR Baker, Kluwer , 123.
Asada, K. (1999). The waterwater cycle
in chloroplasts: scavening of active oxygens and dissipation of excess
photon. Annual Review of Plant Physiology & Plant Molecular
Biology, 50 , 601-639.
Asada, K. (2000). The water–water
cycle as alternative photon and electron sinks. Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences, 355 (1402), 1419-1431.
Asada, K. (2006). Production and
scavenging of reactive oxygen species in chloroplasts and their
functions. Plant Physiology, 141 (2), 391-396.
Bartels, D., & Sunkar, R. (2005).
Drought and salt tolerance in plants. Critical Reviews in Plant
Sciences, 24 (1), 23-58.
Bartoli, C. G., Buet, A., Grozeff, G.
G., Galatro, A., & Simontacchi, M. (2017). Ascorbate-glutathione cycle
and abiotic stress tolerance in plants. In Ascorbic acid in plant
growth, development and stress tolerance (pp. 177-200): Springer.
Bulte, L., Gans, P., Febeille, F., &
Wollman, F. (1990). ATP control on state transitions in vivo inChlamydomonas reinhardtii . Biochimica et Biophysica Acta,
1020 , 72-80.
Chaux, F., Peltier, G., & Johnson,
X. (2015). A security network in PSI photoprotection: regulation of
photosynthetic control, NPQ and O2 photoreduction by cyclic electron
flow. Frontiers in Plant Science, 6 .
Chen, Q., Zhang, M., & Shen, S.
(2011). Effect of salt on malondialdehyde and antioxidant enzymes in
seedling roots of Jerusalem artichoke (Helianthus tuberosus L.).Acta Physiologiae Plantarum, 33 (2), 273-278.
Cook, G., Teufel, A., Kalra, I., Li,
W., Wang, X., Priscu, J., & Morgan-Kiss, R. J. P. r. (2019). The
Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV
exhibit differential restructuring of photosystem I in response to iron.Photosynthesis Research , 141, 209-228.
Cournac, L., Latouche, G., Cerovic,
Z., Redding, K., Ravenel, J., & Peltier, G. (2002). In vivo
interactions between photosynthesis, mitorespiration, and
chlororespiration in Chlamydomonas reinhardtii . Plant
Physiology, 129 (4), 1921-1928.
Cvetkovska, M., Hüner, N. P., &
Smith, D. R. (2017). Chilling out: the evolution and diversification of
psychrophilic algae with a focus on Chlamydomonadales. Polar
Biology, 40 , 1169-1184.
Ensminger, I., Busch, F., & Hüner,
N. P. A. (2006). Photostasis and cold acclimation: sensing low
temperature through photosynthesis. Physiologia Plantarum,
126 (1), 28-44.
Falk, S., Krol, M., Maxwell, D. P.,
Rezansoff, D. A., Gray, G. R., & Hüner, N. P. A. (1994). Changes in in
vivo fluorescence quenching in rye and barley as a function of reduced
PSII light harvesting antenna size. Physiologia Plantarum, 91 ,
551-558.
Falk, S., Maxwell, D., Gray, G.,
Rezansoff, D., & Hüner, N. (1993). Photosynthetic acclimation to low
temperature in higher plants and algae. Current Topics in
Botanical Research, 1 , 281-292.
Förster, B., Osmond, C. B., &
Pogson, B. J. (2005). Improved survival of very high light and oxidative
stress is conferred by spontaneous gain-of-function mutations inChlamydomonas . Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 1709 (1), 45-57.
Foyer, C. H., & Halliwell, B.
(1976). The presence of glutathione and glutathione reductase in
chloroplasts: a proposed role in ascorbic acid metabolism. Planta,
133 (1), 21-25.
Foyer, C. H., Lopez‐Delgado, H., Dat,
J. F., & Scott, I. M. (1997). Hydrogen peroxide‐and
glutathione‐associated mechanisms of acclimatory stress tolerance and
signalling. Physiologia Plantarum, 100 (2), 241-254.
Foyer, C. H., & Noctor, G. (2012).
Managing the cellular redox hub in photosynthetic organisms.Plant, Cell & Environment, 35 (2), 199-201.
Foyer, C. H., & Shigeoka, S. (2011).
Understanding oxidative stress and antioxidant functions to enhance
photosynthesis. Plant Physiology, 155 (1), 93-100.
Gest, N., Gautier, H., & Stevens, R.
(2013). Ascorbate as seen through plant evolution: the rise of a
successful molecule? Journal of Experimental Botany, 64 (1),
33-53.
He, Y., Fu, J., Yu, C., Wang, X.,
Jiang, Q., Hong, J., . . . James, A. (2015). Increasing cyclic electron
flow is related to Na+ sequestration into vacuoles for salt tolerance in
soybean. Journal of Experimental Botany , erv392.
Hu, W., Song, X., Shi, K., Xia, X.,
Zhou, Y., & Yu, J. (2008). Changes in electron transport, superoxide
dismutase and ascorbate peroxidase isoenzymes in chloroplasts and
mitochondria of cucumber leaves as influenced by chilling.Photosynthetica, 46 (4), 581.
Huang, W., Yang, S.-J., Zhang, S.-B.,
Zhang, J.-L., & Cao, K.-F. (2012). Cyclic electron flow plays an
important role in photoprotection for the resurrection plantParaboea rufescens under drought stress. Planta, 235 (4),
819-828.
Huang, W., Yang, Y.-J., Hu, H., &
Zhang, S.-B. (2016). Seasonal variations in photosystem I compared with
photosystem II of three alpine evergreen broad-leaf tree species.Journal of Photochemistry and Photobiology B: Biology, 165 ,
71-79.
Huang, W., Zhang, S.-B., Xu, J.-C.,
& Liu, T. (2017). Plasticity in roles of cyclic electron flow around
photosystem I at contrasting temperatures in the chilling-sensitive
plant Calotropis gigantea . Environmental and Experimental
Botany, 141 , 145-153.
Hüner, N., Dahal, K., Hollis, L.,
Bode, R., Rosso, D., Krol, M., & Ivanov, A. G. (2012). Chloroplast
redox imbalance governs phenotypic plasticity: the “grand design of
photosynthesis” revisited. Frontiers in Plant Science, 3 , 255.
Ivanov, A., Sane, P., Simidjiev, I.,
Park, Y.-I., Hüner, N., & Öquist, G. (2012). Restricted capacity for
PSI-dependent cyclic electron flow in ΔpetE mutant compromises the
ability for acclimation to iron stress in Synechococcus sp. PCC
7942 cells. Biochimica et Biophysica Acta, 1817 (8), 1277-1284.
Ivanov, A. G., Morgan, R. M., Gray,
G. R., Velitchkova, M. Y., & Hüner, N. P. (1998). Temperature/light
dependent development of selective resistance to photoinhibition of
photosystem I. FEBS Letters 430 (3), 288-292.
Iwai, M., Takizawa, K., Tokutsu, R.,
Okamuro, A., Takahashi, Y., & Minagawa, J. (2010). Isolation of the
elusive supercomplex that drives cyclic electron flow in photosynthesis.Nature, 464 (7292), 1210-1213.
Jeffrey, S. W., & Humphrey, G. F.
(1975). New spectrophotometric equations for determining chlorophyll a,
b, c1, c2 in higher plants, algae and natural phytoplankton.Biochem. Physiol. Pflanz, 167 , 191-194.
Julkowska, M. (2020). Extreme
Engineering: How Antarctic Algae Adapt to Hypersalinity. Plant
Physiology, 183 (2), 427.
Kalra, I., Wang, X., Cvetkovska, M.,
Jeong, J., McHargue, W., Zhang, R., . . . Morgan-Kiss, R. M. (2020).
Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired
metabolism under high salinity. Plant Physiology, 183 , 588-601.
Ledford, H. K., Chin, B. L., &
Niyogi, K. K. (2007). Acclimation to singlet oxygen stress in
Chlamydomonas reinhardtii. Eukaryot Cell, 6 .
doi:10.1128/ec.00207-06
Liu, Y., Qi, M., & Li, T. (2012).
Photosynthesis, photoinhibition, and antioxidant system in tomato leaves
stressed by low night temperature and their subsequent recovery.Plant Science, 196 , 8-17.
Lucker, B., & Kramer, D. M. (2013).
Regulation of cyclic electron flow in Chlamydomonas reinhardtiiunder fluctuating carbon availability. Photosynthesis Research,
117 (1-3), 449-459.
Maruta, T., & Ishikawa, T. (2017).
Ascorbate peroxidases: crucial roles of antioxidant enzymes in plant
stress responses. In Ascorbic acid in plant growth, development
and stress tolerance (pp. 111-127): Springer.
Maxwell, D. P., Falk, S., Trick, C.
G., & Hüner, N. P. A. (1994). Growth a low temperature mimics
high-light acclimation in Chlorella vulgaris . Plant
Physiology, 105 , 535-543.
McNeill, J., Barrie, F., Buck, W.,
Demoulin, V., Greuter, W., Hawksworth, D., . . . Prado, J. (2012).
International Code of Nomenclature for algae, fungi and plants.Regnum vegetabile, 154 .
Minagawa, J. (2011). State
transitions-the molecular remodeling of photosynthetic supercomplexes
that controls energy flow in the chloroplast. Biochimica et
Biophysica Acta (BBA)-Bioenergetics, 1807 (8), 897-905.
Møller, I. M., Jensen, P. E., &
Hansson, A. (2007). Oxidative modifications to cellular components in
plants. Annual Reviews of Plant Biology, 58 , 459-481.
Morgan-Kiss, R., Ivanov, A. G.,
Williams, J., Mobashsher, K., & Hüner, N. P. (2002a). Differential
thermal effects on the energy distribution between photosystem II and
photosystem I in thylakoid membranes of a psychrophilic and a mesophilic
alga. Biochimica et Biophysica Acta (BBA) - Bioenergetics,
1561 (2), 251-265.
Morgan-Kiss, R. M., Ivanov, A. G., &
Hüner, N. P. A. (2002b). The Antarctic psychrophile, Chlamydomonas
subcaudata, is deficient in state I-state II transitions. Planta,
214 (3), 435-445.
Morgan-Kiss, R. M., Ivanov, A. G.,
Modla, S., Czymmek, K., Hüner, N. P., Priscu, J. C., . . . Hanson, T. E.
(2008). Identity and physiology of a new psychrophilic eukaryotic green
alga, Chlorella sp., strain BI, isolated from a transitory pond near
Bratina Island, Antarctica. Extremophiles, 12 (5), 701-711.
Morgan-Kiss, R. M., Priscu, J. C.,
Pocock, T., Gudynaite-Savitch, L., & Hüner, N. P. (2006). Adaptation
and acclimation of photosynthetic microorganisms to permanently cold
environments. Microbiology & Molecular Biology Reviews, 70 (1),
222-252.
Morgan, R. M., Ivanov, A. G., Priscu,
J. C., Maxwell, D. P., & Hüner, N. P. A. (1998). Structure and
composition of the photochemical apparatus of the Antarctic green alga,Chlamydomonas subcaudata . Photosynthesis Research, 56 ,
303-314.
Müller, P., Li, X.-P., & Niyogi, K.
K. (2001). Non-photochemical quenching. A response to excess light
energy. Plant Physiology, 125 (4), 1558-1566.
Neale, P. J., & Priscu, J. C.
(1995). The photosynthetic apparatus of phytoplankton from a perennially
ice-covered Antarctic lake: acclimation to an extreme shade environment.Plant and Cell Physiology, 36 , 253-263.
Nichols, H. W., & Bold, H. C.
(1965). Trichosarcina polymorpha Gen. Et Sp. Nov. J
Phycol., 1 , 34-38.
Niyogi, K. K. (1999). Photoprotection
revisited: genetic and molecular approaches. Annual Review of
Plant Biology, 50 (1), 333-359.
Noctor, G., & Foyer, C. H. (1998).
Ascorbate and glutathione: keeping active oxygen under control.Annual Review of Plant Biology, 49 (1), 249-279.
Öquist, G., & Hüner, N. P. (2003).
Photosynthesis of overwintering evergreen plants. Annual Review
Plant Biology, 54 , 329-355.
Pitsch, N. T., Witsch, B., & Baier,
M. (2010). Comparison of the chloroplast peroxidase system in the
chlorophyte Chlamydomonas reinhardtii , the bryophytePhyscomitrella patens , the lycophyte Selaginella
moellendorffii and the seed plant Arabidopsis thaliana .BMC Plant Biology, 10 (1), 133.
Pocock, T., Lachance, M.-A.,
Proschold, T., Priscu, J. C., Kim, S., & Huner, N. P. A. (2004).
Identification of a psychrophilic green alga from Lake Bonney
Antarctica: Chlamydomonas raudensis ETTL. (UWO 241)
(Chlorophyceae ). Journal of Phycology, 40 , 1138-1148.
Pocock, T., Koziak, A., Rosso, D.,
Falk, S., & Hüner, H. P. A. (2007). Chlamydomonas raudensisettl. (UWO241) exhibits the capacity for rapid D1 repair in response to
chronic photoinhibition at low temperature. Journal of Phycology,
43 , 924-936.
Pocock, T., Vetterli, A., & Falk, S.
(2011). Evidence for phenotypic plasticity in the Antarctic extremophileChlamydomonas raudensis Ettl. UWO 241. J Experimental
Botany, 62 (3), 1169-1177. doi:10.1093/jxb/erq347
Possmayer, M., Gupta, R. K.,
Szyszka‐Mroz, B., Maxwell, D. P., Lachance, M. A., Hüner, N., & Smith,
D. R. (2016). Resolving the phylogenetic relationship between
Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis sag 49.72
(Chlorophyceae) with nuclear and plastid DNA sequences. Journal of
Phycology, 52 (2), 305-310.
Raymond, J. A., & Morgan-Kiss, R.
(2013). Separate Origins of ice-binding proteins in AntarcticChlamydomonas species. PLoS ONE, 8 (3), e59186.
Schreiber, U., & Klughammer, C.
(2008). Non-photochemical fluorescence quenching and quantum yields in
PS I and PS II: analysis of heat-induced limitations using
Maxi-Imaging-PAM and Dual-PAM-100. PAM Application Notes, 1 ,
15-18.
Sharma, P., Jha, A. B., Dubey, R. S.,
& Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and
antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012 .
Sirikhachornkit, A., & Niyogi, K. K.
(2010). Antioxidants and Photo-oxidative Stress Responses in Plants and
Algae. In Govindjee & T. D. Sharkey (Eds.), Advances in
Photosynthesis and Respiration (Vol. 31, pp. 379-396): Springer
Netherlands.
Smith, B. M., Morrissey, P. J.,
Guenther, J. E., Nemson, J. A., Harrison, M. A., Allen, J. F., & Melis,
A. (1990). Response of the photosynthetic apparatus in Dunaliella salina
(green algae) to irradiance stress. Plant Physiology, 93 (4),
1433-1440.
Suzuki, N., Koussevitzky, S.,
Mittler, R., & Miller, G. (2012). ROS and redox signalling in the
response of plants to abiotic stress. Plant, Cell & Environment,
35 (2), 259-270.
Szyszka-Mroz, B., Cvetkovska, M.,
Ivanov, A. G., Smith, D. R., Possmayer, M., Maxwell, D. P., & Hüner, N.
P. (2019). Cold-adapted protein kinases and thylakoid remodeling impact
energy distribution in an Antarctic psychrophile. Plant
Physiology, 180 (3), 1291-1309.
Szyszka-Mroz, B., Pittock, P.,
Ivanov, A. G., Lajoie, G., & Hüner, N. P. (2015). The Antarctic
psychrophile, Chlamydomonas sp. UWO 241, preferentially
phosphorylates a PSI-cytochrome b6/f supercomplex. Plant
Physiology, 169 , 717-736.
Szyszka, B., Ivanov, A. G., & Hüner,
N. P. (2007). Psychrophily is associated with differential energy
partitioning, photosystem stoichiometry and polypeptide phosphorylation
in Chlamydomonas raudensis. Biochimica et Biophysica Acta
(BBA)-Bioenergetics, 1767 (6), 789-800.
Szyszka, B., Ivanov, A. G., & Hüner,
N. P. A. (2007). Psychrophily induces differential energy partitioning,
photosystem stoichiometry and polypeptide phosphorylation inChlamydomonas raudensis . Biochimica et Biophysica Acta
(BBA) - Bioenergetics, 1767 , 789-800.
Takahashi, S., & Murata, N. (2008).
How do environmental stresses accelerate photoinhibition? Trends
in Plant Science, 13 (4), 178-182.
Tanaka, A., & Melis, A. (1997).
Irradiance-dependent changes in the size and composition of the
chlorophyll a-b light-harvesting complex in the green algaDunaliella salina . Plant Cell Physiolgy, 38 (1), 17-24.
Teixeira, F. K., Menezes-Benavente,
L., Margis, R., & Margis-Pinheiro, M. (2004). Analysis of the molecular
evolutionary history of the ascorbate peroxidase gene family: inferences
from the rice genome. J. Mol. Evol., 59 (6), 761-770.
Van Alstyne, K. L., Sutton, L., &
Gifford, S.-A. (2020). Inducible versus constitutive antioxidant
defenses in algae along an environmental stress gradient. Marine
Ecology Progress Series, 640 , 107-115.
Velitchkova, M., Popova, A. V., Faik,
A., Gerganova, M., & Ivanov, A. G. (2020). Low temperature and high
light dependent dynamic photoprotective strategies in Arabidopsis
thaliana. Physiologia Plantarum .
Venisse, J.-S., Gullner, G., &
Brisset, M.-N. (2001). Evidence for the involvement of an oxidative
stress in the initiation of infection of pear by Erwinia amylovora.Plant Physiology, 125 (4), 2164-2172.
Wildi, B., & Lütz, C. (1996).
Antioxidant composition of selected high alpine plant species from
different altitudes. Plant, Cell & Environment, 19 (2), 138-146.
Wilson, K. E., & Hüner, N. P.
(2000). The role of growth rate, redox-state of the plastoquinone pool
and the trans-thylakoid ΔpH in photoacclimation of Chlorella
vulgaris to growth irradiance and temperature. Planta, 212 (1),
93-102.
Witman, G. B. (1993). Chlamydomonas
phototaxis. Trends in cell biology, 3 (11), 403-408.
Yamori, W., Makino, A., & Shikanai,
T. (2016). A physiological role of cyclic electron transport around
photosystem I in sustaining photosynthesis under fluctuating light in
rice. Scientific reports, 6 , 20147.
Young, J. N., & Schmidt, K. (2020).
It’s what’s inside that matters: physiological adaptations of
high‐latitude marine microalgae to environmental change. New
Phytologist .
Zechmann, B., Stumpe, M., & Mauch,
F. (2011). Immunocytochemical determination of the subcellular
distribution of ascorbate in plants. Planta, 233 (1), 1-12.
Zhang, C., Liu, J., Zhang, Y., Cai,
X., Gong, P., Zhang, J., . . . Ye, Z. (2011). Overexpression of SlGMEs
leads to ascorbate accumulation with enhanced oxidative stress, cold,
and salt tolerance in tomato. Plant cell reports, 30 (3), 389-398.
Zhang, S., & Scheller, H. V. (2004).
Photoinhibition of photosystem I at chilling temperature and subsequent
recovery in Arabidopsis thaliana. Plant and Cell Physiology,
45 (11), 1595-1602.