References
Adams H.D., Barron-Gafford G.A., Minor R.L., Gardea A.A., Bentley L.P.,
Law D.J., … Huxman T.E. (2017) Temperature response surfaces for
mortality risk of tree species with future drought. Environmental
Research Letters 12 , 115014.
Adams H.D., Germino M.J., Breshears D.D., Barron-Gafford G.A.,
Guardiola-Claramonte M., Zou C.B. & Huxman T.E. (2013) Nonstructural
leaf carbohydrate dynamics of Pinus edulis during drought-induced tree
mortality reveal role for carbon metabolism in mortality mechanism.New Phytologist 197 , 1142–1151.
Ahmad S., Khan H., Shahab U., Rehman S., Rafi Z., Khan M.Y., …
Uddin M. (2017) Protein oxidation: An overview of metabolism of sulphur
containing amino acid, Cysteine. Frontiers in Bioscience -
Scholar 9 , 71–87.
Alhaithloul H.A., Soliman M.H., Ameta K.L., El-Esawi M.A. & Elkelish A.
(2020) Changes in ecophysiology, osmolytes, and secondary metabolites of
the medicinal plants of mentha piperita and catharanthus roseus
subjected to drought and heat stress. Biomolecules 10 ,
1–21.
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N.,
Vennetier M., … Cobb N. (2010) A global overview of drought and
heat-induced tree mortality reveals emerging climate change risks for
forests. Forest Ecology and Management 259 , 660–684.
Anderegg W.R.L., Berry J. a., Smith D.D., Sperry J.S., Anderegg L.D.L.
& Field C.B. (2012) From the Cover: The roles of hydraulic and carbon
stress in a widespread climate-induced forest die-off. Proceedings
of the National Academy of Sciences 109 , 233–237.
Aprile A., Havlickova L., Panna R., Marè C., Borrelli G.M., Marone D.,
… Cattivelli L. (2013) Different stress responsive strategies to
drought and heat in two durum wheat cultivars with contrasting water use
efficiency. Genomics 15 , 821.
Araújo W.L., Tohge T., Ishizaki K., Leaver C.J. & Fernie A.R. (2011)
Protein degradation - an alternative respiratory substrate for stressed
plants. Trends in Plant Science 16 , 489–498.
Aspinwall M.J., Pfautsch S., Tjoelker M.G., Vårhammar A., Possell M.,
Tissue D.T., … Sluyter S.C. Van (2019) Range size and growth
temperature influence Eucalyptus species responses to an experimental
heatwave. Global Change Biology 25 , 1665–1684.
Barber V.A., Juday G.P. & Finney B.P. (2000) Reduced growth of Alaskan
white spruce in the twentieth century from temperature-induced drought
stress. Letters to Nature 405 , 668–672.
Berini J.L., Brockman S.A., Hegeman A.D., Reich P.B., Muthukrishnan R.,
Montgomery R.A. & Forester J.D. (2018) Combinations of Abiotic Factors
Differentially Alter Production of Plant Secondary Metabolites in Five
Woody Plant Species in the Boreal-Temperate Transition Zone.Frontiers in Plant Science 9 .
Bhattacharjee S. (2005) Reactive oxygen species and oxidative burst:
Roles in stress, senescence and signal transduction in plants.Current Science 89 , 1113–1121.
Lo Bianco R., Rieger M. & Sung S.J.S. (2000) Effect of drought on
sorbitol and sucrose metabolism in sinks and sources of peach.Physiologia Plantarum 108 , 71–78.
Birami B., Gattmann M., Heyer A.G., Grote R., Arneth A. & Ruehr N.K.
(2018) Heat Waves Alter Carbon Allocation and Increase Mortality of
Aleppo Pine Under Dry Conditions. Frontiers in Forests and Global
Change 1 , 1–17.
Blackwell R.D., Murray A.J.S. & Lea P.J. (1990) Photorespiratory
Mutants of the Mitochondrial Conversion of Glycine to Serine ’.Plant Physiology 94 , 1316–1322.
Blessing C.H., Werner R.A., Siegwolf R. & Buchmann N. (2015) Allocation
dynamics of recently fixed carbon in beech saplings in response to
increased temperatures and drought. Tree Physiology 35 ,
585–598.
Bouché N. & Fromm H. (2004) GABA in plants: Just a metabolite?Trends in Plant Science 9 , 110–115.
Bradford M.M. (1976) A Rapid and Sensitive Method for the Quantitation
Microgram Quantities of Protein Utilizing the Principle of Protein-Dye
Binding. Analytical Biochemistry 254 , 248–254.
Brodribb T., Powers J., Cochard H. & Choat B. (2020) Hanging by a
thread? Forests and drought. Science 368 , 261–266.
Correia B., Hancock R.D., Amaral J., Gomez-Cadenas A., Valledor L. &
Pinto G. (2018) Combined Drought and Heat Activates Protective Responses
in Eucalyptus globulus That Are Not Activated When Subjected to Drought
or Heat Stress Alone. Frontiers in Plant Science 9 ,
1–14.
Cvikrová M., Gemperlová L., Martincová O. & Vanková R. (2013) Effect of
drought and combined drought and heat stress on polyamine metabolism in
proline-over-producing tobacco plants. Plant Physiology and
Biochemistry 73 , 7–15.
Demiral T. & Türkan I. (2005) Comparative lipid peroxidation ,
antioxidant defense systems and proline content in roots of two rice
cultivars differing in salt tolerance. Environmental and
Experimental Botany 53 , 247–257.
Dixon R.A. & Paiva N.L. (1995) Stress-lnduced Phenylpropanoid
Metabolism. The Plant Cell 7 , 1085–1097.
Foyer C.H. & Noctor G. (2009) Redox regulation in photosynthetic
organisms: Signaling, acclimation, and practical implications.Antioxidants and Redox Signaling 11 , 861–905.
Gagne M.A., Smith D.D., McCulloh, K.A. (under review) Limited
physiological acclimation to recurrent heatwaves in two boreal tree
species. Tree Physiology
Gruber A., Pirkebner D., Florian C. & Oberhuber W. (2012) No evidence
for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.)
under drought stress. 14 , 142–148.
Gupta K., Sengupta A., Chakraborty M. & Gupta B. (2016) Hydrogen
peroxide and polyamines act as double edged swords in plant abiotic
stress responses. Frontiers in Plant Science 7 .
Hanin M., Brini F., Ebel C., Toda Y., Takeda S. & Masmoudi K. (2011)
Plant dehydrins and stress tolerance Versatile proteins for complex
mechanisms. Plant Signaling & Behavior 6 , 1503–1509.
Havaux M. & Tardy F. (1999) Loss of chlorophyll with limited reduction
of photosynthesis as an adaptive response of Syrian barley landraces to
high-light and heat stress. Australian Journal of Plant
Physiology 26 , 569–578.
Hilker M. & Schmülling T. (2019) Stress priming, memory, and signalling
in plants. Plant Cell and Environment , 753–761.
Hossain M.A. & Hoque A. (2014) Oxidative Damage to Plants:
Antioxidant Networks and Signaling. Proline Protects Plants Against
Abiotic Oxidative Stress: Biochemical and Molecular Mechanisms .
Ingvordsen C.H., Lyngkjær M.F., Peltonen-Sainio P., Mikkelsen T.N.,
Stockmarr A. & Jørgensen R.B. (2018) How a 10-day heatwave impacts
barley grain yield when superimposed onto future levels of temperature
and CO2as single and combined factors. Agriculture, Ecosystems and
Environment 259 , 45–52.
Jacob P., Hirt H. & Bendahmane A. (2017) The heat-shock
protein/chaperone network and multiple stress resistance. Plant
Biotechnology Journal 15 , 405–414.
Jagadish S.V.K., Muthurajan R., Rang Z.W., Malo R., Heuer S., Bennett J.
& Craufurd P.Q. (2011) Spikelet Proteomic Response to Combined Water
Deficit and Heat Stress in Rice (Oryza sativa cv. N22). Rice4 , 1–11.
Johnson S.M., Lim F., Finkler A., Fromm H., Slabas A.R. & Knight M.R.
(2014) Transcriptomic analysis of Sorghum bicolor responding to combined
heat and drought stress. Genomics 15 , 456.
Jones C.G., Hare J.D. & Compton S.J. (1989) Measuring plant protein
with the Bradford assay. Journal of Chemical Ecology 15 ,
979–992.
Jordan D.B. & Ogren W.L. (1984) The CO2 /O2 specificity of ribulose
1,5-bisphosphate carboxylase/oxygenase: Dependence on
ribulosebisphosphate concentration, pH and temperature. Planta161 , 308–313.
Kaushal N., Gupta K. & Bhandhari K. (2011) Proline induces heat
tolerance in chickpea (Cicer arietinum L.) plants by protecting vital
enzymes of carbon and antioxidative metabolism. Physiol Mol Biol
Plants 17 , 203–213.
Kemble A.R. & Macpherson H.T. (1954) Liberation of Amino Acids in
Perennial Rye Grass During Wilting. Biochemistry Journal58 , 46–49.
Killi D., Bussotti F., Raschi A. & Haworth M. (2017) Adaptation to high
temperature mitigates the impact of water deficit during combined heat
and drought stress in C3 sunflower and C4 maize varieties with
contrasting drought tolerance. Physiologia Plantarum159 , 130–147.
Kim C. (2020) ROS-Driven Oxidative Modification: Its Impact on
Chloroplasts-Nucleus Communication. Frontiers in Plant Science10 , 1–6.
Lawas L.M.F., Zuther E., Jagadish S.K. & Hincha D.K. (2018) Molecular
mechanisms of combined heat and drought stress resilience in cereals.Current Opinion in Plant Biology 45 , 212–217.
Li L., Mao X., Wang J., Chang X., Reynolds M. & Jing R. (2019) Genetic
dissection of drought and heat-responsive agronomic traits in wheat.Plant Cell and Environment 42 , 2540–2553.
Li T., Tiiva P., Rinnan Å., Riitta, Julkunen-Tiitto, Anders M. & Rinnan
R. (2020) Long-term effects of elevated CO2, nighttime warming and
drought on plant secondary metabolites in a temperate heath ecosystem.Annals of Botany 125 , 1065–1075.
Liang J., Xia J., Liu L. & Wan S. (2013a) Global patterns of the
responses of leaf-level photosynthesis and respiration in terrestrial
plants to experimental warming. Journal of Plant Ecology6 , 437–447.
Liang X., Zhang L., Natarajan S.K. & Becker D.F. (2013b) Proline
mechanisms of stress survival. Antioxidants and Redox Signaling19 , 998–1011.
Lichtenthaler H. (1987) Chlorophylls and Carotenoids: Pigments of
Photosynthetic Biomembranes. Methods in Enzymology 148 ,
350–382.
Liu X. & Huang B. (2000) Carbohydrate accumulation in relation to heat
stress tolerance in two creeping bentgrass cultivars. Journal of
the American Society for Horticultural Science 125 , 442–447.
Maguire A.J. & Kobe R.K. (2015) Drought and shade deplete nonstructural
carbohydrate reserves in seedlings of five temperate tree species.Ecology and Evolution 5 , 5711–5721.
Majumdar R., Lebar M., Mack B., Minocha R., Minocha S., Carter-Wientjes
C., … Cary J.W. (2018) The Aspergillus flavus Spermidine Synthase
(spds) Gene, Is Required for Normal Development, Aflatoxin Production,
and Pathogenesis During Infection of Maize Kernels. Frontiers in
Plant Science 9 , 1–16.
Di Martino C. Di, Delfine S., Pizzuto R., Loreto F. & Fuggi A. (2003)
Free amino acids and glycine betaine in leaf osmoregulation of spinach
responding to increasing salt stress. New Phytologist158 , 455–463.
McDowell N.G. & Allen C.D. (2015) Darcy’s law predicts widespread
forest mortality under climate warming. Nature Climate Change5 , 669–672.
McDowell N.G., Williams A.P., Xu C., Pockman W.T., Dickman L.T., Sevanto
S., … Koven C. (2016) Multi-scale predictions of massive conifer
mortality due to chronic temperature rise. Nature Climate Change6 , 295–300.
Minocha R. & Long S. (2004) Simultaneous separation and quantitation of
amino acids and polyamines of forest tree tissues and cell cultures
within a single high-performance liquid chromatography run using dansyl
derivatization. Journal of Chromatography A 1035 ,
63–73.
Minocha R., Majumdar R. & Minocha S.C. (2014) Polyamines and abiotic
stress in plants: a complex relationship. Frontiers in Plant
Science 5 , 1–17.
Minocha R., Martinez G., Lyons B. & Long S. (2009) Development of a
standardized methodology for quantifying total chlorophyll and
carotenoids from foliage of hardwood and conifer tree species.Canadian Journal of Forest Research 39 , 849–861.
Mitchell P.J., O’Grady A.P., Tissue D.T., White D.A., Ottenschlaeger
M.L. & Pinkard E.A. (2013) Drought response strategies define the
relative contributions of hydraulic dysfunction and carbohydrate
depletion during tree mortality. New Phytologist 197 ,
862–872.
Mittler R. (2006) Abiotic stress, the field environment and stress
combination. Trends in Plant Science 11 , 15–19.
Mohapatra S., Minocha R., Long S. & Minocha S.C. (2010) Transgenic
manipulation of a single polyamine in poplar cells affects the
accumulation of all amino acids. Amino Acids 38 ,
1117–1129.
Nambeesan S., Datsenka T., Ferruzzi M.G., Malladi A., Mattoo A.K. &
Handa A.K. (2010) Overexpression of yeast spermidine synthase impacts
ripening, senescence and decay symptoms in tomato. Plant Journal63 , 836–847.
Niinemets Ü. (2010) Responses of forest trees to single and multiple
environmental stresses from seedlings to mature plants: Past stress
history, stress interactions, tolerance and acclimation. Forest
Ecology and Management 260 , 1623–1639.
Nippert J.B., Ocheltree T.W., Orozco G.L., Ratajczak Z., Ling B. &
Skibbe A.M. (2013) Evidence of physiological decoupling from grassland
ecosystem drivers by an encroaching woody shrub. PLoS ONE8 .
O’Brien M.J., Burslem D.F.R.P., Caduff A., Tay J. & Hector A. (2015)
Contrasting nonstructural carbohydrate dynamics of tropical tree
seedlings under water deficit and variability. New Phytologist205 , 1083–1094.
Obata T., Witt S., Lisec J., Palacios-rojas N., Florez-sarasa I., Yous
S., … Germany T.O. (2015) Metabolite Profiles of Maize Leaves in
Drought, Heat, and Combined Stress Field Trials Reveal the Relationship
between Metabolism and Grain Yield. Plant physiology169 , 2665–2683.
Ogaya R., Liu D., Barbeta A. & Peñuelas J. (2020) Stem Mortality and
Forest Dieback in a 20-Years Experimental Drought in a Mediterranean
Holm Oak Forest. Frontiers in Forests and Global Change2 , 1–9.
Per T.S., Khan N.A., Sudhakar P., Masood A., Hasanuzzaman M., Khan
M.I.R. & Anjum N.A. (2017) Plant Physiology and Biochemistry Approaches
in modulating proline metabolism in plants for salt and drought stress
tolerance : Phytohormones , mineral nutrients and transgenics.Plant Physiology et Biochemistry 115 , 126–140.
Perdomo J.A., Conesa M.À., Medrano H. & Ribas-carbó M. (2015) Effects
of long-term individual and combined water and temperature stress on the
growth of rice , wheat and maize: relationship with morphological and
physiological acclimation. Physiologia Plantarum 155 ,
149–165.
Piper F.I. (2011) Drought induces opposite changes in the concentration
of non-structural carbohydrates of two evergreen Nothofagus species of
differential drought resistance. Annals of Forest Science68 , 415–424.
Prasad P., Pisipati S., Momčilović I. & Ristic Z. (2011) Independent
and combined effects of high temperature and drought stress during grain
filling on plant yield and chloroplast EF‐Tu expression in spring wheat.Journal of Agronomy and Crop Science 197 , 430–441.
Pregitzer K.S. & King J.S. (2005) Nutrient Acquisition by
Plants . Springer, Berlin, Heidelberg.
Radwanski E.R. & Last R.L. (1995) Tryptophan Biosynthesis and Molecular
Genetics. The Plant Cell 7 , 921–934.
Rai V.K. (2002) Role Of Amino Acids In Plant Respons.pdf. Biologia
Plantarum 45 , 481–487.
Renault H., Roussel V., Amrani A. El, Arzel M., Renault D., Bouchereau
A. & Deleu C. (2010) The Arabidopsis pop2-1 mutant reveals the
involvement of GABA transaminase in salt stress tolerance. Plant
Biology 10 , 1–16.
Rhee H.J., Kim E. & Lee J.K. (2007) Physiological polyamines : simple
primordial stress. Journal of Cellular and Molecular Medicine11 , 685–703.
Rizhsky L., Liang H. & Mittler R. (2002) The combined effect of drought
stress and heat shock on gene expression in tobacco. Plant
physiology 130 , 1143–1151.
Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S. & Mittler R.
(2004a) When Defense Pathways Collide. The Response of Arabidopsis to a
Combination of Drought and Heat Stress. Plant physiology134 , 1683–1696.
Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S. & Mittler R.
(2004b) When defense pathways collide. The response of Arabidopsis to a
combination of drought and heat stress. Plant physiology134 , 1683–1696.
Rowland-Bamford L.J., Baker J.T., Allen Jr. L.H. & Bowes G. (1996)
Interactions of CO2 enrichment and temperature on carbohydrate
accumulation and partitioning in rice. Environmental and
Experimental Botany 36 , 111–124.
Ruehr N.K., Offermann C.A., Gessler A., Winkler J.B., Ferrio J.P.,
Buchmann N. & Barnard R.L. (2009) Drought effects on allocation of
recent carbon: From beech leaves to soil CO2 efflux. New
Phytologist 184 , 950–961.
Sagor G.H.M., Berberich T., Takahashi Y., Niitsu M. & Kusano T. (2013)
The polyamine spermine protects Arabidopsis from heat stress-induced
damage by increasing expression of heat shock-related genes.Transgenic Research 22 , 595–605.
Saura-Mas S. & Lloret F. (2007) Leaf and shoot water content and leaf
dry matter content of Mediterranean woody species with different
post-fire regenerative strategies. Annals of Botany 99 ,
545–554.
Sengupta A., Chakraborty M., Saha J., Gupta B. & Gupta K. (2016)
Polyamines: Osmoprotectants in Plant Abiotic Stress Adaptation. InOsmolytes and Plants Acclimation to Changing Environment: Emerging
Omics Technologies . Springer, New Delhi, India.
Sevanto S., Mcdowell N.G., Dickman L.T., Pangle R. & Pockman W.T.
(2014) How do trees die? A test of the hydraulic failure and carbon
starvation hypotheses. Plant, Cell and Environment 37 ,
153–161.
Sewelam N., Brilhaus D., Bräutigam A., Alseekh S., Fernie A.R. &
Maurino V.G. (2020) Molecular plant responses to combined abiotic
stresses put a spotlight on unknown and abundant genes. Journal of
experimental botany 71 , 5098–5112.
Sgobba A., Paradiso A., Dipierro S., de Gara L. & de Pinto M.C. (2015)
Changes in antioxidants are critical in determining cell responses to
short- and long-term heat stress. Physiologia Plantarum153 , 68–78.
Shao C.G., Wang H. & Yu-Fen B.I. (2015) Relationship between endogenous
polyamines and tolerance in Medicago sativa L.under heat stress.Acta Agrestia Sinica 23 , 1214–1219.
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S.,
… Zheng B. (2019) Phytohormones regulate accumulation of
osmolytes under abiotic stress. Biomolecules 9 .
Sharma P., Jha A.B., Dubey R.S. & Pessarakli M. (2012) Reactive Oxygen
Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants
under Stressful Conditions. Journal of Botany 2012 ,
1–26.
Sharma S.S. & Dietz K. (2006) The significance of amino acids and amino
acid-derived molecules in plant responses and adaptation to heavy metal
stress. Journal of Experimental Botany 57 , 711–726.
Shi H. & Chan Z. (2014) Improvement of plant abiotic stress tolerance
through modulation of the polyamine pathway. Journal of
Integrative Plant Biology 56 , 114–121.
Siebers M.H., Yendrek C.R., Drag D., Locke A.M., Acosta L.R., Leakey,
Andrew Ainsworth E.A., … Ort D.R. (2015) Heat waves imposed
during early pod development in soybean (Glycine max) cause significant
yield loss despite a rapid recovery from oxidative stress. Global
Change Biology 21 , 3114–3125.
Singh R., Singh S., Parihar P., Mishra R.K., Tripathi D.K., Singh V.P.,
… Prasad S.M. (2016) Reactive oxygen species (ROS): Beneficial
companions of plants’ developmental processes. Frontiers in Plant
Science 7 , 1–19.
Ślesak I., Libik M., Karpinska B., Karpinski S. & Miszalski Z. (2007)
Ślesak 2007 Hydrogen Peroxide in Regulation of Plant Metabolism.Pdf.Acta Biochimica Polonica 54 , 39–50.
Stadtman E.R. & Levine R.L. (2003) Free radical-mediated oxidation of
free amino acids and amino acid residues in proteins. Amino Acids25 , 207–218.
Suzuki N., Rivero R.M., Shulaev V., Blumwald E. & Mittler R. (2014)
Abiotic and biotic stress combinations. New Phytologist203 , 32–43.
Templer S.E., Ammon A., Pscheidt D., Ciobotea O., Schuy C., Mccollum C.,
… Korff M. Von (2017) Metabolite profiling of barley flag leaves
under drought and combined heat and drought stress reveals metabolic
QTLs for metabolites associated with antioxidant defense. Journal
of experimental botany 68 , 1697–1713.
Tomasella M., Petrussa E., Petruzzellis F., Nardini A. & Casolo V.
(2020) The possible role of non‐structural carbohydrates in the
regulation of tree hydraulics. International Journal of Molecular
Sciences 21 .
Trapp S. & Croteau R. (2001) Defensive resin biosynthesis in conifers.Annual Review of Plant Biology 52 , 689–724.
Tzin V. & Galili G. (2010) The Biosynthetic Pathways for Shikimate and
Aromatic Amino Acids in Arabidopsis thaliana. In The Arabidopisis
Book . p. e0132.
Vile D., Pervent M., Belluau M., Vasseur F., Bresson J., Muller B.,
… Simonneau T. (2012) Arabidopsis growth under prolonged high
temperature and water deficit: independent or interactive effects?Plant Cell and Environment 35 , 702–718.
Vu J.C.V., Newman Y.C., Allen L.H., Gallo-Meagher M. & Zhang M.Q.
(2002) Photosynthetic acclimation of young sweet orange trees to
elevated growth CO2 and temperature. Journal of Plant Physiology159 , 147–157.
Walter J., Beierkuhnlein C., Jentsch A. & Kreyling J. (2013) Ecological
stress memory and cross stress tolerance in plants in the face of
climate extremes. Environmental and Experimental Botany94 , 3–8.
Wilson J.R. (1975) Influence of temperature and nitrogen on growth ,
photosynthesis and accumulation of non-structural carbohydrate in a
tropical grass , Panicum maximum var . trichoglume. 23 , 48–61.
Wingler A., Quick W.P., Bungard R.A., Bailey K.J., Lea P.J. & Leegood
R.C. (1999) The role of photorespiration during drought stress: an
analysis utilizing barley mutants with reduced activities of
photorespiratory enzymes. Plant Cell and Environment 22 ,
361–373.
Zampieri M., Ceglar A., Dentener F. & Toreti A. (2017) Wheat yield loss
attributable to heat waves, drought and water excess at the global,
national and subnational scales. Environmental Research Letters12 .
Zandalinas S.I., Balfagón D., Arbona V. & Gómez-Cadenas A. (2017)
Modulation of Antioxidant Defense System Is Associated with Combined
Drought and Heat Stress Tolerance in Citrus. Frontiers in Plant
Science 8 , 1–10.
Zha T., Ryyppö A., Wang K.Y. & Kellomäki S. (2001) Effects of elevated
carbon dioxide concentration and temperature on needle growth,
respiration and carbohydrate status in field-grown Scots pines during
the needle expansion period. Tree Physiology 21 ,
1279–1287.
Zhao F., Zhang D., Zhao Y., Wang W., Yang H. & Tai F. (2016) The
Difference of Physiological and Proteomic Changes in Maize Leaves
Adaptation to Drought, Heat, and Combined Both Stresses. Frontiers
in Plant Science 7 , 1471.
Zhou R., Kong L., Wu Z., Rosenqvist E., Wang Y., Zhao L., …
Ottosen C.O. (2019) Physiological response of tomatoes at drought, heat
and their combination followed by recovery. Physiologia Plantarum165 , 144–154.
Zinta G., Abdelgawad H., Peshev D., Weedon J.T., Van Den Ende W., Nijs
I., … Asard H. (2018) Dynamics of metabolic responses to periods
of combined heat and drought in Arabidopsis thaliana under ambient and
elevated atmospheric CO 2. Journal of Experimental Botany69 , 2159–2170.