References:
Aguero MF, Facchinetti MM, Sheleg Z,
& Senderowicz AM (2005). Phenoxodiol, a novel isoflavone, induces G1
arrest by specific loss in cyclin-dependent kinase 2 activity by
p53-independent induction of p21WAF1/CIP1. Cancer Res 65:3364-3373.
Alvero AB, Kelly M, Rossi P, Leiser A,
Brown D, Rutherford T, et al. (2008). Anti-tumor activity of
phenoxodiol: from bench to clinic. Future Oncol 4: 475-482.
Berghuis D, Santos SJ, Baelde HJ,
Taminiau AH, Egeler RM, Schilham MW, et al. (2011).
Pro-inflammatory chemokine-chemokine receptor interactions within the
Ewing sarcoma microenvironment determine CD8(+) T-lymphocyte
infiltration and affect tumour progression. J Pathol 223:347-357.
Blanchard P, Lee A, Marguet S,
Leclercq J, Ng WT, Ma J, et al. (2015). Chemotherapy and
radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC
meta-analysis. Lancet Oncol 16: 645-655.
Chang ET, & Adami HO (2006). The
enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol
Biomarkers Prev 15: 1765-1777.
Gamble JR, Xia P, Hahn CN, Drew JJ,
Drogemuller CJ, Brown D, et al. (2006). Phenoxodiol, an
experimental anticancer drug, shows potent antiangiogenic properties in
addition to its antitumour effects. Int J Cancer 118:2412-2420.
Georgaki S, Skopeliti M, Tsiatas M,
Nicolaou KA, Ioannou K, Husband A, et al. (2009). Phenoxodiol, an
anticancer isoflavene, induces immunomodulatory effects in vitro and in
vivo. J Cell Mol Med 13: 3929-3938.
Herst PM, Davis JE, Neeson P, Berridge
MV, & Ritchie DS (2009). The anti-cancer drug, phenoxodiol, kills
primary myeloid and lymphoid leukemic blasts and rapidly proliferating T
cells. Haematologica 94: 928-934.
Joannou GE, Kelly GE, Reeder AY,
Waring M, & Nelson C (1995). A urinary profile study of dietary
phytoestrogens. The identification and mode of metabolism of new
isoflavonoids. J Steroid Biochem Mol Biol 54: 167-184.
Kennedy JD, Pierce CW, & Lake JP
(1992). Extrathymic T cell maturation. Phenotypic analysis of T cell
subsets in nude mice as a function of age. J Immunol 148:1620-1629.
Mor G, Fu HH, & Alvero AB (2006).
Phenoxodiol, a novel approach for the treatment of ovarian cancer. Curr
Opin Investig Drugs 7: 542-548.
Morre DJ, Chueh PJ, Yagiz K, Balicki
A, Kim C, & Morre DM (2007). ECTO-NOX target for the anticancer
isoflavene phenoxodiol. Oncol Res 16: 299-312.
Muthuswamy R, Berk E, Junecko BF, Zeh
HJ, Zureikat AH, Normolle D, et al. (2012). NF-kappaB
hyperactivation in tumor tissues allows tumor-selective reprogramming of
the chemokine microenvironment to enhance the recruitment of cytolytic T
effector cells. Cancer Res 72: 3735-3743.
Ning X, Wang Y, Jing M, Sha M, Lv M,
Gao P, et al. (2019). Apoptotic Caspases Suppress Type I
Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Mol Cell
74: 19-31 e17.
Porter K, Fairlie WD, Laczka O,
Delebecque F, & Wilkinson J (2020). Idronoxil as an Anticancer Agent:
Activity and Mechanisms. Curr Cancer Drug Targets.
Shield KD, Ferlay J, Jemal A,
Sankaranarayanan R, Chaturvedi AK, Bray F, et al. (2017). The
global incidence of lip, oral cavity, and pharyngeal cancers by subsite
in 2012. CA Cancer J Clin 67: 51-64.
Sun X, Su S, Chen C, Han F, Zhao C,
Xiao W, et al. (2014). Long-term outcomes of intensity-modulated
radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis
of survival and treatment toxicities. Radiother Oncol 110:398-403.
Trock BJ, Hilakivi-Clarke L, &
Clarke R (2006). Meta-analysis of soy intake and breast cancer risk. J
Natl Cancer Inst 98: 459-471.
White MJ, McArthur K, Metcalf D, Lane
RM, Cambier JC, Herold MJ, et al. (2014). Apoptotic caspases
suppress mtDNA-induced STING-mediated type I IFN production. Cell
159: 1549-1562.
Yagiz K, Wu LY, Kuntz CP, James Morre
D, & Morre DM (2007). Mouse embryonic fibroblast cells from transgenic
mice overexpressing tNOX exhibit an altered growth and drug response
phenotype. J Cell Biochem 101: 295-306.
Yan L, & Spitznagel EL (2005).
Meta-analysis of soy food and risk of prostate cancer in men. Int J
Cancer 117: 667-669.
Yao C, Wu S, Li D, Ding H, Wang Z,
Yang Y, et al. (2012). Co-administration phenoxodiol with
doxorubicin synergistically inhibit the activity of sphingosine kinase-1
(SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma
cell growth both in vivo and in vitro. Mol Oncol 6: 392-404.
Figure legends