References
Cebral, J. R., Mut, F., Raschi, M., Scrivano, E., Ceratto, R., Lylyk,
P., & Putman, C. M. (2011). Aneurysm rupture following treatment with
flow-diverting stents: Computational hemodynamics analysis of treatment.AJNR. American Journal of Neuroradiology , 32 (1), 27–33.
https://doi.org/10.3174/ajnr.A2398
Cibis, M., Jarvis, K., Markl, M., Rose, M., Rigsby, C., Barker, A. J.,
& Wentzel, J. J. (2015). The effect of resolution on viscous
dissipation measured with 4D flow MRI in patients with Fontan
circulation: Evaluation using computational fluid dynamics.Journal of Biomechanics , 48 (12), 2984–2989.
https://doi.org/10.1016/j.jbiomech.2015.07.039
Hosseini, S. A., & Vahedi Tafreshi, H. (2012). Modeling particle-loaded
single fiber efficiency and fiber drag using ANSYS–Fluent CFD code.Computers & Fluids , 66 , 157–166.
https://doi.org/10.1016/j.compfluid.2012.06.017
Ray, J., Rebischung, P., & Griffiths, J. (2017). IGS polar motion
measurement accuracy. Geodesy and Geodynamics , 8 (6),
413–420. https://doi.org/10.1016/j.geog.2017.01.008
Roy, M., Singh Sikarwar, B., Bhandwal, M., & Ranjan, P. (2017).
Modelling of Blood Flow in Stenosed Arteries. Procedia Computer
Science , 115 , 821–830.
https://doi.org/10.1016/j.procs.2017.09.164
Sakly, H., Mahmoudi, R., Akil, M., Said, M., & Tagina, M. (2019).
MOVING TOWARDS A 5D CARDIAC MODEL. Journal of Flow Visualization
and Image Processing , 26 (1).
https://doi.org/10.1615/JFlowVisImageProc.2018027194
Sakly, H., Said, M., Radhouane, S., & Tagina, M. (2020). Medical
decision making for 5D cardiac model: Template matching technique and
simulation of the fifth dimension. Computer Methods and Programs
in Biomedicine , 191 , 105382.
https://doi.org/10.1016/j.cmpb.2020.105382
Schlanstein, P. C., Hesselmann, F., Jansen, S. V., Gemsa, J., Kaufmann,
T. A., Klaas, M., Roggenkamp, D., Schröder, W., Schmitz-Rode, T.,
Steinseifer, U., & Arens, J. (2015). Particle Image Velocimetry Used to
Qualitatively Validate Computational Fluid Dynamic Simulations in an
Oxygenator: A Proof of Concept. Cardiovascular Engineering and
Technology , 6 (3), 340–351.
https://doi.org/10.1007/s13239-015-0213-2
Sikarwar, B. S., Roy, M., Ranjan, P., & Goyal, A. (2016). Automatic
disease screening method using image processing for dried blood
microfluidic drop stain pattern recognition. Journal of Medical
Engineering & Technology , 40 (5), 245–254.
https://doi.org/10.3109/03091902.2016.1162215
Thomas, B., & Sumam, K. S. (2016). Blood Flow in Human Arterial
System-A Review. Procedia Technology , 24 , 339–346.
https://doi.org/10.1016/j.protcy.2016.05.045
Tora, E., & Dahlquist, E. (2015). CFD Ansys—Fluent Simulation of
Prevention of Dioxins Formation Via Controlling Homogeneous Mass and
Heat Transfer within Circulated Fluidized Bed Combustor. Energy
Procedia , 75 , 130–136.
https://doi.org/10.1016/j.egypro.2015.07.236
Wang, H., Wang, H., Gao, F., Zhou, P., & Zhai, Z. (John). (2018).
Literature review on pressure–velocity decoupling algorithms applied to
built-environment CFD simulation. Building and Environment ,143 , 671–678. https://doi.org/10.1016/j.buildenv.2018.07.046
Wilhelm, M., Dedè, L., Sangalli, L. M., & Wilhelm, P. (2016). IGS: An
IsoGeometric approach for smoothing on surfaces. Computer Methods
in Applied Mechanics and Engineering , 302 , 70–89.
https://doi.org/10.1016/j.cma.2015.12.028
Xiong, G., Figueroa, C. A., Xiao, N., & Taylor, C. A. (2011).
Simulation of blood flow in deformable vessels using subject-specific
geometry and spatially varying wall properties. International
Journal for Numerical Methods in Biomedical Engineering , 27 (7),
1000–1016. https://doi.org/10.1002/cnm.1404
Zaripov, T. S., Rybdylova, O., & Sazhin, S. S. (2018). A model for
heating and evaporation of a droplet cloud and its implementation into
ANSYS Fluent. International Communications in Heat and Mass
Transfer , 97 , 85–91.
https://doi.org/10.1016/j.icheatmasstransfer.2018.06.007
Figures Legends