References
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150.
Cao LY, Chung JS, Teshima T, Feigenbaum L, Cruz PD, Jr., Jacobe HT, et al. (2016). Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms. J Invest Dermatol 136: 1801-1810.
Cardoso PR, Lima EV, Lima MM, Rego MJ, Marques CD, Pitta Ida R, et al. (2016). Clinical and cytokine profile evaluation in Northeast Brazilian psoriasis plaque-type patients. Eur Cytokine Netw 27:1-5.
Chang JC, Smith LR, Froning KJ, Schwabe BJ, Laxer JA, Caralli LL, et al. (1995). CD8+ T-cells in psoriatic lesions preferentially use T-cell receptors V beta 3 and/or V beta 13.1 genes. Ann N Y Acad Sci 756: 370-381.
Chen C, Tan L, Zhu W, Lei L, Kuang Y, Liu P, et al. (2020). Targeting Myeloid-Derived Suppressor Cells Is a Novel Strategy for Anti-Psoriasis Therapy. Mediators Inflamm 2020: 8567320.
Chen J, Du J, Han Y, & Wei Z (2021). Correlation analysis between IL-35, IL-36gamma, CCL27 and psoriasis vulgaris. J Dermatolog Treat 32: 621-624.
Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. (2010). IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol 11: 1093-1101.
Collison LW, Pillai MR, Chaturvedi V, & Vignali DA (2009). Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J Immunol 182: 6121-6128.
Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. (2007). The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569.
De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, et al.(2008). Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118: 4036-4048.
Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, & Montero AJ (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58: 49-59.
Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, et al. (2008). Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180: 7898-7906.
Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 25: 2546-2553.
Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V, et al. (2010). Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1{alpha}, and TNF-{alpha} Recapitulates Some Features of Psoriasis. J Immunol.
Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, et al. (2008). Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135: 871-881, 881 e871-875.
Hart KM, Byrne KT, Molloy MJ, Usherwood EM, & Berwin B (2011). IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. Front Immunol 2: 29.
Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, et al. (2008). A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135: 234-243.
Ilkovitch D, & Ferris LK (2016). Myeloid-derived suppressor cells are elevated in patients with psoriasis and produce various molecules. Mol Med Rep 14: 3935-3940.
Kochetkova I, Golden S, Holderness K, Callis G, & Pascual DW (2010). IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol 184: 7144-7153.
Lebwohl M (2018). Psoriasis. Ann Intern Med 168: ITC49-ITC64.
Li J, Liu L, Rui W, Li X, Xuan D, Zheng S, et al. (2017). New Interleukins in Psoriasis and Psoriatic Arthritis Patients: The Possible Roles of Interleukin-33 to Interleukin-38 in Disease Activities and Bone Erosions. Dermatology 233: 37-46.
Li L, Wu H, Li Q, Chen J, Xu K, Xu J, et al. (2020). SOCS3-deficient lung epithelial cells uptaking neutrophil-derived SOCS3 worsens lung influenza infection. Mol Immunol 125: 51-62.
Li T, Gu M, Liu P, Liu Y, Guo J, Zhang W, et al. (2018). Clinical Significance of Decreased Interleukin-35 Expression in Patients with Psoriasis. Microbiol Immunol.
Liang Y, Sarkar MK, Tsoi LC, & Gudjonsson JE (2017). Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol 49:1-8.
Liang Y, Xu WD, Peng H, Pan HF, & Ye DQ (2014). SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol 44: 1265-1275.
Lowes MA, Suarez-Farinas M, & Krueger JG (2014). Immunology of psoriasis. Annu Rev Immunol 32: 227-255.
Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Benninger K, Khan M, Kuppusamy P, et al. (2011). Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. Cancer Res 71: 5101-5110.
Oka T, Sugaya M, Takahashi N, Takahashi T, Shibata S, Miyagaki T, et al. (2017). CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. J Immunol 198: 3897-3908.
Owczarczyk-Saczonek A, Czerwinska J, Orylska M, & Placek W (2019). Evaluation of selected mechanisms of immune tolerance in psoriasis. Postepy Dermatol Alergol 36: 319-328.
Pengam S, Durand J, Usal C, Gauttier V, Dilek N, Martinet B, et al. (2019). SIRPalpha/CD47 axis controls the maintenance of transplant tolerance sustained by myeloid-derived suppressor cells. Am J Transplant 19: 3263-3275.
Redd PS, Ibrahim ML, Klement JD, Sharman SK, Paschall AV, Yang D, et al. (2017). SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells. Cancer Res 77: 2834-2843.
Serafini P, Borrello I, & Bronte V (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16: 53-65.
Shih CM, Hsieh CK, Huang CY, Huang CY, Wang KH, Fong TH, et al.(2020). Lycopene Inhibit IMQ-Induced Psoriasis-Like Inflammation by Inhibiting ICAM-1 Production in Mice. Polymers (Basel) 12.
Soler DC, & McCormick TS (2011). The dark side of regulatory T cells in psoriasis. J Invest Dermatol 131: 1785-1786.
Soler DC, Young AB, Fiessinger L, Galimberti F, Debanne S, Groft S, et al. (2016). Increased, but Functionally Impaired, CD14(+) HLA-DR(-/low) Myeloid-Derived Suppressor Cells in Psoriasis: A Mechanism of Dysregulated T Cells. J Invest Dermatol 136: 798-808.
Tcyganov E, Mastio J, Chen E, & Gabrilovich DI (2018). Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 51: 76-82.
Turrentine J, Chung JS, Nezafati K, Tamura K, Harker-Murray A, Huth J, et al. (2014). DC-HIL+ CD14+ HLA-DR no/low cells are a potential blood marker and therapeutic target for melanoma. J Invest Dermatol 134: 2839-2842.
van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, Laman JD, et al. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836-5845.
Veglia F, Perego M, & Gabrilovich D (2018). Myeloid-derived suppressor cells coming of age. Nat Immunol 19: 108-119.
Wang Y, Ding Y, Deng Y, Zheng Y, & Wang S (2020). Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 8.
Wang Y, Mao Y, Zhang J, Shi G, Cheng L, Lin Y, et al. (2018). IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. J Cell Mol Med 22: 1014-1025.
Wang Z, Zhu F, Wang J, Tao Q, Xu X, Wang H, et al. (2019). Increased CD14(+)HLA-DR(-/low) Myeloid-Derived Suppressor Cells Correlate With Disease Severity in Systemic Lupus Erythematosus Patients in an iNOS-Dependent Manner. Front Immunol 10: 1202.
Wirtz S, Billmeier U, McHedlidze T, Blumberg RS, & Neurath MF (2011). Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology 141: 1875-1886.
Wu R, Zeng J, Yuan J, Deng X, Huang Y, Chen L, et al. (2018). MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 128:2551-2568.
Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, & Rudge JS (2003). Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102: 161-168.
Youn JI, Nagaraj S, Collazo M, & Gabrilovich DI (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181: 5791-5802.
Zhang J, Lin Y, Li C, Zhang X, Cheng L, Dai L, et al. (2016). IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis. J Immunol 197: 2131-2144.
Zhu H, Lou F, Yin Q, Gao Y, Sun Y, Bai J, et al. (2017). RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease. EMBO Mol Med 9: 589-604.