References
Andrade-Linares, D.R., Veresoglou, S.D. & Rillig, M.C. (2016). Temperature priming and memory in soil filamentous fungi. Fungal Ecol. , 21, 10-15.
Barton, K. (2019). MuMIn: Multi-Model Inference. R package version 1.43.6, https://CRAN.R-project.org/package=MuMIn.
Bates, D., Maechler, M. & Bolker, B. (2012). lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0, http://CRAN.R-project.org/package=lme4.
Buchkowski, R.W., Shaw, A.N., Sihi, D., Smith, G.R. & Keiser, A.D. (2019). Constraining Carbon and Nutrient Flows in Soil With Ecological Stoichiometry. Frontiers in Ecology and Evolution , 7, 382.
Camenzind, T., Hättenschwiler, S., Treseder, K.K., Lehmann, A. & Rillig, M.C. (2018a). Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. , 88, 4-21.
Camenzind, T., Lehmann, A., Ahland, J., Rumpel, S. & Rillig, M. (2020). Trait-based approaches reveal fungal adaptations to nutrient-limiting conditions. Environmental Microbiology , doi: 10.1111/1462-2920.15132.
Camenzind, T., Lehmberg, J., Weimershaus, P., Álvarez-Garrido, L., Andrade Linares, D.R., Súarez, J.P. et al. (2018b). Do fungi need salt licks? No evidence for fungal contribution to the Sodium Ecosystem Respiration Hypothesis based on lab and field experiments in Southern Ecuador. Fungal Ecol. , 32, 18-28.
Cleveland, C.C. & Liptzin, D. (2007). C : N : P stoichiometry in soil: is there a ”Redfield ratio” for the microbial biomass?Biogeochemistry , 85, 235-252.
Danger, M. & Chauvet, E. (2013). Elemental composition and degree of homeostasis of fungi: are aquatic hyphomycetes more like metazoans, bacteria or plants? Fungal Ecol. , 6, 453-457.
Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. (2008). Does Liebig’s law of the minimum scale up from species to communities?Oikos , 117, 1741-1751.
Danger, M., Gessner, M.O. & Barlocher, F. (2016). Ecological stoichiometry of aquatic fungi: current knowledge and perspectives.Fungal Ecol. , 19, 100-111.
Egli, T. & Quayle, J.R. (1986). Influence of the Carbon: Nitrogen Ratio of the Growth Medium on the Cellular Composition and the Ability of the Methylotrophic Yeast Hansenula polymorpha to Utilize Mixed Carbon Sources. Microbiology , 132, 1779-1788.
Fanin, N., Fromin, N., Buatois, B. & Hattenschwiler, S. (2013). An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant littermicrobe system. Ecology Letters , 16, 764-772.
Fricker, M.D., Heaton, L.L.M., Jones, N.S. & Boddy, L. (2017). The Mycelium as a Network. Microbiology Spectrum , 5, FUNK-0033-2017.
Fricker, M.D., Lee, J.A., Bebber, D.P., Tlalka, M., Hynes, J., Darrah, P.R. et al. (2008). Imaging complex nutrient dynamics in mycelial networks. Journal of Microscopy , 231, 317-331.
Frost, P.C., Evans-White, M.A., Finkel, Z.V., Jensen, T.C. & Matzek, V. (2005). Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos , 109, 18-28.
Godwin, C.M. & Cotner, J.B. (2018). What intrinsic and extrinsic factors explain the stoichiometric diversity of aquatic heterotrophic bacteria? ISME Journal , 12, 598-609.
Grimmett, I.J., Shipp, K.N., Macneil, A. & Barlocher, F. (2013). Does the growth rate hypothesis apply to aquatic hyphomycetes? Fungal Ecol. , 6, 493-500.
Gulis, V., Kuehn, K.A., Schoettle, L.N., Leach, D., Benstead, J.P. & Rosemond, A.D. (2017). Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply. ISME Journal , 11, 2729–2739.
Güsewell, S. (2004). N : P ratios in terrestrial plants: variation and functional significance. New Phytol. , 164, 243-266.
Hall, E.K., Maixner, F., Franklin, O., Daims, H., Richter, A. & Battin, T. (2011a). Linking Microbial and Ecosystem Ecology Using Ecological Stoichiometry: A Synthesis of Conceptual and Empirical Approaches.Ecosystems , 14, 261-273.
Hall, E.K., Singer, G.A., Polzl, M., Hammerle, I., Schwarz, C., Daims, H. et al. (2011b). Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time. ISME Journal , 5, 196-208.
Hartman, W.H. & Richardson, C.J. (2013). Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO(2)): Is There a Biological Stoichiometry of Soil Microbes? Plos One , 8, e57127.
Heck, A.F. (1928). A study of the nature of the nitrogenous compounds in fungous tissue and their decomposition in the soil. Soil Sci. , 27, 1-47.
Horn, S., Caruso, T., Verbruggen, E., Rillig, M.C. & Hempel, S. (2014). Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. ISME Journal , 8, 2231-2242.
Jennings, D.H. (1995). The Physiology of Fungal Nutrition . Cambridge University Press, Cambridge, UK.
Kaspari, M. & Powers, J.S. (2016). Biogeochemistry and Geographical Ecology: Embracing All Twenty-Five Elements Required to Build Organisms.American Naturalist , 188, 62-73.
Klein, D.A. & Paschke, M.W. (2004). Filamentous Fungi: the Indeterminate Lifestyle and Microbial Ecology. Microbial Ecology , 47, 224-235.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software , 82, 1-26.
Lehmann, A., Zheng, W., Soutschek, K., Roy, J., Yurkov, A.M. & Rillig, M.C. (2019). Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Scientific Reports , 9, 14152.
Levi, M.P. & Cowling, E.B. (1969). Role of nitrogen in wood deterioration. 7. Physiological adaptation of wood destroying and other fungi to substrates deficient in nitrogen. Phytopathology , 59, 460-469.
Liang, C., Amelung, W., Lehmann, J. & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter.Glob. Change Biol. , 25, 3578-3590.
Lilly, W.W., Wallweber, G.J. & Higgins, S.M. (1991). Proteolysis and amino acid recycling during nitrogen deprivation inSchizophyllum commune. Current Microbiology , 23, 27-32.
Loladze, I. & Elser, J.J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters , 14, 244-250.
Makino, W., Cotner, J.B., Sterner, R.W. & Elser, J.J. (2003). Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry. Funct. Ecol. , 17, 121-130.
Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G.I. (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. , 196, 79-91.
Manzoni, S., Trofymow, J.A., Jackson, R.B. & Porporato, A. (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs , 80, 89-106.
Maynard, D.S., Crowther, T.W. & Bradford, M.A. (2017). Fungal interactions reduce carbon use efficiency. Ecology Letters , 20, 1034-1042.
McGill, W.B., Hunt, H.W., Woodmansee, R.G. & Reuss, J.O. (1981). PHOENIX, a model of the dynamics of carbon and nitrogen in grassland soils. Ecological Bulletins , 33, 49-115.
McGroddy, M.E., Daufresne, T. & Hedin, L.O. (2004). Scaling of C : N : P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology , 85, 2390-2401.
Moore, D., Robson, G. & Trinci, A. (2011). 21st Century Guidebook to Fungi . Cambridge University Press, Cambridge, UK.
Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A. (2014). Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Frontiers in Microbiology , 5, 22.
Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison, S.D., Amend, A.S. et al. (2014). Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter. Soil Biol. Biochem. , 76, 278-285.
Newell, S.Y. & Statzell-Tallman, A. (1982). Factors for conversion of fungal biovolume values to biomass, carbon and nitrogen: variation with mycelial ages, growth conditions, and strains of fungi from asalt marsh.Oikos , 39, 261-268.
Nicolardot, B., Recous, S. & Mary, B. (2001). Simulation of C and N mineralisation during crop residue decomposition: A simple dynamic model based on the C : N ratio of the residues. Plant and Soil , 228, 83-103.
Paustian, K. & Schnürer, J. (1987a). Fungal growth response to carbon and nitrogen limitation - a theoretical model. Soil Biol. Biochem. , 19, 613-620.
Paustian, K. & Schnürer, J. (1987b). Fungal growth response to carbon and nitrogen limitation - application of a model to laboratory and field data. Soil Biol. Biochem. , 19, 621-629.
Persson, J., Fink, P., Goto, A., Hood, J.M., Jonas, J. & Kato, S. (2010). To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos , 119, 741-751.
Peter, M. (2005). Chitin and Chitosan in Fungi. In: Biopolymers Online (ed. Steinbüchel, A). Wiley‐VCH Verlag GmbH & Co. KGaA Weinheim, Germany.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2020). nlme: Linear and nonlinear mixed effects models. R package version 3.1-147, http://CRAN.R-project.org/package=nlme.
Pusztahelyi, T., Molnár, Z., Emri, T., Klement, É., Miskei, M., Kerékgyártó, J. et al. (2006). Comparative studies of differential expression of chitinolytic enzymes encoded by chiA, chiB, chiC and nagA genes in Aspergillus nidulans. Folia Microbiologica , 51, 547-554.
R Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria, http://www.R-project.org/.
Redfield, A.C. (1958). The biological control of chemical factors in the environment. American Scientist , 46, 205-221.
Reich, P.B. & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America , 101, 11001-11006.
Reyes, F., Villanueva, P. & Alfonso, C. (1990). Nucleases in the autolysis of filamentous fungi. FEMS Microbiology Letters , 69, 67-72.
Riley, W.J., Maggi, F., Kleber, M., Torn, M.S., Tang, J.Y., Dwivedi, D.et al. (2014). Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geosci. Model Dev. , 7, 1335-1355.
Sardans, J., Rivas-Ubach, A. & Penuelas, J. (2012). The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry , 111, 1-39.
Scott, J.T., Cotner, J.B. & LaPara, T.M. (2012). Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition.Frontiers in Microbiology , 3, 42.
Spohn, M. (2016). Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic and Applied Ecology , 17, 471-478.
Sterner, R.W. & Elser, J.J. (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere . Princeton University Press, Oxford, UK.
Strickland, M.S. & Rousk, J. (2010). Considering fungal:bacterial dominance in soils - Methods, controls, and ecosystem implications.Soil Biol. Biochem. , 42, 1385-1395.
Tanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K., Tamaki, H. et al. (2014). A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Applied and environmental microbiology , 80, 7659-7666.
van Groenigen, J.W., van Kessel, C., Hungate, B.A., Oenema, O., Powlson, D.S. & van Groenigen, K.J. (2017). Sequestering Soil Organic Carbon: A Nitrogen Dilemma. Environmental Science & Technology , 51, 4738-4739.
Waring, B.G., Averill, C. & Hawkes, C.V. (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters , 16, 887-894.
Watkinson, S., Bebber, D., Darrah, P., Fricker, M., Tlalka, M. & Boddy, L. (2006). The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Fungi in Biogeochemical Cycles(ed. Gadd, GM). Cambridge University Press, Cambridge, UK, pp. 151-181.
Wilson, W.A., Roach, P.J., Montero, M., Baroja-Fernández, E., Muñoz, F.J., Eydallin, G. et al. (2010). Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiology Reviews , 34, 952-985.
Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J. et al. (2015). The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol. Monogr. , 85, 133-155.
Zhang, J. & Elser, J.J. (2017). Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-Analysis. Frontiers in Microbiology , 8, 1281.
Zheng, W. (2015). Soil stability and filamentous fungi. Institute of Biology, Freie Universität Berlin , Berlin, Germany.
Zheng, W., Lehmann, A., Ryo, M., Valyi, K. & Rillig, M.C. (2018). Growth rate trades off with enzymatic investment in soil filamentous fungi. In: bioRxiv , p. 360511.