References
Cebral, J. R., Mut, F., Raschi, M., Scrivano, E., Ceratto, R., Lylyk, P., & Putman, C. M. (2011). Aneurysm rupture following treatment with flow-diverting stents: Computational hemodynamics analysis of treatment.AJNR. American Journal of Neuroradiology , 32 (1), 27–33. https://doi.org/10.3174/ajnr.A2398
Cibis, M., Jarvis, K., Markl, M., Rose, M., Rigsby, C., Barker, A. J., & Wentzel, J. J. (2015). The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics.Journal of Biomechanics , 48 (12), 2984–2989. https://doi.org/10.1016/j.jbiomech.2015.07.039
Hosseini, S. A., & Vahedi Tafreshi, H. (2012). Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code.Computers & Fluids , 66 , 157–166. https://doi.org/10.1016/j.compfluid.2012.06.017
Ray, J., Rebischung, P., & Griffiths, J. (2017). IGS polar motion measurement accuracy. Geodesy and Geodynamics , 8 (6), 413–420. https://doi.org/10.1016/j.geog.2017.01.008
Roy, M., Singh Sikarwar, B., Bhandwal, M., & Ranjan, P. (2017). Modelling of Blood Flow in Stenosed Arteries. Procedia Computer Science , 115 , 821–830. https://doi.org/10.1016/j.procs.2017.09.164
Sakly, H., Mahmoudi, R., Akil, M., Said, M., & Tagina, M. (2019). MOVING TOWARDS A 5D CARDIAC MODEL. Journal of Flow Visualization and Image Processing , 26 (1). https://doi.org/10.1615/JFlowVisImageProc.2018027194
Sakly, H., Said, M., Radhouane, S., & Tagina, M. (2020). Medical decision making for 5D cardiac model: Template matching technique and simulation of the fifth dimension. Computer Methods and Programs in Biomedicine , 191 , 105382. https://doi.org/10.1016/j.cmpb.2020.105382
Schlanstein, P. C., Hesselmann, F., Jansen, S. V., Gemsa, J., Kaufmann, T. A., Klaas, M., Roggenkamp, D., Schröder, W., Schmitz-Rode, T., Steinseifer, U., & Arens, J. (2015). Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept. Cardiovascular Engineering and Technology , 6 (3), 340–351. https://doi.org/10.1007/s13239-015-0213-2
Sikarwar, B. S., Roy, M., Ranjan, P., & Goyal, A. (2016). Automatic disease screening method using image processing for dried blood microfluidic drop stain pattern recognition. Journal of Medical Engineering & Technology , 40 (5), 245–254. https://doi.org/10.3109/03091902.2016.1162215
Thomas, B., & Sumam, K. S. (2016). Blood Flow in Human Arterial System-A Review. Procedia Technology , 24 , 339–346. https://doi.org/10.1016/j.protcy.2016.05.045
Tora, E., & Dahlquist, E. (2015). CFD Ansys—Fluent Simulation of Prevention of Dioxins Formation Via Controlling Homogeneous Mass and Heat Transfer within Circulated Fluidized Bed Combustor. Energy Procedia , 75 , 130–136. https://doi.org/10.1016/j.egypro.2015.07.236
Wang, H., Wang, H., Gao, F., Zhou, P., & Zhai, Z. (John). (2018). Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation. Building and Environment ,143 , 671–678. https://doi.org/10.1016/j.buildenv.2018.07.046
Wilhelm, M., Dedè, L., Sangalli, L. M., & Wilhelm, P. (2016). IGS: An IsoGeometric approach for smoothing on surfaces. Computer Methods in Applied Mechanics and Engineering , 302 , 70–89. https://doi.org/10.1016/j.cma.2015.12.028
Xiong, G., Figueroa, C. A., Xiao, N., & Taylor, C. A. (2011). Simulation of blood flow in deformable vessels using subject-specific geometry and spatially varying wall properties. International Journal for Numerical Methods in Biomedical Engineering , 27 (7), 1000–1016. https://doi.org/10.1002/cnm.1404
Zaripov, T. S., Rybdylova, O., & Sazhin, S. S. (2018). A model for heating and evaporation of a droplet cloud and its implementation into ANSYS Fluent. International Communications in Heat and Mass Transfer , 97 , 85–91. https://doi.org/10.1016/j.icheatmasstransfer.2018.06.007
Figures Legends