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1 | INTRODUCTION

The paper deals with the following nonhomogeneous elliptic system with critical exponent
—Au = |u|*Pu+ 21 ul2ulv| + ef inQ,
—Av = |U|2*‘ZU+2’%|u|"|U|ﬂ‘ZU+€g inQ, (1)
u=v=0 X € 092,

where Q is a smooth bounded domain in RN with N > 3, a,f > landa + f = 2* = % Functions f(x), g(x) satisfy
0<f,g€ L*Q)and f,g # 0. Equation (I)) arises from many physical problems, especially in describing some phenomena
in nonlinear opticsZ, It is also a model in Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Einstein
condensates in two different hyperfine states |1) and |2)3%. For more physical background of coupled elliptic system, we refer
the readers to Cheng and Zou>©.

Problem (T]) can be seen as a counterpart of the following scalar equation

—Au=u*u+f inQ, u=0 inoQ, @)

where Q is a smooth bounded domain. A remarkable result by Tarantello? established that there exist at least two solutions of
(@) by splitting Nehari manifold into three parts. For a non-contractible domain Q, where Q satisfies:
(V) Q is a smooth bounded domain in RY and there exist constants 0 < R; < R, < oo such that

(xeRY : R, <|x|<R}CQ {xeRY:|x|<R}ZQ,

Sit is shown that there exist at least four solutions of (Z) by using the splitting Nehari manifold method and Lusternik-
Schnirelmann theorey.

Recently, significant effort has been focused on coupled elliptic system with critical exponent. Peng et al® showed that, in the
case € = 0 and Q = RY, (T) has a kind of uniqueness result on the least energy solutions and a non-degeneracy result on a spe-
cial family of positive solutions. Moreover, they investigated the existence of positive vector solutions of (I) with e = 0 when
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Q satisfies condition (V). The multiplicity results of (T)) with e = 0 by Clapp and Faya'l established the existence of a pre-
scribed number of nontrivial solutions under suitable symmetry assumptions on smooth bounded domain €2 and the existence
of infinitely many solutions on R™. The literatures above mainly focus on problem () with € = 0. It is natural to consider what
happens if € # 0. The result as follows:

Theorem 1. Assume that Q satisfies condition (V). Then there exists a €’ > 0 such that, for 0 < € < €/, @) has at least three
solutions, one of which is a positive least energy solution. Furthermore, if R, is small enough, then there exists a ¢”” > 0 such
that (I) has at least four solutions whenever 0 < e < €.

It is known that the established method to deal with nonhomogeneous problems is the splitting Nehari manifold method
introduced from Tarantello. This idea was also used to study other nonhomogeneous problems, for instance, Qi and Zhang™,
Cao and Zhou'", Clapp et al''? and Shen et al'?. However, to the best of our knowledge, there is almost no research applying the
idea to study nonhomogeneous elliptic systems with critical exponents. In fact, the energy functional associated to (I)) does not
satisfy the global (P.S), condition since it includes critical exponents. We have to find the range of ¢ where the (P.S), condition
holds for the energy functional.

The proof of Theorem |1| mainly takes inspiration from He® and Peng®. To prove Theorem |1, we follow the idea of Qi and
Zhang® to split the Nehari manifold into three parts, where the Nehari manifold is defined by

N, 1= {(u.v) € Hy(Q) x H)(Q) : (J(u.v),(u,0)) = 0} @)

and its three parts
(N} 1= (u,v) € N, 1 (£/(u,v), (u,v)) > 0},
{NY 1=, 0) €N, & (L, v), (u,v)) =0}, “)
(N7 =, v) € N, : (& u,v),(u,v)) <0},

where J_ is the energy functional associated to (T) (given by (6)) and

e, v) :=(J/(u,v), (u, ). &)

For the first solution, we seek the help of Nehari manifold method to prove the existence of positive least energy solution
(u,v)) €N, . To proceed further, we prove some estimates of the energy functional. With the help of these estimates we find
that there exists a 7, > 0 such that (u; + tgu;”, v, + 1,05”) € N7, where u;”, v’ are related to the minimizers of the Sobolev
constant S. Moreover, J,(u; + toug") ,U; + 1y vg”’ ) is below the first critical level and satisfies the Palais-Smale condition, where

the first critical level is |
JG(ul’ Ul) + NSIIZ,/?

and S, ; is defined in (T0). Subsequently, by using Lusternik-Schnirelmann theorey and the well-known result of Ambraosetti'4,
we prove the existence of the second and third solutions of (T)) in N .- In order to prove the existence of the fourth solution, a
high energy solution in N’ . » we use a version of global compactness lemma from Peng et al? to prove that the energy functional
J. satisfies the Palais-Smale condition between the first and second critical levels, where the second critical level is

. 1 .5

inf J.(u,0)+—S2,.

W0)EN - (. 0) N &b

On the other hand, applying the minimax Lemma of Brezis and Nirenberg 1> Theorem I 'we find a Palais-Smale sequence (u,,, v,)

of J., where J.(u, v) = Tt wv)andt;, (u,v) € N Then it follows from the idea of Szulkin and Weth!1& Corollary 2.10 tha¢
t(_u,,,u,,)(”n’ v,) is a Palais-Smale sequence of 7., which on using the obtained Palais-Smale condition yields the desired result.

The paper is organized by the following way. In Section 2, we give some preliminary results and the variational framework.
We prove the existence of the first-fourth solutions in Sections 3-5 respectively.

2 | PRELIMINARIES

We denote some basic notations used in the paper. We first denote Hé () with the norm |ju]| = ( fg |Vu|2dx)% and E :=
H(Q) x H () with the norm

Il (u, 0)|I* 3=/|Vu|2+|Vv|2dx.
Q
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Throughout the paper we use | - |, to denote the L”(Q)-norm. The energy functional J, : E — R is defined by
J.(u,v) := §||(u, v)||? - E/ lul* + |v)* + |u|“|u|ﬂdx—e/fu+gudx. 6)
Q

It is known that the critical points of .J, correspond to the weak solutions of (I)). We shall constraint the energy functional on the
Nehari manifold (@). It is clear that only N 60 contains the element (0, 0). Obviously, N’ Fu N 60 and N UWN, SO are both closed
subset of E. Next we give an explanation of the three parts of N,. Before doing this we denote

A@u,v) i= ||, 0)I*, B, v) := [y lul* +|v|* + |ul*lv|Pdx, D@u,v) := [, fu+ gvdx. (7)
The Nehari manifold N, is closely linked to the behaviour of (ps(t) it = J.(tu, tv), where @_(t) is defined by
@ (1) = T, (tu, tv) = @ﬂ B(“ 42 _ eDu,v)t fort>O0. Q)
Obviously, (tu, tv) € N, if and only if
AOES %(Js’(tu, tv), (tu, tv)) = 0
Furthermore, one easily checks that, for (tu, tv) € N .» there holds

Pl = }2[<§;<zu,w>, (tu, tv)) — & (tu, tv)] = }2<§;<m, tv), (tu, tv)).
It follows from (@) that
{(tu,tv) e NF,1 > 0% ¢/ (1) =0,9/(t) > 0},
{(u,10) € NO,1 > 0 & ¢l (1) = 0, (1) = 0}, 9)
{(tu,tv) e N7,1 >0 ¢/ (1) =0,/ (1) < 0}.
We denote the constant
] Jo IVul* + |Vol?dx
Sap(d) := ( v)eY(Q)lxn)f(Q)\{(O o ([, Jul? 25 a|p|lBdx)2/2’ (10)
“, O} (Jg lul® + [0l + |u|*|v]Pdx)
where Y(RY) = D'2(RY) if @ = RN and Y(Q) = Hj(Q) if Q is a smooth bounded domain. We recall the Sobolev constant
) /Q |Vu|?dx
in _—
w€Y Q\(O) ([, ul? dx)*/*

It is known that S(R") is achieved by the function'}?* Theorem 1.42

S(Q) =

[N(N -2)]'7
A+xP)5

N le

Ux) =

k)

which is a solution of —Au = |u|* ~2u for x € RN with

2 _ ¥ X
[VU|*dx= [ U dx=S"~. an

RN RN
Then, we have the following result.

Lemma 1. Let Qbe RN ora bounded domain of RN. Then
(i) 8, 5(Q) = F(7,,,)S(Q) and 7 < F(z,,;,) := min F(r) <1, where F(z) : [0,+00) = R* and F(r) = L+r

min 22/2* min) (14l 72%)2/2*°

(ii) S, 4(RN) has the minimizers {(U}", 7,,,,U;")}, where U (x) = =53 U(X XO) xo € RN and § > 0.

Proof. By the definition of F(z,,,), we find that F(z

i) < 1. Moreover, since 7# < 1 + %', we have that
1+ 72 1+172 1

(14 7f + 122/ 7 22/2°(1 4 ¢2%)2/22 — 22/

In the following we only need to check that part (i) holds for a bounded domain of R". For the case Q = R", parts (i) and

(ii) were proved by Peng et al*temma2l [et {w, } C H 5 (Q)\{0} be a minimizing sequence for S(Q). Define u, = w, and

Uy = TpinW,- By the definition of S, ;(€2), we have that S, ;(€2) < F(z,,,)S(€2). Moreover, in a fashion similar to the argument

min
of Peng et al> kemma 210 g Q) > F(z,,,)S(Q). O

for any > 0.
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181t is known that S(Q) = S(RV) if Q is bounded, which implies by Lemma that S, ,(Q) = S, ;(RN). So, in the fol-
lowing we may write S = S(Q) = S(R") and Sap = Sap€d) = Sa,ﬁ(IRN ). Moreover, it follows from the arguments of
Willem!!7 Proposition 143 that ,§(€Q) is never achieved in a domain Q # R . In a standard way, we see that .S, ,(Q) = F(z,,,)S(Q)
is never achieved in a domain Q # R™V.

Lemma 2. Assume that Q satisfies (V). Then

(i) J. is coercive and bounded from below on W, (thus on N7 and N));

(i) there exists a €, > 0 such that, for 0 < € < ¢j, N {(0 0)} and N'+ # @. Furthermore, for any (1, v) € E\{(0,0)},
1f D(u,v) > 0, then there exists a unique number t(+ ) and a unique number o) satisfying 0 < #F <t <t such that

(u,0) max (u,0)
u,v) € .Af* andt (u V) € .Af if D(u,v) < 0 then there exists a umque numbert ) satisfying 0 < ¢, < t o)

A(u,v) — —
b B U)]z 2. Moreover, J(I(u U)(u, V) = _n_lf( )J(t(u v)) and J(t(u U)(u v)) =

( ,0)
such that 7, (u,v) € N where 7, = [

max J.(t(u, v));

gy

(111) N is closed.

Proof. (i) Itis clear that, for any (u, v) € N, o> there holds

7.0 = G = Dl ol == e [ fut god.
Q
By a direct calculation, we get that

Jo fu+ gvdx < max{||f | -1, llgll - Y (llull + [ol)) < \/Emax{llfllﬂfl, lgll g-1 HICu, )] 12)
Thus, | | |
Juw.0) 2 (5 = @l = V2e(t = 2y max(f - gl G 01,

which implies that J. is coercive and bounded from below on V..
(i) From the definition of ¢, in (8], we get that

@ (1) = r(t) — eD(u, v),

where r(t) 1= A(u, v)t — B(u, v)t* ! for t > 0. For any (u,v) € E\{(0,0)}, we have that ' (t) < 0, r(0) = 0, r(t) — —00 as
@A) Awn) 7 g

t — 4o0 and r(¢f) > O for a small # > 0. So, r() has a unique global maximum value r(¢,,,,) = o DB
0 < €D(u,v) < r(t,,) @.(t) = 0 has two solutions t(Jr o s satisfying 0 < tz;’v) <oy < g Since (p”(t*;! ) > 0 and
ol (t4,.) < 0. we infer that t:; (. 0) € N and f) W 0) € N~ Moreover, if e D(u, v) < 0, ¢/(t) = 0 has only one solution

t-  satisfying ) > tmax: Obviously, ¢” (t ) <0and . (u, V) € N ~. It follows from the analysis above that

(u,0) (u,0)

J(I(u W 0) = 0 1nf Jc(tu,v), I, (u,0) = maXJ(t(u v)).

=F= (“ v) 2l ax

To prove J\fe(’ = {(0,0)}, we only need to check that ¢'(r) > 0 or ¢”(t) < 0 for any @/(t) = 0 and (u,v) € E\{(0,0)}.
We assume, without loss of generality, that ||(u, v)|| = 1. By the analysis above, we find that N 60 = {(0,0)} if the following
inequality holds,

22 1 ——
€D(M,U)<r(tmax) P l[m]2 2. (13)
Next we shall find a constant ¢, > O such that, for 0 < e < ¢, (I3) holds. From (12), we get that D(u,v) <
\/Emax{ AN =15 lgll -1 }- Since A(u, v) = 1, B(u, v) is bounded from above. There exists a ¢, > 0 such that
1
V2egmax{l/ll -1 g1} < 3 o) (14)

up B(u,0)
[I(u.0)]I=1

It is easily seen that (I3) holds if 0 < e < ¢,. Hence, .Afeo = {(0,0)}. Moreover, the sets {(u,v) € E : ||(u,v)|| = 1,eD(u,v) < 0}
and {(w,v) € E : ||(u,v)|| = 1,0 < eD(u,v) < r(t,,,)} are nonempty, which implies that N;—' # 0.

(iii) Itis clear that (0,0) € N~ and c/(N) € N.7U{(0,0)}, where c/(N") denotes the closure of N~ So, to prove that N~
is closed, we only need to check that dist((0,0), J\f ) > 0. For any (u,v) € J\/ we denote (), vy) = (“(M o To U)”) Applying

. )satlsfylng twny > Tmax Such that o (ug, vg) = (u,v) € N. Thus
0-Y0

1
). Moreover, B(u, vy) is bounded from above since A(u,, vy) = 1. So, there exists a

the proof of (ii), we get that ¢, ' () = 0 has a solution ¢

gy = @ 0 > 1, (—I)B(uo ™
o > 0 such that ||(u, U)|| > ¢. In conclusion, we have that dis?((0, 0), N‘e‘) = ian [|(w, v)|| > 6 > 0. O
W,v)ENS
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In the following we may always assume that € < €,. We denote the minimization problems

Q) := inf ,0), cH(Q) = inf ,0), ¢ (Q):= inf (U, V).
() o0 A/L‘Jg(u ), ¢ (€2) an A/:Js(u ), ¢ (€2) (u,u)eN;‘j (u,0) (15)

N
Note that ¢,(€2) is independent of Q and ¢(Q) = ¢,(RN) = %Saz 5

Lemma 3. For each (u,v) € N :, one has D(u,v) > 0 and J,(u,v) < 0. In particular, c:(Q) < 0. Moreover, there exists a €,
satisfying 0 < €| < ¢, such that c_(Q) > O for 0 < e <.

Proof. For each (u,v) € .}\f:, we have that A(u, v) — (2" — 1)B(u, v) > 0. Hence,
eD(u,v) = A(u,v) — Bu,v) > 2* —=2)B(u,v) >0
and
J.(u,0) = 3 A(u, v) = 5 B(u, v) — eD(u, v)
= (3 - 3)B,v) - (1 = )eD,v) < —[2-2* = 31222 B(u, v) < 0.
This inequality implies that ¢*(€2) < 0.

Recalling Lemmaand its proof, we find that, for any (4, v) € E\{(0,0)}, there holds Je(t(‘u’u)(u, ) = J. (.1, 0)). So, to
prove c_ () > 0, we only need to prove that there exists a C > 0 such that ¢(7,,,,) = C > 0. As the proof of Lemma (ii), we
take (u, v) € E\{(0,0)} such that ||(u, v)|| = 1. For 0 < € < ¢, equation (I3) holds. In a fashion similar to the arguments for
(I3), we find that there exists a ¢, satisfying 0 < e; < ¢, such that, for 0 < € < ¢, there holds

2% -2 1 !

D)< s ool - DBa)

We use this inequality to deduce that

max
2% =2 [ 1
2:2%.(2*=1) -~ (2*=1)B(u,v)

1 B(uw.v) 0
(ps(tmax) = Etfnax - _(zu*v)t%nax - €D(I/l, U)t
(2*=2)(2*+1) 1
> > [B
20 r -1y B .
2*(2*_2) 1 ]m .
B(u,v)

73

2
17= —

2.2*.(2*—1)%
Since A(u, v) = 1 and B(u, v) has its upper bound, we get that
2% . (2% =2
( ) ! b =C>0.

. 17
kL (0% _ 1V sup B(u,v)
2:20- @@ =Dy im

Hence, ¢_(€2) > 0. O]

Pe (tmax) 2

Lemma 4. If ¢.(Q) is achieved by (4, vy) € N, then (uy, v,) € N€+ and J(ug, vy) = c.(Q) = ¢} (Q) < 0. Moreover, if ¢ (Q)
(or ¢ (Q)) is achieved by (1, v)) € N : (or (uy, vy) € N ) then (i, vy) is a nontrivial solution of (@.

Proof. Let (uy, vy) € N, be such that J.(uy, vy) = c.(Q). It follows from Lemmathat c.(Q) < c:(Q) < 0. We suppose, by

contradiction, that (u, v,) € N. . - Reviewing Lemma (ii) and its proof, we get that there exists a unique number L) = 1>
Uo,>Uo

e > 1 , > 0 such that

max (ug>Ug

Q) < cHQ) < T, (g, v0) < TG, (g 09)) = € (Q),

(uo,U
a contradiction. So, (uy, vy) € NI and ¢} (Q) < J,(up, vy) = ¢, (Q) < ¢F(Q). The proof of the second assertion follows from Qi
and Zhang4, Lemma 3.2 )

Lemma 5. There exists a bounded sequence (u,,v,) C N(N or N,) such that J (u,,v,) = ¢} (Q)(c;(Q) or ¢, (Q)) and
J!(u,,v,) = 0asn — co.

The proof of Lemma 5| follows from the arguments of Qi and Zhang® lemma 4.6 and Lemma 4.7
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3 | EXISTENCE OF FIRST SOLUTION

In this section we shall prove the existence of the first solution in N’ A

Proposition 1. Let 0 < ¢ < ¢, where ¢, is given by Lemma Then there exists a (u;,v,) € N such that J,(uj,v,) =
cH Q) = ¢ (Q) < 0and (u, v)),uy,v; > 0is a positive least energy solution of (TJ).

Proof. 1t follows from Lemma [5| that we find a bounded (P.S),, ) sequence {(u,,v,)} of J. on N.. We may assume that
(u,,v,) = (uy, vy) weakly in E. Passing to a subsequence, (u,, v,) = (uy, Uy) for a.e. x € Q. Recalling that the sequences

. -2 . -2
Vu 1=l ulo,)” and  z, = |u,|*|0," 0, @+ =27

are uniformly bounded in L®"'(Q) and converge pointwisely to y, = |uy|*~2uy|v,|? and z, = |uy|*|v,|#2v, respectively, we
get that (v, z,) = (o, 29) weakly in L&' (Q) x L&V (Q). So, (J/(u,, v,), (@, w)) = (J!(uy, vy). (@, w)) for any (p,y) € E.
We get that J/ (ug, vy) = 0 and (uy, vy) € N..
Since
Jo(u,,0,) = c(Q) +0,(1) and (J!(u,,v,), W, v,)) = 0,(1),

we apply the weakly lower semi continuous of A(u,, v,) and the fact D(u,,, v,) = D(u, v,) to obtain that
¢, (Q) = liminf(% - %)A(un, v,)— lim(1 - %)eD(un, v,) > J.(uy, vy) > c (Q).

Applying LemmaE], we get that (u,, vy) € N €+ and J,(uy, vy) = c () = c:(Q) < 0. Moreover, (ug, Uy) is a nontrivial solution
of (1.

In the following we prove that (u,v,) := (lugl, lvgl) € NF is a positive least energy solution of (). Let (||, [0']) :=

+
L ughleoh
gllooD_ o W, = %) ¢ follows from Lemmathat D(|uy|, |vgl) = D(uy, vy) > 0. By Lemma we get that there

[ICluol. 1w DI Nl ugoop)ll ©
exists a unique number ¢} > 0 such that t} )(|u0|, vl) € ./\f: It is clear that | (ug, vy)|| = |1(lugl, [0y ||. We infer that

(lugl.lvo D) (lug 1ol

+ / / — ¢+t / / — ¢+t +
t(|"o|,|vo|)”(u0’UO)”(lu |’|U |)_t ”(luol’lvol)”(lu |’|U |)_t(|u0|,|v0|)(|u0|’|vol) ENe . (16)

(lugl.lvo D)
Moreover,
Il (g, 011, ') € NF. 17)
Next we compare t(luol,lvol)”(uo’ vo)ll with ||(ug, vy)||. Equivalently, recalling the proof in Lemma (ii), we compare the first
solution of ¢/ (#) = 0 under the case (u, v) = (||, [v'|) with its first solution under the case (u, v) = (', v"). Since D(|u/|, |/[) >
D', v") > 0, A([¢,|V']) = A@',v") and B(|u'|, [v']) = B/, v"), taking account of the graph of ¢/ () = 0, we get that

+

+ > :
t(|“o|’|vo|)”(u0’ U[))” = ||(u0, U())”' Equalently’ .
>
Fugliegh 2 1 (18)
: + +
Since t(luol,lvol)(lu()l’ lvol) € J\fe , from Lemma we get that
+
Je(t(l“ol»l”ol)(luol’ |UO|)) S Je(luol’ |UO|)'

Hence,

c(Q) < ¢ (Q) < T (luol, 1) < T(lugl, lvg) < T (ug, vg) = ¢ (£2).

(lug oo
From LemmaW] we get that (u;,v,) = tau Lo |)(luol, |vg]), uy, vy > 0is a nonnegative solution of (I). In view of (I), we get that
01-1%0
uy, v, # 0since f, g #Z 0. Applying the maximum principle to each equality of (I), we get that (u;, v;),u;, v; > 0 is a positive
least energy solution of (T)). O

4 | EXISTENCE OF SECOND AND THIRD SOLUTIONS

In this section we shall find two solutions of @ in N . under suitable range of critical level.

Lemma 6. If {(u,,v,)} is a (PS),-sequence of J, with
L¢3
c<c.(Q)+ S

Then {(u,,v,)} has a convergent subsequence.
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Proof. Let (uy, v,) be the weak limit of (u,, v,) and (1, p,,) := (u,, — uy, v, — vy). Then (,, u,,) = (0,0) in E. We introduce the
following version of Brezis-Lieb Lemma from Han LD Lemma 3.4

/Iunl"‘lvnlﬂdx=/InnI“Iﬂn|ﬂ+Iuol"lvolﬂdx+0,,(1), a+f=2"
Q Q

and the Brezis-Lieb Lemma for the other terms,
Jo IVu, 12 dx = [ IVn,12 + |Vupl?dx + 0,(1), [y lu,|¥ dx = [, 1n,|* + |ugl* dx + 0,(1).
Moreover, fQ fu,+gv,dx = fg Sfug + gvydx + o,(1). We have that
C < tje(un’ n) - J (uo, UO) + = ”(rln’ l’ln)“2 . /Q |nn|2* + |”n|2* + |’1n|a|”n|ﬂdx + on(l)' (19)
In a fashion similar to the proof in Lemmalthat (JE (u,,v,), (q), W) - (J (g, y), (@, w)) for any (¢, w) € E. We get that
J! (ug, vy) = 0 and (uy, vy) € N,. Hence
0”(1) = <17€,(un’ Un)’ (un9 Un)> = “(7],1, #n)”z - fQ InnIZ* + IMnIZ* + Innlalynlﬁd'x + on(l)' (20)

We may assume that there exists a constant b > 0 such that

1t )2 = b and / 2+ 1+ Il Pdx = b.

N
2

By the definition of S, 5, we get that S, ﬂb » < b. Hence, we have either b = 0 or b > S, - If b = 0, the proof is completed.
N

Otherwise b > SZﬂ‘ From (19), we get that

N

1 e
C—J(UO,U0)+Nb>C(Q)+N wp’

N
2

This contradicts to ¢ < ¢ (Q) + S . Thus, b = 0. O

In the following we may assume that
R, =p and R2=% for pE(O,%).
Now, we denote the radially symmetric function ¢, € Cf"([RN )suchthat0 < ¢, < 1 forall x € RN and
0, 0<lxl<¥,
o, =41 2p<Ix< 4,
0, |x|> %
Moreover, forc € S¥~! :={x € RN : |x| =1} and 0 < § < 1, we denote
[N(N —2)82]+
&+ 1x— (1= 80T

which is a form of the translation and dilation of U(x) (in (II))). From Lemma (I} we know that Sa’ﬂ(RN ) is realized by
U§(x), 7, Ug (x)). Let

Uz (x) =

ug”’(x) = (pp(x)Ug(x) (S Hé(Q) and Ug”’(x) = Tm,-n(pp(x)U(;’(x) (S HS(Q). 21

Then we have the following estimates.

Lemma 7. There hold

) A(u‘;’ "”) < +13M)S 2 +0(6V"?) and A(u "’p) > (1 +rmm
05(1) uniformly in ¢ as 6 — 0;

@ii) B(u" ”) < (1 + Tmm + 12* )S% + O(6") and B(ug’ ‘”’) >(1+ ’l.'m
(1+ Tmm + 7% )S 2 + 05(1) uniformly in ¢ as § — 0;

(iif) (uﬁ ;’)) — (0,0) vaeakly in E uniformly in ¢ as 6 — 0;

(iv) Jous”, v5") < 82, + 0N ),

)Sz —O(8N~%). Moreover, A ”,v}") = (1+72, )Sz +

min

n)S° — O(8™). Moreover, B(u;”,v]") =

17
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Proof. (i) Itis clear that there exist constants d}, d, > O such that d; < [x— (1 -6)o| < d, forall x € B,, whenever 6 < 1 —2p.
By direct calculations, we get that

| [ IVul?)? = VU 2dx]
RN

< / [VUZ|*dx +Cp™ [ |UZ|Pdx+Cp* [ |UZ|Pdx

R\ B, B,, B \g, (22)
N-2 |x=(1=8)s N-2 dx _ N-2
<Cé f Wd x+Cé f de = 0(5 )
(RN\B | JUB,, By, U(B 3 \B )
% o 2%
From (TI), we find that fN|Vu””’|2dx < / VU |*dx + O8N = ST + O(6N~%). Hence, AW}’ ,v7") =
R
(T+72) [ |1Vu]"Pdx < (1 + 72, )S 2 4+ 0(6N- 2) By a similar way, we obtain A(u}”,v7") > (1 + r’im)S% — 0(6V72). So,
RN

part (i) holds.

(i) It is clear that Bw]”,v7") = (1 + Tmm mm)/ |lug”|* dx. We have that f lu?|¥dx < [ |UZ|Fdx =

Py

{ [ + [ }NUZ¥dx. Moreover, [ |UZ|¥dx < [|UZ[¥dx = S> and UZ|¥dx <
B3\B1 B,i\Bj3, 1\l RN B3 \B

4p 2p 2p 2 2 4p 2p

N dx _ N o’p N
CoN [ s = O(3"). Hence, B]”,0}") < (1 + 1), + 2 )% +0(V).

Bi\B,
Now we prove the second assertion. It is clear that
/qu;””lz*dx 2 / US> dx = {/ / /}|U”|2 dx.
Q B \B,, RN RN\B 1 B,,
2p
By direct calculations, we getthat [ |UZ[*dx < CsN [ % = O(6"). Moreover, there exist constants d,, d, >
RM\B | RM\B [x=(1-d)0|
% %

0 such that d; < |x — (1 — 6)o| < d, forall x € B,, when 6 < 1 —2p. Hence, [ |UJ|* dx < C&V f bc—(lli—)(;)alz” = 0(6N)

B,,

and B(u;”,v7”) = (1 + rm L+ )/ lug?|* dx > (1 + rmm S — O(8™). The third assertion follows from the first and

1 min mm)

second assertions.
(iii) It follows from the arguments of He and Yang® emma 4261 that (7, v3”) — (0,0) weakly in E as § — 0.
(iv) For t > 0, we denote that

K(1) := —[(1 +72 )87 + 0N )] - [(1 +7 41287 — 06N,

min ml}'l)

Then K(f) - —oo as t — oo and K(¢) > 0 for a sufficiently small t > 0. So, there exists a t; > 0 such that me})x K(t) is attained
>

(1+22,)5 +0(5N 5 L . ;
and 5 = [ ’ 12=2. Moreover, there exist ¢;,¢, > 0 such that #; < #; < #, for a small 6 > 0. Clearly, by parts (i)
(142 +22 )57 —~0@N)

min " “min

and (ii), K (1) is an increasing function in (0, 7] and Jy(tu;”, tv5”) < K (). Hence,

Jow]? 057 < maxjo(m” 10]”) < K(tg) = %S{Zﬂ + O8N, (23)
O

Lemma 8. There exists a 6, > 0 such that, for 0 < ¢ < g,

N
sup J(uy + 1’ vy +107°) < c (Q) + 152
>0

(24)

uniformly in ¢ € S¥~!, where (u, v,),u;, v, > 01is given by Lemma
Proof. It follows from Lemma T|that J,(u;, v,) = ¢.(Q) and
t[{uy, u?”)yg(g) +(vy, UZ"’)Hl(Q) €D(“5 ) 5 )]

= 25—1,0.0 25—1,0:p a=1,6 00 4 B p=1 Up
—tfgu1 us" + vy T o, +2*u AT dx.
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So, we have that
Ty + 1l v +107") = A(ul,ul) + = A(tu” tv”)
+(uy, il >H1(Q) + (v, toy >H1(Q) B(ul + i’ v+ 10;") — eD(uy, v)) — eD(tu”, tv3°)
= J(u1,U1) +3 A(u 03" = —B( 03"
=5 Jall + zug ﬂ)“*_(v A ")ﬂa ujof = (@0} — i opni? — o]
-5 /Q[(ul + tué”’)2 1 - (tu] KO L. Z*uf ltué"’]dx
—5 Jol + 1l = 0¥ — (i) =270 "] dx.
Moreover, the following claims 1-2 hold.

Claim 1 : [o[(u; + tul”) () + t07") = uv] — (tu”)* (107”) — aut~"v ﬂ ﬁul f tvg’p]dx > 0.

To prove Claim 1, we define f(x y) . [0 +oo) X [0, +0) — R by

fy) =0+ 0%1+y) = 1= x% —ax - py.

25
107" )dx )

By direct calculations, we have that
—0f§’;’y) =a(l+x)'A +y)f —ax® 1y —a
>a(l+ 01+ ) —ax 'y —a
=a(l+x)"' —a+a(l + x>y —ax* 1y > 0.

Similarly, af ) > 0. Moreover, f(0,0) = 0. So, we get that f(x,y) > 0 for any x > 0 and y > 0. Applying the inequality
fl,y) =20 and the fact Uy, Uy > 0, we obtain claim 1.
. e N2 oo o e s
Clatm 20 foluy +1ul?) —ud = (u?) = 2% T dx > 0677 ) and fo(v) +1037)F — ot = (10?)F = 2%0] i dx >
06™).
The proof of Claim 2 follows from He and Yang® Favations (4.7 and 4-8) By ysing Claims 1-2 and Lemma([7} we infer from (23)

that
T + i’ o, + m"*ﬂ) < Jolwy, o) + S[(1+72,)S T +0@EN2)]

. N2 (26)
——[(1 + rmm + rim)S 2 —0(™M)]-0(672).
Let K(?) := [(1 + Tr%”n)S 2 +0(6N2)] - [(1 + Tmm + Tf:in)S? — O(6M)]. Then liI(l)’l K(t) > 0and K(t) > —c0 as t — +c0.
t—0*
T N N-2
So, there exists a t; > 0 such that sup K(¢) is attained and 75 = [ ()5 +0(§ ) ]z*l_—Z. Moreover,
>0 <1+rm,,,+r,%,j,,>s Z -0(s")
sup K(t) = K(t5) = —S z ; +OEN .
>0
We infer from (26) that N
Jo(uy + 13?0+ 1077) < e (Q) + %Sfﬂ +06" ) - 06).
So, there exists a 6, > 0 such that, for 0 < § < &, the result holds. O

N
2

Lemma 9. There exists a #, > 0 such that (1, + tou ,U1 + tou ) € N for 0 < 6 < 8. Moreover, ¢ () < ¢, (Q) + ~ S

Proof. By the definition of N, we have that N~ = {(u,v) € E\{(0,0)} : ool U)” IE"‘ZZM = 1}. Moreover, E\N = U, U U,,

where
U1 = {(u, V) € E\{(O,O)} : ”(u’ U)” < t_(u,u) } U {(O’ 0)}’
@)l
U, :={(,v) € E\{(0,0)} : . 0)ll > 17, }.

lI@.o)ll

. + + _ o+ - 1
We claim that N} C U, . Indeed, let (u,v) € N¥, we have that 1 = oy <tmax <1, = Tl U)" w ”;" .

Next we prove that there exists a 5, > 1 such that (u; + su;’ Poop + SoUy "y e U, for0 <6 < 60 It follows from Lemmal
(u,+sou vl+sou 0]

that there exists a unique number -~ +». > Osuch that t~ op .
) witsoug " or+0vg ) |y +sguy 0y +5005 )|

(u1+x0u V1 FS0Us
Iy +sgug oy 025l Iy +squy vy 45905l

€ N . Since J, is coercive
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(u +sou z 1 +s016 /’)

on j\f there exists a ¢ > O such that 0 < ¢~ < c¢. In view of Lemma (i), for a sufficiently small &, there holds

||(u]+AUu z]+suzo-p)\|

N 2_ 2 1 2_ 2 1
I@3?, 3N > S+ . Let sy = <@l 11 We have that 5, > H +1and
ST 5 Vs

|y + sous”, v + sov"’”)ﬂ2

—||(u],vl)||2+s2||(u5 ’ 5 )||2+ZSO(<M1’ 5p>+<Ul7 5/1))
> |Gy, DI + le? = Iy, 0DIP 2 ¢ > (1 0 )

(u]ﬂ[)u b]+A()b

(1[5 +:0u L]+501fr /))H

which implies (u; + sou;”, v, + sov5”) € U,.
For each 0 < 6 < 6, we define a path &;(r) = (u;,v)) + rso(u(S , 5 "?y for r € [0, 1]. Then
&(0) = (uy,vy) and &5(1) = (u; + squy”, vy + s50057).

It is clear that (u;,v)) € N} C Uy and (u; + sgui”, v, + syv;”) € U,. Moreover, mfw) is a continuous function and
T ol

&;([0, 1]) is connected. So, there exists a ry € (0, 1) such that &5(ro) = (u; + rosou;”, vy + rosovs”) € N7 Let ty = rysy, we
have that (u, + tou5”, v, +t,057) € N-. Applying Lemma we get that

N

?

c (Q)<J(ul+t0u5 ,Ul+t01)”)<c(9)+ S

In the following we shall show that, for a sufficiently small A > 0,

N

cat({(u,v) € N7 J.(u,v) < ¢ (Q) + L 2 —-AH>2,

where
cat(X) :=min{k € N : there exist closed subsets X, ...,X; C X such

that X is contractible to a point in X for all j and Ujf:l X;=X}.
To start with, we introduce the following two lemmas for our proof.

Lemma 10. 4 Suppose that X is a Hilbert manifold and G € C'(X,R). Assume that for ¢/ € R and k € N
1. G satisfies the Palais-Smale condition for energy level ¢ < ¢’;

2.cat{x€ X : G(x) < c'}) > k.

Then G has at least k critical points in {x € X : G(x) < ¢'}.

Lemma 11, 20 Theorem25 T ot ¥ be 3 topological space. Suppose that there are two continuous maps @ : SN~! — X and
¥ : X — SM! such that Wo® is homotopic to the identity map of S¥~!. Then cat(X) > 2.

Note that, for each (u, v) € E\{(0,0)}, there exists a unique number * > 0 such that t*(u, v) € N,,.
Lemma 12. For each (u,v) € E\{(0,0)} and 0 < « < 1, there holds
N N
(1= ex) > Jo(t @, 0)) = = F I3, + 118130 < Tt @ 0) < (1 + €)= Tt @, o) + =12, + gl
Proof. For c € R, we denote that
B,(u,0) = cB,v), T.(u,0)=3A@,0)~ 3B, (u,0),

M, = {w,v) € E\{(0,0)} : (T/(u,v), (u,v)) = 0}.
Now we study the relationship between J, and I,. For each (4, v) € E\{(0,0)} and 0 < k < 1, we have that

K 1
| [ fu+gvdx] < fllg-llull + gl g lloll < S o> + ==L 15- + gl
2 2K H H
Q

So, there holds
% Au,v) = =B, v) — Z(IF112,, + llgl? ) < T, 0) < £ A, v) = 2B, o)+ =713, + llgll?,)
2 ’ 2% ’ 2k H-! H-1/ — Yev™ - 2 ’ 2% ’ 2K H-! H-'"
Equivalently,
(= e o) = (1 + gl < T v) < A+ eI o)+ 515, + gl )- 27)
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Next we seek the help of function Z, to prove the lemma. For each (u,v) € E\{(0,0)}, we denote k(t) := I .(t(u,v)) =
* u 1 . .
%A(u, )2 — %Bc(u, o)t? . Lett, = (%)2*—2 > 0. By direct calculations, we get that #,(u, v) € M, and

max Z,(t(u,v)) = I.(t,(u,v)) = LA(M’—U)j_z
20 B.(u,v) 2

From LemmaE}, we get that ¢ () > 0. So, max J.(tu,tv) = J(t7 (u,0)). This fact together with (27) yield that

(u.0)

I =e)I 1 (1 (o) = =(IfI5,. +llgll,-) < T, , (. 0)

<A+eT o (o @o)+ <A, + gl ) 28)
e ]+1€k ]+]er( o 2k ! H- Elg-)-
Moreover, we find that s
1- A
T2 oy QT AWOR s,
1-ex l—ex N B(u, U) P
where *(u, v) € N,. The result follows from (Z8). O

Lemma 13. Assume that Q satisfies condition (V). Then there exists a y, > 0 such that if (u,0) € N with Jy(u,v) <
N
%S{Zﬁ + g, then | [ Z(IVul> + [Vol)dx] # 0.

Proof. Let {(u,,v,)} C N, be such that J,(u,,v,) = FS; s+ 0,(1). In a fashion similar to the argument for the second

2 Uy) = 0.So0, {(u,,v,)} is a Palais-Smale sequence of [ at the level S 2 . Note
)S 1s never achleved in a bounded domain . In other words, if (1, vy) is a solution of (]I[) w1th €= 0 then

n’ Vl

assertion in Lemma |5| that we infer J (u
that S, 5 = F(r,

mln
Jolug, vy) > FS;, ;- Now, using the global compactness lemma from Peng et a]® Theorem 1.7 “yye get that

1 1

xl’l xl‘l
(un,u)—(r) (U1( o ), Vi( ] ) +0,(1)

in D'2(RN) x D"*(RN), where rl > 0 asn — o0, x! € Qand (U}, 1)) # (0,0) is a solution of (I) with e = 0 and Q = RY.

Suppose, up to a subsequence, that | TI — Y, as n — oo, where y, is a unit vector in R". We have that

| fion 500V, [ + V0, P)dx]
2-N xX—x

S (‘—|<|V<r1>TU1

= | fux 22 (VU, ) + [VVi(2)P)dz] + 0 <1>

[x]+rlz|

= |y fRN(IVU @ +VVi(2))dz| +0,(1) # 0.

2-N
+|VrH T Y,

O
For 0 < 6 < §, (given by LemmaE[), we define H; : SV=! - E by
Hj(0) = (u; + touy”, v + tov3 ") € N7, (29)
where (u; + tyu5”, v) + tov3 ") is given by Lemma@ From Lemma we find that there exists a 4; > 0 such that
VAUA +fou§’”,vl ‘Hovap) <ec (Q)‘i‘ N aﬂ = s
which implies that N
Hy(SV™) € {u,0) € N7 & Jo(u,0) < (@) + % S — a5l (30)
Lemma 14. There exists a €, > 0 such that, for 0 < € < ¢, and any
(ug> v) € {(w,v) € N7 ¢ J.(u,v) < ¢ (Q) + ! Nﬂ

there holds | /v ﬁ(lVLtol2 + |Vuo|»dx| # 0.
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N
Proof. Let (uy, vy) € {(u,v) € .Afe‘ P J(u,0) < c (Q)+ %Sa%ﬂ}. Then t(‘uo’%) = 1. Itis clear that ¢ (€2) < 0. So,

1 X
J.(ug, vy) < FS;[}.

From Lemma|[12] we have that there exists a 0 < k;, < 1 such that
a- €K0)7,_70(t*(u0, Uo)) - ;To(llf”il-l + ”g”il-l) < Je(t(_uo,vo)(uo, Uo)) = Je(”O? Uo),
where *(uy, vy) € N,. Hence,
Jo(t*(ug, vp)) < (1 = €K0) 7 [Ty, vg) + 3 (||f|| +llgll3, D

<(1—e;<0)—7[ S2ﬂ+;(||f|| +|Ig|| .

— (1 _ -2 _ 2
= [ —ex) s — 11482 + (157 + mrioee 24 PREY 1 PA0)
N
We easily find that there exists a 6‘2 > 0 such that, for 0 < € < ¢,, there hold [(1 — €K0)_% - 1]%Sa2ﬂ < % and
——(If I3, +llgll3,.,) < £, where y, is defined in Lemma Hence, we obtain that
2K (1—€Ky) 2
1 X
Tt (ug, v)) < ﬁs‘iﬂ + Ho-

This inequality together with Lemma|[I3]yield the result. O

We define G : {(u,v) € N : J.(u, V) <@+ S }—>§N1by
/[RN m(|Vu|2 + |Vo|»)dx

G(u,v) = ~ .
| Ja VUl + [VoP)dx|

Note that G is well defined since Lemma [14]
Lemma 15. For0 < e <€, and 0 < 6 < 4, the map

GoH, : SN=1 — sN-!
is homotopic to the identity, where H(c) is defined in (29).

Proof. We define
= {(w.0) € E\{(0.0)) : |/_<|w|2+ VoP)dx| #0)
and G : K —» SV!by

. fRN ﬁ(Wul2 + |Vu|>)dx
G(u,v) =

| Jan Z(VHP + VoP)dx]
as an extension of G.

It is clear that there exists a t* > 0 such that t*(u}”, v7") € N,. From @) we find that

5 5
Tot*ul? 1 077) < max To(tu?, 1077) < S? +0(sN7?).
For a sufﬁ01ently small 8, this inequality together with Lemma H yleld that | /[RN (IVu” 1> + |VU” |)dx| # 0. Thus,
G(uy”,v7") is well defined. Let y : [s,,] = SV~! be a regular geodesic between G(u *) and G(H(c)) such that
¥(s) =Gy, v5”) and y(sy) = G(H(0)).

Moreover, in a fashion similar to the argument in Lemma [7| and the analysis above, there exists a ¥ > 0 such that
W’ ) € Ny and

5’6

2(1-k)s’ 2(1 k)o

1
/ 0'17 ! 0'17 0P 2
Jo 50T Vg1 _ys) <maxj0(tu2(l 05> 102(1-1s) < NS + Ho
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for a sufﬁciently small 6 and k € [1 1), where u, is defined in Lemma So, | ./RN |Vu2(1 k)5|2 +|Vul?”
G_(u;(”l’_k)é, S is well defined for k € [ 1). Now we define ¢;(k, ) : [0,1] X SN I - sN-lpy

21— k)él )dx| # 0 and

Y2k(s; = s+ 57, if k€0, 3),
— ~(,,0 f . 1
Go(k.0) =3 Gluy|_s V1) IS k€L,
o, if k=1.

We claim that limﬁ ¢s(k,0) = o and lirp_ ¢s(k,0) = Guy”, v57).
) 11m ¢s(k,0) = 0:letk, = 17 as n — oo. Since u;"(x) = 55 (,op(x)U()C x99y we use the equality to deduce that
2
Ja x |(|V”2(1 sl + Vo3 k)&l )dx

= (14 72,,) fon 50201 = k)81 5 V(@)U (20 2a

= 0+ 70) fav i V@, U @)Pdz.
Moreover, éx:iﬁ:ﬁjﬁ::;gzl —oask, — 1~ and

/|V((PP(X)U(Z))| dZ_/IVuz(l k)5| dx = ST as k,— 1.
Hence,

/ P |(|Vu2(1 sl IV, sdx = (147, )8 6

and klil‘{l_ ¢s(k,0) =o0.
(i) lim ¢;(k,0) = G(u3”,v5"): one has that
kot
2

lim_¢,(k 0) = lim y(2k(s, = 55) +55) = ¥(s5,) = Gy’ v7").
k—»- k—

Moreover, ¢; € C([0,1] x SN~ SN=1), ¢,(0, a) = G(H4(0)) and ¢5(1,0) = o for 6 € SN~! provided 0 < & < &, and
0 < € < €,. Thus the result follows. O

Proposition 2. Let 0 < ¢ < ¢/ = min{e,, €, }, where ¢;,i = 1,2 are defined in Lemmasandrespectively. Then J, has two
critical points in

{(wv)e N7 1 J.(u, v)<c€(Q)+—S 1.
g2

Equivalently, (]I[) has solutions (u;, v;) € .N'E‘,i = 2,3 with J,(u;, v;) < c.(Q) + F g

Proof. Applying Lemma|[TT] Lemma[I5]and (30), we have that

N

cat({(w,v) € N7 : J.(u,0) < ¢ (Q) + ! Sop—Ash) =2

N
2

Now from LemmaHand Lemma , we find two solutions of () in NV, - with J.(u,v) < c.(Q) + — S

5 | EXISTENCE OF FOURTH SOLUTION

In this section, we shall prove the existence of a high energy solution in N . by using the minimax lemma of Brezis and
Nirenberg 15| Theorem 1 .

Lemma 16. Let 0 < € < €5, where

€= z 17=2 = 2\/—S4
T2 22 - D+al@—D+BB -1 (N+2)maX{IIfIIH Lllgla-)

Then (uy, v)) is the unique critical point of J, in N},
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_ z Lt
Proof. Letry = [2_2*(2*_1)”((1_1)%(/3_1)] 72 8% . Then,

Claim 1: N} C B, (0) = {(u,v) € E\{(0,0)} : [[(u, )|l < ro}.
Indeed, if (u,v) € Nj, then A(u, v) > (2* — 1) B(u, v). By using (12)), we get that

A, 0) = B, 0) + €D, 0) < =A@, v) + V2e max{ || £ | -1, lgll -1 HI @, )],

which implies that, for 0 < € < €3,

VAN + e max{If L. gl ) _
4 -

ll(u, 0)I| <

Claim 2: J(u, v) is strictly convex in B, (0).
For all (u,v) € B,0 (0), one has that

J! w, 0)(@.v). (@, ) = l(@. W)II* = 2* = 1) [, lul* 2* + [v]* Pyldx
_01(4;—1) /Q Iula—2|vlﬁ(p2dx _ ﬂ(i*_l) /Q Iulalvlﬂ—szdx
> [[(@. w)II> = @ = DIul2 2 ol2 — @* = DIv2 2|yl
-1 — —1 -2
— a2 ol @l — B2 g, ol w2,

> [|( w)IIP{1 = [22" = 1) + 242 + BB 15773 || (u, 0)[|* 2} > 0,

where (@, y) € E\{(0,0)}. Claims 1-2 imply that (u,, v,) is the unique critical point of 7, in J\/:. O
The following global compactness lemma is a version of Peng et al® Theorem 1.7,

Lemma 17. Let Q be abounded smooth domainin RY, {(u,, v,)} be a Palais-Smale sequence for J. atlevel ¢, i.e. T (u,, v,) = ¢
and J/(u,,v,) = 0in H ~!'as n — +oo. Then there exists a solution (i, v,) of (), / sequences of positive numbers {r},},
1 < j <1Iand ! sequences of points {x),}, 1 < j <1inQ, such that up to a subsequence,

I . =] . . . .
(1) (uy, v,) = (U, vp) + Z("Z)NTZ(U,-("Z(X = x;), V;(r(x = x;))) + (0,, 67), in DY2(RY) x D'*(RY), where ||(o),02)| = 0,
. =l
¥, — co as n — oo and (U;, V) are nonzero critical points of

T, v) := %/ [Vul? + |Vo|?dx — % / [ul* + [v]* + |u]®|v)Pdx;
RN RN

!
(i) J(u,, v,) = J.(ug, v) + X T, (U;, V) + 0,(1),
j=1
where 0,(1) - 0 as n — oo.
Lemma 18. Let {(,,v,)} C N be a (P.S), sequence for J, with
1 .5 - 1 .5
c. () + ﬁSa’ﬁ <c<c (+ NSa,ﬂ'
Then there exists s subsequence still denoted by {(u,,,v,)} and a nonzero (1, vy) € N such that (u,, v,) = (1, v,) strongly in
E and J_(uy, vy) = c.

Proof. Let {(u,,v,)} bea(PS), sequence. Then by standard arguments, (u,,, v,) is bounded in E, and there exists a subsequence

still denoted by {(u,, v,)} and (u,, v) such that (u,, v,) = (4y, Vy) in E. In a fashion similar to the arguments in Proposition

we get that J'(uy, vy) = 0 and (uy, vy) € N,. It is clear that (0,0) is not a solution of (I). So, we infer from Lemma that
N

either (u,, vy) € Ne‘ or (uy, vy) = (uy, v;). By Lemmaand LemmaEl, we find that ¢ > ¢.(2) + %Sfﬂ > ¢ () > 0. It follows
from Lemma [I7] that

i
I 5 _ 1 X
Q)+ 8.1 < ¢ = Tolug vo) + Z{ TolUp V) < /(@ + 1S
=
So, we have that / < 1. If I = 0, then we are done. If / = 1 and (u, vy) = (u;, v;), then
| . 1 .2
c = ‘76(111, 1)1) + FSO[ZJ] = Ce(Q) + N‘Sazyﬂ’
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a contradiction. If / = 1 and (4, v,) € ./\f ~, then

T (ug, vg) + 1S wp 2 e(Q)+ 1
again a contradiction. Hence / = 0 and the result follows from Lemmal[T7] O
Let W2 a5
—0 _0' us",vs’
(@’ 057) = -, 31
o 151+ 1051+ || 05" 1P d ) 2
where (u5”, v5”) is defined in 21).

Lemma 19. There hold:
(i) A@;"’,07") = S, 5 as 8§ — O uniformly in o € S¥~!;

(if) There exists a p, > 0 such that sup Ay’ 057) < 2% S wp for0 < p < py.
cESN-1,6€(0.1)

,p _o'p A(u§” Up)

Proof. (i) It is clear that A(u5 s Oy

)
B(ug 03 )2*

(ii) In a fashion similar to the arguments of Goel and Sreenadhl* Lemma4.2 "we find that

lim  sup  fo. VUi P = |VUZPdx =0, lim  sup  [o. |u3?|* —|UZ|*dx =0.
p=0 sesN-1 5¢(0,1) p=0 sesN-1 5€(0,1)

. The result follows from Lemma I and Lemma

Since [oy [VUZ|Pdx = [on IUZ ¥ dx = S, we have that

sup  A@;”’,0;°) = F(z,,,)S =S, as p—0,
seSN-1,6€(0,1)

)<2 NSy pfor0<p<p, 0O

where F(z,,,) is given by Lemma So, there exists a p, > O such that ~ sup  A(a;”, 0}

ceSN-1,6e(0,1)
Let
M ={(u,v)€E : / [ul® + [0]* + [ul®|v|Pdx = 1}. (32)

Now, for any (u, v) € E, we denote the function H : M — RN by

H(u,v) = /X(Iulz* +[ol* + [u|*|v|”)dx
Q

and also let
M,={u,v) e M : H(u,v) =0}. (33)

Proposition 3. There hold:

(a) 11m H(i;”, 077) = o, where (@}, 5;") is defined by (31);
L = f A h ;

(b) et my = (u,i?eMo (u, v), then SO,,,; < my;

(c) There exists a &, > 0 such that, for 0 < § < 6, and |o| = 1, we have S, ; < A@@;”,5;") < ot Sap

Proof. (a) We have that
Au—wWWP+M?W+W?W%ﬂW”
<(I+7 + 72 M fan (x = IUF 1P dx| + | fou (x = 0)(@) (x) = DIUS|* dx|],

min

where 7,,,, is defined by Lemma[l] It follows from the argument of He and Yang22 Lemma34 that
| /(x —o)|UZ 1 dx| + | /(x - 0')((p,2:(x) - DIUZ[*dx| - 0 as 6 — 0.
RN RN

Hence, 5 )
o, * o, * o, (o8
_ fQ(x_O-)(luapl +|U5p| + |u5p|a|U5p|ﬂ)dx

Jo 1571+ 105+ 101105 P x

H (i’ 077
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(b) In a fashion similar to the proof of He and Yang?2 Lemma 3.3 'we obtain (b).

(c) Apparently S, ; < A(a;”, 5;"). Note that S, ; is not attained in a domain Q # RN. So, S, ; < A(a;”, 0;"). Moreover, by
Lemma [19(i) and Part (b), we get the desired result. O

Let ry = 1 — &, where 6, is given by Proposition 3 (c). For ¢ € S¥~! and |(1 — 8)a| > ry, i.e. 0 < § < &,. We denote

B, = {1=8)ceRN :|1-6)c|<r,ceS"1,0<6<1}.

and a subset X of E by
S={@*0]") : (1-6)o€B,}.
Let
¢ my + Saﬂ
H={heCM,M) : h(u,v) = (u,v) for (u,v) such that A(u,v) < 5 -
andA={TCc M : T = hZ),h € H}.Since id € H, H is nonempty. Then we introduce the following result of He and
Yang 22| Lemma 3.6.
Lemma 20. If T € A, then T N M, # @, where M, is defined in (33).
It follows from Lemmathat c.(€2) > 0for 0 < e < ¢,. Now we define J. : E - RN by
Jow,v) 1= max J(tu, o) = J (1, , (, 0), (34

where o) is given by Lemma For each (u,v) € E, (J (t(‘u U)(u v)), (u,v)) = 0 and Je(t(u, v)) < 0. By implicit
function theorem, we get that Ty € CY(E, (0, 0)). As a result, J (u,v) = Js(t(u U)(u, v)) € C! (E R). Then we follow the idea

of Szulkin and Wethl18 Corollary 2.10' 45 e the following lemma.

dt2|t t

Lemma 21. The following holds:
(@) If {(u,,v,)} € E\{(0,0)} is a (P.S), sequence of J., then {rg, o Wnv,)} C N7 is a (PS), sequence of J,;
(b) If (u,v) € E\{(0,0)} is a critical point of JVG, then i U)(u, V) € .N'e‘ is a critical point of J..

Proof. (a) For each (u,v) € E\{(0,0)}, we have that js(u, v) = Jg(t(‘u U)(u, v)) € CY(E,R). Let i : E\{(0,0)} - N bea
map given by m(u,v) = t U)(u, v). Next we check that # is a continuous map. Let (u,,v,) — @',v') and 1, = LIRS then
m(u,,v,) =t,(u,,v,).1If t, - +co, then o

o(l) = Je(u,, v,) p T, v,)) oo,
12 12

n

a contradiction. We may assume that ¢z, — ¢, > 0. Hence,
Tl @ 0) 2 Tt 0)) = Hm T, (1,0, 0,0) 2 B T (17, @y 0,)) = Telt ) @ 01).

> 0, which implies that 7% is continuous. Thus m = | i, where S! 1= {(u,v) € E : ||(u,v)|| = 1} is

(u,v) - .
ol for (u,v) € N 7. Applying the

As aresult, 1, = t( o)
the unit sphere in E, is a homeomorphism. The inverse function is given by m™!(u, v) =

result of Szulkin and Weth!18 Proposition 29 “we oet that J o € C'(E\{(0,0)}, R) and

((T.om) (u,v). (. y)) = LT (it v). (. 9) (35)

for (u, v), (@, y) € E and (u,v) # (0,0). Moreover, J.om : S' — R is of C!-classl0 Corollary2.10 T et (7 5,) = ”E:”’z”;” e sl
Then w"

m(@,.0,) =1, , [, 0)l@,5,) € N
Since {(u,,v,)} is a (PS), sequence of .J., we have that
Je(uy,0,) = Je(t(‘u )ty 0) = (Jom)(@,, 0,) — ¢

,) — 0. Itis clear that m(ii,,, 0,) = (un, v,) € N7 and

7, o)W O <J€’(t(;mun)(un, v,,)), @y, 0,)) = (J/(tg, W 0D 1, Wty 0,)) =0

and (J,om) (i

n’ n
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It follows from (33) that

((Jeom) @,,8,), (@, W) =I5, , @ UIITLE, (W 0,), (9, 9))
= Ity 0IT, (r;,mvn)(un, 0,). (@.w) + 1@,.5,)))

for (p,y) € T, ;,S" and 1 € R, where T; ;,S" stands for the tangent space S" at (&,, 7). Hence

n’ I’Z

0 — [[(Jeom)' @@,, 0,)|l = sup (Jeom) (@, 0,)), (@, w)) = It (s 0T (1,

(PW)ET G, 5, @uw)l=1

(@ o)l

(u,,0,

Smcet (u,,, v,) € ./\f we have that ||t‘ (un, v,)ll = p > 0. We infer from the equation above that J e’ (t(‘u , )(un, v,)) — 0.
Hence {t (un, v,)} is a (P.S), sequence ofJ
(b) The proof is similar as it in part (a). O

We introduce the following minimax lemma of Brezis and Nirenberg> Theorem I

Lemma 22. Let E be a Banach space and J: € C'(E,R). Let K be a compact metric space, K, C K be a closed set and
y € C(K,, E). Define

={g€C(K,E) : g(s)=y(s)if s € Ky}, ¢ =infsupJ.(g(s)), ¢* = sup J..
g€l sek W(Ky)

If ¢z > c* then there exists a sequence {w,} C E satisfying J(w,) = ¢ and JVS’ (w,) = 0. Further, if J, satisfies (P.S),.
condition then there exists a @, € E such that J.(w) = ¢ and JVS’ (wy) =0
It follows from (32) that M C E. We set that
= {q (S C(Bros M) : q|0Br0 = (ﬁ‘;,ﬂ’ ﬁ;’P)}'

and
¢=inf sup [lg((1 -8l é=3up||(a§"’,ﬁg"’>||2. (36)

95 (1-8)0€B,,

Obviously, ¢((1 = 8)o) = (i;”,0;”) € F for (1 - 6)o € B, . It follows from Lemmaﬁ(ii) that, for 0 < p < p,, there holds

0]

SLOOIP< sup @7, '”)||2<2 Sup (37
(1—5)oeB ceSN-1,6e(0,1)

c< sup @@

By Lemma , we have that, for h € H, there exists (1 — §)6 € B such that h(u” 5> ”) € M,. So

~G6,p ~0, 2 —0,p) -0, 2
my < |A@2. 0P < sup (W@ 550,
(1—5)6€B

where m, is given by Proposmonl(b) Moreover, for h € H, h(i;”, 057) = (a@;”,0;”) € F. Hence,

- — 2 —
SES N ||h<u‘“’ NI = ¢
(i JEF (1- )ocB,,

This inequality together with Proposition 3] (b) and (37) yield that
Sa,ﬂ<m0§c'<2%5a’ﬁ for 0 < p<p,. (38)

Moreover, from Proposition |§| (¢), we find that
Y my+ .S, 4
sP)”Z < v Tab

é=sup||@>”’, v
‘75’,0 3 3 2

<my<c.

Let

. £ J.(q((1 = 8))).
i, -0 @)

Lemma 23. There hold;

(i) J@5",05") = 82, +o(1) as § — 0;

(i) For 0 < p < p, (given by Lemmal[T9), there exists a e4 > 0 such that if 0 < € < ¢, then
1 N

1
c(Q)+—S <c <c (Q)+N wp’
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Proof. (i) 1t follows from Lemma 7| (iii) that (@5”,5;”) — (0,0) weakly in E uniformly in ¢ as 6 — 0. Let ¢ (t) =
J.(t@3”, 5;")). Solving

@) =A@, 0 -1 —e / fuy" + g0} dx =0,
We conclude 75 = (A(@@;”, 5;°)) 7= 73 4 o(1) as 6 — 0. Combining Lemma(i) and (39), we get that

J L@3?, 07" = maxJ (@3, o;")) = max e () =@ (t;) = —Szﬂ +0o(1) as 6 = 0.

(i) It follows from (34) that
1 Au, U) 2

jo(u, V) = max Jo(tu, tv) = .
B(u, U)T

For each g € F and (1 — 6)0 € B, , we have that

z 1
Jo@((1 = 6)0)) = —llg((1 = &)o)II™.
This equality together with (36) and (39) yield that

¢ = S 1nf sup  [lg((1 =)o)V = e
F (1-5)0€B,, N

(40)
It follows from (38) that
%Saz <¢y < S2 for0<p<p,. 41)
In view of Lemma[12]and (34) , fora fix 0 < k < 1, there holds
N € v
(1 = ex)> Jo(a((1 = 8)0) = = (I f 113, + llgll3,) < Te(a((1 = 8)0))
< (L+ex)2 Jpla( =)o) + =(IF 11, + gl )
and
N, €
(1= ex) ey = o= (S I + llgll ) < ef < +ek) el + —(IIfII A+ llell3, 0
So, for any # > 0, there exists a €;(r7) > 0 such that if 0 < € < €,(#) then
Co—n<c:<cy+n. 42)

Moreover, from Lemma[l2] we have that
N

1 2
TSap oI, + gl ).

N
2

L _
(1= 58,7, = =12, + 118l ) < e (@) < (1 +ex)
So, for any # > 0 there exists a €,(1) > 0 such that if 0 < € < €,() then — ~ Sazﬂ n<c (Q)< #Sfﬁ + n. Equivalently,
N
l ? - - g B 43
S 11<c€(Q)+NSa <NSaﬂ+’7' (43)

52 - ¥
In view of (@T), for a fix 0 < # < min{ X ’“’ i ,Co = %S;’ﬂ}, if 0 < € < e, = min{e,(n), €,(17)}, then applying @I)), @2) and

@3), we get

N
c(Q)+N aﬂ< S2 o~ n<ci<c+2n-n< SOC2 ;1<C(Q)+N p (44)
So, the result follows. O

Proposition 4. If 0 < p < p,and 0 < € < €' = min{€’, €5, ¢, }, where p,, €/, €; and ¢, are given by Lemma Proposition
Lemma|l16{and Lemma [23|respectively, then there exists a solution (u,, v,) € J\/ ~ of (1) with
c(Q)+ — S2 < J(ug,vy) <c_ (Q)+L aﬂ
N
Proof. 1t follows from (44)) that c > S 2 . From Lemma(z) we have that ¢} > J @@’ 5 5 Y = —S . +o(1) whenever 6 is
sufficiently small. So, applying Lemma and (39), we get that there exists a sequence {(u,,,v,)} C E such that J (u,,0,) = c;
and j‘E/(un, v,) = 0. Then by Lemma , we find that {t(‘u v )(un, v,)} C N isa(PS),. of J,, which on using Lemma |18|gives
that
B0y > Un) = g0y (Moo Vo) == (g v,) € N stronglyin E



DUAN ET AL | 19

and J,(uy, v4) = c. So, the result follows from Lemma (ii). O]

proof of Theorem: By Proposition we find the first solution (u;,v,) € N} with u;,v; > 0 and J.(u),v,) = ¢ (Q)
whenever 0 < € < €. Let 0 < e < €, then by Proposition [2| we get two solutions (u, v,), (u3,v3) € N of with

N
Ty, 0y), T (uz,03) < c () + %S‘fﬁ. Finally, if 0 < p < pyand 0 < e < €”, as a result of Proposition 4| we have that

N N
(uy, v4) € N is a solution of (I) with ¢ (Q) + %Sa%ﬂ < J(uyvy) < S () + %S{Zﬁ.

N
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