REFERENCES
Ballester, A. R., Molthoff, J., de Vos, R., Hekkert, B., Orzaez, D., Fernandez-Moreno, J. P., . . . Bovy, A. (2010). Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol, 152 (1), 71-84. doi:10.1104/pp.109.147322
Bannenberg, G., Martinez, M., Hamberg, M., & Castresana, C. (2009). Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids, 44 (2), 85-95. doi:10.1007/s11745-008-3245-7
Baud, S., & Lepiniec, L. (2009). Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis. Plant Physiol Biochem, 47 (6), 448-455. doi:10.1016/j.plaphy.2008.12.006
Baudry, A., Heim, M. A., Dubreucq, B., Caboche, M., Weisshaar, B., & Lepiniec, L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J, 39 (3), 366-380. doi:10.1111/j.1365-313X.2004.02138.x
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data.Bioinformatics, 30 (15), 2114-2120. doi:10.1093/bioinformatics/btu170
Buer, C. S., Imin, N., & Djordjevic, M. A. (2010). Flavonoids: new roles for old molecules. J Integr Plant Biol, 52 (1), 98-111. doi:10.1111/j.1744-7909.2010.00905.x
Chauvin, A., Caldelari, D., Wolfender, J. L., & Farmer, E. E. (2013). Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals.New Phytol, 197 (2), 566-575. doi:10.1111/nph.12029
Chen, M., Du, X., Zhu, Y., Wang, Z., Hua, S., Li, Z., . . . Jiang, L. (2012). Seed Fatty Acid Reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ, 35 (12), 2155-2169. doi:10.1111/j.1365-3040.2012.02546.x
Chen, M., Wang, Z., Zhu, Y., Li, Z., Hussain, N., Xuan, L., . . . Jiang, L. (2012). The effect of transparent TESTA2 on seed fatty acid biosynthesis and tolerance to environmental stresses during young seedling establishment in Arabidopsis. Plant Physiol, 160 (2), 1023-1036. doi:10.1104/pp.112.202945
Chen, M., Xuan, L., Wang, Z., Zhou, L., Li, Z., Du, X., . . . Jiang, L. (2014). TRANSPARENT TESTA8 Inhibits Seed Fatty Acid Accumulation by Targeting Several Seed Development Regulators in Arabidopsis. Plant Physiol, 165 (2), 905-916. doi:10.1104/pp.114.235507
Chu, H., & Tso, T. C. (1968). Fatty Acid composition in tobacco I. Green tobacco plants. Plant Physiol, 43 (3), 428-433. doi:10.1104/pp.43.3.428
Czemmel, S., Stracke, R., Weisshaar, B., Cordon, N., Harris, N. N., Walker, A. R., . . . Bogs, J. (2009). The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol, 151 (3), 1513-1530. doi:10.1104/pp.109.142059
Dalman, K., Wind, J. J., Nemesio-Gorriz, M., Hammerbacher, A., Lunden, K., Ezcurra, I., & Elfstrand, M. (2017). Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development. BMC Plant Biol, 17 (1), 6. doi:10.1186/s12870-016-0952-8
Dao, G. H., Wu, G. X., Wang, X. X., Zhuang, L. L., Zhang, T. Y., & Hu, H. Y. (2018). Enhanced growth and fatty acid accumulation of microalgae Scenedesmus sp. LX1 by two types of auxin. Bioresour Technol, 247 , 561-567. doi:10.1016/j.biortech.2017.09.079
Edwards, K. D., Fernandez-Pozo, N., Drake-Stowe, K., Humphry, M., Evans, A. D., Bombarely, A., . . . Mueller, L. A. (2017). A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18 (1), 448. doi:10.1186/s12864-017-3791-6
Gonzalez, A., Zhao, M., Leavitt, J. M., & Lloyd, A. M. (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 53 (5), 814-827. doi:10.1111/j.1365-313X.2007.03373.x
Huang, L. M., Lai, C. P., Chen, L. O., Chan, M. T., & Shaw, J. F. (2015). Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance. Bot Stud, 56 (1), 33. doi:10.1186/s40529-015-0114-6
Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., & Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. Trends Biochem Sci, 23 (10), 403-405.
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12 (4), 357-360. doi:10.1038/nmeth.3317
Kumar, G. S., & Krishna, A. G. (2015). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil. J Food Sci Technol, 52 (2), 1145-1151. doi:10.1007/s13197-013-1119-3
Le, C. S., Schmelz, E. A., & Chourey, P. S. (2010). Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol, 153 (1), 306-318. doi:10.1104/pp.110.155226
Li, B., Zhao, L., Chen, H., Sun, D., Deng, B., Li, J., . . . Wang, F. (2016). Inactivation of Lipase and Lipoxygenase of Wheat Germ with Temperature-Controlled Short Wave Infrared Radiation and Its Effect on Storage Stability and Quality of Wheat Germ Oil. PLoS One, 11 (12), e0167330. doi:10.1371/journal.pone.0167330
Li, Y., Van den Ende, W., & Rolland, F. (2014). Sucrose induction of anthocyanin biosynthesis is mediated by DELLA. Mol Plant, 7 (3), 570-572. doi:10.1093/mp/sst161
Lilley, J. L., Gee, C. W., Sairanen, I., Ljung, K., & Nemhauser, J. L. (2012). An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation.Plant Physiol, 160 (4), 2261-2270. doi:10.1104/pp.112.205575
Liu, C., Long, J., Zhu, K., Liu, L., Yang, W., Zhang, H., . . . Deng, X. (2016). Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis. Sci Rep, 6 , 25352. doi:10.1038/srep25352
Liu, K., Qi, S., Li, D., Jin, C., Gao, C., Duan, S., . . . Chen, M. (2017). TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica). Plant Sci, 254 , 60-69. doi:10.1016/j.plantsci.2016.10.010
Liu, Q., Wang, C., Jiao, X., Zhang, H., Song, L., Li, Y., . . . Wang, K. (2019). Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems.Sci China Life Sci, 62 (1), 1-7. doi:10.1007/s11427-018-9402-9
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25 (4), 402-408. doi:10.1006/meth.2001.1262
Luo, J., Butelli, E., Hill, L., Parr, A., Niggeweg, R., Bailey, P., . . . Martin, C. (2008). AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: expression in fruit results in very high levels of both types of polyphenol.Plant J, 56 (2), 316-326. doi:10.1111/j.1365-313X.2008.03597.x
Matsui, K., Oshima, Y., Mitsuda, N., Sakamoto, S., Nishiba, Y., Walker, A. R., . . . Takami, H. (2018). Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Sci, 274 , 466-475. doi:10.1016/j.plantsci.2018.06.025
Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis.Plant Physiol, 138 (2), 1083-1096. doi:10.1104/pp.104.058032
Meir, S., Philosoph-Hadas, S., Epstein, E., & Aharoni, N. (1985). Carbohydrates stimulate ethylene production in tobacco leaf discs : I. Interaction with auxin and the relation to auxin metabolism. Plant Physiol, 78 (1), 131-138. doi:10.1104/pp.78.1.131
Meir, S., Riov, J., Philosoph-Hadas, S., & Aharoni, N. (1989). Carbohydrates Stimulate Ethylene Production in Tobacco Leaf Discs : III. Stimulation of Enzymic Hydrolysis of Indole-3-Acetyl-l-Alanine. Plant Physiol, 90 (4), 1246-1248. doi:10.1104/pp.90.4.1246
Misra, P., Pandey, A., Tiwari, M., Chandrashekar, K., Sidhu, O. P., Asif, M. H., . . . Tuli, R. (2010). Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol, 152 (4), 2258-2268. doi:10.1104/pp.109.150979
Nagano, M., Takahara, K., Fujimoto, M., Tsutsumi, N., Uchimiya, H., & Kawai-Yamada, M. (2012). Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiol, 159 (3), 1138-1148. doi:10.1104/pp.112.199547
Nalam, V. J., Keereetaweep, J., & Shah, J. (2013). The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant. Plant Signal Behav, 8 (1), e22735. doi:10.4161/psb.22735
Palmgren, G., Mattson, O., & Okkels, F. T. (1993). Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. Plant Mol Biol, 21 (3), 429-435.
Schmidt, G. W., & Delaney, S. K. (2010). Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics, 283 (3), 233-241. doi:10.1007/s00438-010-0511-1
Shcherbo, D., Merzlyak, E. M., Chepurnykh, T. V., Fradkov, A. F., Ermakova, G. V., Solovieva, E. A., . . . Chudakov, D. M. (2007). Bright far-red fluorescent protein for whole-body imaging. Nat Methods, 4 (9), 741-746. doi:10.1038/nmeth1083
Siloto, R. M., Findlay, K., Lopez-Villalobos, A., Yeung, E. C., Nykiforuk, C. L., & Moloney, M. M. (2006). The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell, 18 (8), 1961-1974. doi:10.1105/tpc.106.041269
Sjovall, O., Virtalaine, T., Lapvetelainen, A., & Kallio, H. (2000). Development of rancidity in wheat germ analyzed by headspace gas chromatography and sensory analysis. J Agric Food Chem, 48 (8), 3522-3527. doi:10.1021/jf981309t
Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol, 140 (2), 637-646. doi:10.1104/pp.105.072579
Song, Z., Luo, Y., Wang, W., Fan, N., Wang, D., Yang, C., & Jia, H. (2019). NtMYB12 Positively Regulates Flavonol Biosynthesis and Enhances Tolerance to Low Pi Stress in Nicotiana tabacum. Front Plant Sci, 10 , 1683. doi:10.3389/fpls.2019.01683
Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., & Weisshaar, B. (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J, 50 (4), 660-677. doi:10.1111/j.1365-313X.2007.03078.x
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 28 (10), 2731-2739. doi:10.1093/molbev/msr121
Tan, X., Yan, S., Tan, R., Zhang, Z., Wang, Z., & Chen, J. (2014). Characterization and expression of a GDSL-like lipase gene from Brassica napus in Nicotiana benthamiana.Protein J, 33 (1), 18-23. doi:10.1007/s10930-013-9532-z
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L., & Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol, 31 (1), 46-53. doi:10.1038/nbt.2450
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., . . . Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28 (5), 511-515. doi:10.1038/nbt.1621
ul Hassan, M. N., Zainal, Z., & Ismail, I. (2015). Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J, 13 (6), 727-739. doi:10.1111/pbi.12368
Wang, F., Kong, W., Wong, G., Fu, L., Peng, R., Li, Z., & Yao, Q. (2016). AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Mol Genet Genomics, 291 (4), 1545-1559. doi:10.1007/s00438-016-1203-2
Wang, N., Xu, H., Jiang, S., Zhang, Z., Lu, N., Qiu, H., . . . Chen, X. (2017). MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J, 90 (2), 276-292. doi:10.1111/tpj.13487
Wang, Z., Chen, M., Chen, T., Xuan, L., Li, Z., Du, X., . . . Jiang, L. (2014). TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant J, 77 (5), 757-769. doi:10.1111/tpj.12426
Wang, Z., Wang, S., Wu, M., Li, Z., Liu, P., Li, F., . . . Yang, J. (2018). Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco. Planta . doi:10.1007/s00425-018-3019-2
Wang, Z., Wang, S., Xiao, Y., Li, Z., Wu, M., Xie, X., . . . Yang, J. (2020). Functional characterization of a HD-ZIP IV transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum. Plant Physiol Biochem, 146 , 259-268. doi:10.1016/j.plaphy.2019.11.033
Xie, X., Qin, G., Si, P., Luo, Z., Gao, J., Chen, X., . . . Yang, J. (2017). Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth.Physiol Plant, 160 (2), 222-239. doi:10.1111/ppl.12547
Xu, W., Dubos, C., & Lepiniec, L. (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 20 (3), 176-185. doi:10.1016/j.tplants.2014.12.001
Xu, W., Grain, D., Bobet, S., Le Gourrierec, J., Thevenin, J., Kelemen, Z., . . . Dubos, C. (2014). Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol, 202 (1), 132-144. doi:10.1111/nph.12620
Yoo, S. D., Cho, Y. H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2 (7), 1565-1572. doi:10.1038/nprot.2007.199
Zhai, R., Zhao, Y., Wu, M., Yang, J., Li, X., Liu, H., . . . Xu, L. (2019). The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit.BMC Plant Biol, 19 (1), 85. doi:10.1186/s12870-019-1687-0
Zou, J., Wei, Y., Jako, C., Kumar, A., Selvaraj, G., & Taylor, D. C. (1999). The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene.Plant J, 19 (6), 645-653. doi:10.1046/j.1365-313x.1999.00555.x