References
Adams H.D., Barron-Gafford G.A., Minor R.L., Gardea A.A., Bentley L.P., Law D.J., … Huxman T.E. (2017) Temperature response surfaces for mortality risk of tree species with future drought. Environmental Research Letters 12 , 115014.
Adams H.D., Germino M.J., Breshears D.D., Barron-Gafford G.A., Guardiola-Claramonte M., Zou C.B. & Huxman T.E. (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism.New Phytologist 197 , 1142–1151.
Ahmad S., Khan H., Shahab U., Rehman S., Rafi Z., Khan M.Y., … Uddin M. (2017) Protein oxidation: An overview of metabolism of sulphur containing amino acid, Cysteine. Frontiers in Bioscience - Scholar 9 , 71–87.
Alhaithloul H.A., Soliman M.H., Ameta K.L., El-Esawi M.A. & Elkelish A. (2020) Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of mentha piperita and catharanthus roseus subjected to drought and heat stress. Biomolecules 10 , 1–21.
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., … Cobb N. (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259 , 660–684.
Anderegg W.R.L., Berry J. a., Smith D.D., Sperry J.S., Anderegg L.D.L. & Field C.B. (2012) From the Cover: The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences 109 , 233–237.
Aprile A., Havlickova L., Panna R., Marè C., Borrelli G.M., Marone D., … Cattivelli L. (2013) Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency. Genomics 15 , 821.
Araújo W.L., Tohge T., Ishizaki K., Leaver C.J. & Fernie A.R. (2011) Protein degradation - an alternative respiratory substrate for stressed plants. Trends in Plant Science 16 , 489–498.
Aspinwall M.J., Pfautsch S., Tjoelker M.G., Vårhammar A., Possell M., Tissue D.T., … Sluyter S.C. Van (2019) Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Global Change Biology 25 , 1665–1684.
Barber V.A., Juday G.P. & Finney B.P. (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Letters to Nature 405 , 668–672.
Berini J.L., Brockman S.A., Hegeman A.D., Reich P.B., Muthukrishnan R., Montgomery R.A. & Forester J.D. (2018) Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone.Frontiers in Plant Science 9 .
Bhattacharjee S. (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants.Current Science 89 , 1113–1121.
Lo Bianco R., Rieger M. & Sung S.J.S. (2000) Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach.Physiologia Plantarum 108 , 71–78.
Birami B., Gattmann M., Heyer A.G., Grote R., Arneth A. & Ruehr N.K. (2018) Heat Waves Alter Carbon Allocation and Increase Mortality of Aleppo Pine Under Dry Conditions. Frontiers in Forests and Global Change 1 , 1–17.
Blackwell R.D., Murray A.J.S. & Lea P.J. (1990) Photorespiratory Mutants of the Mitochondrial Conversion of Glycine to Serine ’.Plant Physiology 94 , 1316–1322.
Blessing C.H., Werner R.A., Siegwolf R. & Buchmann N. (2015) Allocation dynamics of recently fixed carbon in beech saplings in response to increased temperatures and drought. Tree Physiology 35 , 585–598.
Bouché N. & Fromm H. (2004) GABA in plants: Just a metabolite?Trends in Plant Science 9 , 110–115.
Bradford M.M. (1976) A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry 254 , 248–254.
Brodribb T., Powers J., Cochard H. & Choat B. (2020) Hanging by a thread? Forests and drought. Science 368 , 261–266.
Correia B., Hancock R.D., Amaral J., Gomez-Cadenas A., Valledor L. & Pinto G. (2018) Combined Drought and Heat Activates Protective Responses in Eucalyptus globulus That Are Not Activated When Subjected to Drought or Heat Stress Alone. Frontiers in Plant Science 9 , 1–14.
Cvikrová M., Gemperlová L., Martincová O. & Vanková R. (2013) Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry 73 , 7–15.
Demiral T. & Türkan I. (2005) Comparative lipid peroxidation , antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53 , 247–257.
Dixon R.A. & Paiva N.L. (1995) Stress-lnduced Phenylpropanoid Metabolism. The Plant Cell 7 , 1085–1097.
Foyer C.H. & Noctor G. (2009) Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications.Antioxidants and Redox Signaling 11 , 861–905.
Gagne M.A., Smith D.D., McCulloh, K.A. (under review) Limited physiological acclimation to recurrent heatwaves in two boreal tree species. Tree Physiology
Gruber A., Pirkebner D., Florian C. & Oberhuber W. (2012) No evidence for depletion of carbohydrate pools in Scots pine (Pinus sylvestris L.) under drought stress. 14 , 142–148.
Gupta K., Sengupta A., Chakraborty M. & Gupta B. (2016) Hydrogen peroxide and polyamines act as double edged swords in plant abiotic stress responses. Frontiers in Plant Science 7 .
Hanin M., Brini F., Ebel C., Toda Y., Takeda S. & Masmoudi K. (2011) Plant dehydrins and stress tolerance Versatile proteins for complex mechanisms. Plant Signaling & Behavior 6 , 1503–1509.
Havaux M. & Tardy F. (1999) Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high-light and heat stress. Australian Journal of Plant Physiology 26 , 569–578.
Hilker M. & Schmülling T. (2019) Stress priming, memory, and signalling in plants. Plant Cell and Environment , 753–761.
Hossain M.A. & Hoque A. (2014) Oxidative Damage to Plants: Antioxidant Networks and Signaling. Proline Protects Plants Against Abiotic Oxidative Stress: Biochemical and Molecular Mechanisms .
Ingvordsen C.H., Lyngkjær M.F., Peltonen-Sainio P., Mikkelsen T.N., Stockmarr A. & Jørgensen R.B. (2018) How a 10-day heatwave impacts barley grain yield when superimposed onto future levels of temperature and CO2as single and combined factors. Agriculture, Ecosystems and Environment 259 , 45–52.
Jacob P., Hirt H. & Bendahmane A. (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal 15 , 405–414.
Jagadish S.V.K., Muthurajan R., Rang Z.W., Malo R., Heuer S., Bennett J. & Craufurd P.Q. (2011) Spikelet Proteomic Response to Combined Water Deficit and Heat Stress in Rice (Oryza sativa cv. N22). Rice4 , 1–11.
Johnson S.M., Lim F., Finkler A., Fromm H., Slabas A.R. & Knight M.R. (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. Genomics 15 , 456.
Jones C.G., Hare J.D. & Compton S.J. (1989) Measuring plant protein with the Bradford assay. Journal of Chemical Ecology 15 , 979–992.
Jordan D.B. & Ogren W.L. (1984) The CO2 /O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: Dependence on ribulosebisphosphate concentration, pH and temperature. Planta161 , 308–313.
Kaushal N., Gupta K. & Bhandhari K. (2011) Proline induces heat tolerance in chickpea (Cicer arietinum L.) plants by protecting vital enzymes of carbon and antioxidative metabolism. Physiol Mol Biol Plants 17 , 203–213.
Kemble A.R. & Macpherson H.T. (1954) Liberation of Amino Acids in Perennial Rye Grass During Wilting. Biochemistry Journal58 , 46–49.
Killi D., Bussotti F., Raschi A. & Haworth M. (2017) Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Physiologia Plantarum159 , 130–147.
Kim C. (2020) ROS-Driven Oxidative Modification: Its Impact on Chloroplasts-Nucleus Communication. Frontiers in Plant Science10 , 1–6.
Lawas L.M.F., Zuther E., Jagadish S.K. & Hincha D.K. (2018) Molecular mechanisms of combined heat and drought stress resilience in cereals.Current Opinion in Plant Biology 45 , 212–217.
Li L., Mao X., Wang J., Chang X., Reynolds M. & Jing R. (2019) Genetic dissection of drought and heat-responsive agronomic traits in wheat.Plant Cell and Environment 42 , 2540–2553.
Li T., Tiiva P., Rinnan Å., Riitta, Julkunen-Tiitto, Anders M. & Rinnan R. (2020) Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem.Annals of Botany 125 , 1065–1075.
Liang J., Xia J., Liu L. & Wan S. (2013a) Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology6 , 437–447.
Liang X., Zhang L., Natarajan S.K. & Becker D.F. (2013b) Proline mechanisms of stress survival. Antioxidants and Redox Signaling19 , 998–1011.
Lichtenthaler H. (1987) Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology 148 , 350–382.
Liu X. & Huang B. (2000) Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. Journal of the American Society for Horticultural Science 125 , 442–447.
Maguire A.J. & Kobe R.K. (2015) Drought and shade deplete nonstructural carbohydrate reserves in seedlings of five temperate tree species.Ecology and Evolution 5 , 5711–5721.
Majumdar R., Lebar M., Mack B., Minocha R., Minocha S., Carter-Wientjes C., … Cary J.W. (2018) The Aspergillus flavus Spermidine Synthase (spds) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels. Frontiers in Plant Science 9 , 1–16.
Di Martino C. Di, Delfine S., Pizzuto R., Loreto F. & Fuggi A. (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist158 , 455–463.
McDowell N.G. & Allen C.D. (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change5 , 669–672.
McDowell N.G., Williams A.P., Xu C., Pockman W.T., Dickman L.T., Sevanto S., … Koven C. (2016) Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change6 , 295–300.
Minocha R. & Long S. (2004) Simultaneous separation and quantitation of amino acids and polyamines of forest tree tissues and cell cultures within a single high-performance liquid chromatography run using dansyl derivatization. Journal of Chromatography A 1035 , 63–73.
Minocha R., Majumdar R. & Minocha S.C. (2014) Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science 5 , 1–17.
Minocha R., Martinez G., Lyons B. & Long S. (2009) Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species.Canadian Journal of Forest Research 39 , 849–861.
Mitchell P.J., O’Grady A.P., Tissue D.T., White D.A., Ottenschlaeger M.L. & Pinkard E.A. (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist 197 , 862–872.
Mittler R. (2006) Abiotic stress, the field environment and stress combination. Trends in Plant Science 11 , 15–19.
Mohapatra S., Minocha R., Long S. & Minocha S.C. (2010) Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids. Amino Acids 38 , 1117–1129.
Nambeesan S., Datsenka T., Ferruzzi M.G., Malladi A., Mattoo A.K. & Handa A.K. (2010) Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant Journal63 , 836–847.
Niinemets Ü. (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260 , 1623–1639.
Nippert J.B., Ocheltree T.W., Orozco G.L., Ratajczak Z., Ling B. & Skibbe A.M. (2013) Evidence of physiological decoupling from grassland ecosystem drivers by an encroaching woody shrub. PLoS ONE8 .
O’Brien M.J., Burslem D.F.R.P., Caduff A., Tay J. & Hector A. (2015) Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability. New Phytologist205 , 1083–1094.
Obata T., Witt S., Lisec J., Palacios-rojas N., Florez-sarasa I., Yous S., … Germany T.O. (2015) Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Plant physiology169 , 2665–2683.
Ogaya R., Liu D., Barbeta A. & Peñuelas J. (2020) Stem Mortality and Forest Dieback in a 20-Years Experimental Drought in a Mediterranean Holm Oak Forest. Frontiers in Forests and Global Change2 , 1–9.
Per T.S., Khan N.A., Sudhakar P., Masood A., Hasanuzzaman M., Khan M.I.R. & Anjum N.A. (2017) Plant Physiology and Biochemistry Approaches in modulating proline metabolism in plants for salt and drought stress tolerance : Phytohormones , mineral nutrients and transgenics.Plant Physiology et Biochemistry 115 , 126–140.
Perdomo J.A., Conesa M.À., Medrano H. & Ribas-carbó M. (2015) Effects of long-term individual and combined water and temperature stress on the growth of rice , wheat and maize: relationship with morphological and physiological acclimation. Physiologia Plantarum 155 , 149–165.
Piper F.I. (2011) Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science68 , 415–424.
Prasad P., Pisipati S., Momčilović I. & Ristic Z. (2011) Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat.Journal of Agronomy and Crop Science 197 , 430–441.
Pregitzer K.S. & King J.S. (2005) Nutrient Acquisition by Plants . Springer, Berlin, Heidelberg.
Radwanski E.R. & Last R.L. (1995) Tryptophan Biosynthesis and Molecular Genetics. The Plant Cell 7 , 921–934.
Rai V.K. (2002) Role Of Amino Acids In Plant Respons.pdf. Biologia Plantarum 45 , 481–487.
Renault H., Roussel V., Amrani A. El, Arzel M., Renault D., Bouchereau A. & Deleu C. (2010) The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. Plant Biology 10 , 1–16.
Rhee H.J., Kim E. & Lee J.K. (2007) Physiological polyamines : simple primordial stress. Journal of Cellular and Molecular Medicine11 , 685–703.
Rizhsky L., Liang H. & Mittler R. (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant physiology 130 , 1143–1151.
Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S. & Mittler R. (2004a) When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant physiology134 , 1683–1696.
Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S. & Mittler R. (2004b) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant physiology134 , 1683–1696.
Rowland-Bamford L.J., Baker J.T., Allen Jr. L.H. & Bowes G. (1996) Interactions of CO2 enrichment and temperature on carbohydrate accumulation and partitioning in rice. Environmental and Experimental Botany 36 , 111–124.
Ruehr N.K., Offermann C.A., Gessler A., Winkler J.B., Ferrio J.P., Buchmann N. & Barnard R.L. (2009) Drought effects on allocation of recent carbon: From beech leaves to soil CO2 efflux. New Phytologist 184 , 950–961.
Sagor G.H.M., Berberich T., Takahashi Y., Niitsu M. & Kusano T. (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes.Transgenic Research 22 , 595–605.
Saura-Mas S. & Lloret F. (2007) Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Annals of Botany 99 , 545–554.
Sengupta A., Chakraborty M., Saha J., Gupta B. & Gupta K. (2016) Polyamines: Osmoprotectants in Plant Abiotic Stress Adaptation. InOsmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies . Springer, New Delhi, India.
Sevanto S., Mcdowell N.G., Dickman L.T., Pangle R. & Pockman W.T. (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment 37 , 153–161.
Sewelam N., Brilhaus D., Bräutigam A., Alseekh S., Fernie A.R. & Maurino V.G. (2020) Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. Journal of experimental botany 71 , 5098–5112.
Sgobba A., Paradiso A., Dipierro S., de Gara L. & de Pinto M.C. (2015) Changes in antioxidants are critical in determining cell responses to short- and long-term heat stress. Physiologia Plantarum153 , 68–78.
Shao C.G., Wang H. & Yu-Fen B.I. (2015) Relationship between endogenous polyamines and tolerance in Medicago sativa L.under heat stress.Acta Agrestia Sinica 23 , 1214–1219.
Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., … Zheng B. (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9 .
Sharma P., Jha A.B., Dubey R.S. & Pessarakli M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany 2012 , 1–26.
Sharma S.S. & Dietz K. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57 , 711–726.
Shi H. & Chan Z. (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. Journal of Integrative Plant Biology 56 , 114–121.
Siebers M.H., Yendrek C.R., Drag D., Locke A.M., Acosta L.R., Leakey, Andrew Ainsworth E.A., … Ort D.R. (2015) Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Global Change Biology 21 , 3114–3125.
Singh R., Singh S., Parihar P., Mishra R.K., Tripathi D.K., Singh V.P., … Prasad S.M. (2016) Reactive oxygen species (ROS): Beneficial companions of plants’ developmental processes. Frontiers in Plant Science 7 , 1–19.
Ślesak I., Libik M., Karpinska B., Karpinski S. & Miszalski Z. (2007) Ślesak 2007 Hydrogen Peroxide in Regulation of Plant Metabolism.Pdf.Acta Biochimica Polonica 54 , 39–50.
Stadtman E.R. & Levine R.L. (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids25 , 207–218.
Suzuki N., Rivero R.M., Shulaev V., Blumwald E. & Mittler R. (2014) Abiotic and biotic stress combinations. New Phytologist203 , 32–43.
Templer S.E., Ammon A., Pscheidt D., Ciobotea O., Schuy C., Mccollum C., … Korff M. Von (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. Journal of experimental botany 68 , 1697–1713.
Tomasella M., Petrussa E., Petruzzellis F., Nardini A. & Casolo V. (2020) The possible role of non‐structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences 21 .
Trapp S. & Croteau R. (2001) Defensive resin biosynthesis in conifers.Annual Review of Plant Biology 52 , 689–724.
Tzin V. & Galili G. (2010) The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana. In The Arabidopisis Book . p. e0132.
Vile D., Pervent M., Belluau M., Vasseur F., Bresson J., Muller B., … Simonneau T. (2012) Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?Plant Cell and Environment 35 , 702–718.
Vu J.C.V., Newman Y.C., Allen L.H., Gallo-Meagher M. & Zhang M.Q. (2002) Photosynthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature. Journal of Plant Physiology159 , 147–157.
Walter J., Beierkuhnlein C., Jentsch A. & Kreyling J. (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environmental and Experimental Botany94 , 3–8.
Wilson J.R. (1975) Influence of temperature and nitrogen on growth , photosynthesis and accumulation of non-structural carbohydrate in a tropical grass , Panicum maximum var . trichoglume. 23 , 48–61.
Wingler A., Quick W.P., Bungard R.A., Bailey K.J., Lea P.J. & Leegood R.C. (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell and Environment 22 , 361–373.
Zampieri M., Ceglar A., Dentener F. & Toreti A. (2017) Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters12 .
Zandalinas S.I., Balfagón D., Arbona V. & Gómez-Cadenas A. (2017) Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Frontiers in Plant Science 8 , 1–10.
Zha T., Ryyppö A., Wang K.Y. & Kellomäki S. (2001) Effects of elevated carbon dioxide concentration and temperature on needle growth, respiration and carbohydrate status in field-grown Scots pines during the needle expansion period. Tree Physiology 21 , 1279–1287.
Zhao F., Zhang D., Zhao Y., Wang W., Yang H. & Tai F. (2016) The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. Frontiers in Plant Science 7 , 1471.
Zhou R., Kong L., Wu Z., Rosenqvist E., Wang Y., Zhao L., … Ottosen C.O. (2019) Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiologia Plantarum165 , 144–154.
Zinta G., Abdelgawad H., Peshev D., Weedon J.T., Van Den Ende W., Nijs I., … Asard H. (2018) Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO 2. Journal of Experimental Botany69 , 2159–2170.