References
Andrade-Linares, D.R., Veresoglou, S.D. & Rillig, M.C. (2016).
Temperature priming and memory in soil filamentous fungi. Fungal
Ecol. , 21, 10-15.
Barton, K. (2019). MuMIn: Multi-Model Inference. R package version
1.43.6, https://CRAN.R-project.org/package=MuMIn.
Bates, D., Maechler, M. & Bolker, B. (2012). lme4: Linear mixed-effects
models using S4 classes. R package version 0.999999-0,
http://CRAN.R-project.org/package=lme4.
Buchkowski, R.W., Shaw, A.N., Sihi, D., Smith, G.R. & Keiser, A.D.
(2019). Constraining Carbon and Nutrient Flows in Soil With Ecological
Stoichiometry. Frontiers in Ecology and Evolution , 7, 382.
Camenzind, T., Hättenschwiler, S., Treseder, K.K., Lehmann, A. &
Rillig, M.C. (2018a). Nutrient limitation of soil microbial processes in
tropical forests. Ecol. Monogr. , 88, 4-21.
Camenzind, T., Lehmann, A., Ahland, J., Rumpel, S. & Rillig, M. (2020).
Trait-based approaches reveal fungal adaptations to nutrient-limiting
conditions. Environmental Microbiology , doi:
10.1111/1462-2920.15132.
Camenzind, T., Lehmberg, J., Weimershaus, P., Álvarez-Garrido, L.,
Andrade Linares, D.R., Súarez, J.P. et al. (2018b). Do fungi need
salt licks? No evidence for fungal contribution to the Sodium Ecosystem
Respiration Hypothesis based on lab and field experiments in Southern
Ecuador. Fungal Ecol. , 32, 18-28.
Cleveland, C.C. & Liptzin, D. (2007). C : N : P stoichiometry in soil:
is there a ”Redfield ratio” for the microbial biomass?Biogeochemistry , 85, 235-252.
Danger, M. & Chauvet, E. (2013). Elemental composition and degree of
homeostasis of fungi: are aquatic hyphomycetes more like metazoans,
bacteria or plants? Fungal Ecol. , 6, 453-457.
Danger, M., Daufresne, T., Lucas, F., Pissard, S. & Lacroix, G. (2008).
Does Liebig’s law of the minimum scale up from species to communities?Oikos , 117, 1741-1751.
Danger, M., Gessner, M.O. & Barlocher, F. (2016). Ecological
stoichiometry of aquatic fungi: current knowledge and perspectives.Fungal Ecol. , 19, 100-111.
Egli, T. & Quayle, J.R. (1986). Influence of the Carbon: Nitrogen Ratio
of the Growth Medium on the Cellular Composition and the Ability of the
Methylotrophic Yeast Hansenula polymorpha to Utilize Mixed Carbon
Sources. Microbiology , 132, 1779-1788.
Fanin, N., Fromin, N., Buatois, B. & Hattenschwiler, S. (2013). An
experimental test of the hypothesis of non-homeostatic consumer
stoichiometry in a plant littermicrobe system. Ecology Letters ,
16, 764-772.
Fricker, M.D., Heaton, L.L.M., Jones, N.S. & Boddy, L. (2017). The
Mycelium as a Network. Microbiology Spectrum , 5, FUNK-0033-2017.
Fricker, M.D., Lee, J.A., Bebber, D.P., Tlalka, M., Hynes, J., Darrah,
P.R. et al. (2008). Imaging complex nutrient dynamics in mycelial
networks. Journal of Microscopy , 231, 317-331.
Frost, P.C., Evans-White, M.A., Finkel, Z.V., Jensen, T.C. & Matzek, V.
(2005). Are you what you eat? Physiological constraints on organismal
stoichiometry in an elementally imbalanced world. Oikos , 109,
18-28.
Godwin, C.M. & Cotner, J.B. (2018). What intrinsic and extrinsic
factors explain the stoichiometric diversity of aquatic heterotrophic
bacteria? ISME Journal , 12, 598-609.
Grimmett, I.J., Shipp, K.N., Macneil, A. & Barlocher, F. (2013). Does
the growth rate hypothesis apply to aquatic hyphomycetes? Fungal
Ecol. , 6, 493-500.
Gulis, V., Kuehn, K.A., Schoettle, L.N., Leach, D., Benstead, J.P. &
Rosemond, A.D. (2017). Changes in nutrient stoichiometry, elemental
homeostasis and growth rate of aquatic litter-associated fungi in
response to inorganic nutrient supply. ISME Journal , 11,
2729–2739.
Güsewell, S. (2004). N : P ratios in terrestrial plants: variation and
functional significance. New Phytol. , 164, 243-266.
Hall, E.K., Maixner, F., Franklin, O., Daims, H., Richter, A. & Battin,
T. (2011a). Linking Microbial and Ecosystem Ecology Using Ecological
Stoichiometry: A Synthesis of Conceptual and Empirical Approaches.Ecosystems , 14, 261-273.
Hall, E.K., Singer, G.A., Polzl, M., Hammerle, I., Schwarz, C., Daims,
H. et al. (2011b). Looking inside the box: using Raman
microspectroscopy to deconstruct microbial biomass stoichiometry one
cell at a time. ISME Journal , 5, 196-208.
Hartman, W.H. & Richardson, C.J. (2013). Differential Nutrient
Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO(2)):
Is There a Biological Stoichiometry of Soil Microbes? Plos One ,
8, e57127.
Heck, A.F. (1928). A study of the nature of the nitrogenous compounds in
fungous tissue and their decomposition in the soil. Soil Sci. ,
27, 1-47.
Horn, S., Caruso, T., Verbruggen, E., Rillig, M.C. & Hempel, S. (2014).
Arbuscular mycorrhizal fungal communities are phylogenetically clustered
at small scales. ISME Journal , 8, 2231-2242.
Jennings, D.H. (1995). The Physiology of Fungal Nutrition .
Cambridge University Press, Cambridge, UK.
Kaspari, M. & Powers, J.S. (2016). Biogeochemistry and Geographical
Ecology: Embracing All Twenty-Five Elements Required to Build Organisms.American Naturalist , 188, 62-73.
Klein, D.A. & Paschke, M.W. (2004). Filamentous Fungi: the
Indeterminate Lifestyle and Microbial Ecology. Microbial Ecology ,
47, 224-235.
Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. (2017). lmerTest
Package: Tests in Linear Mixed Effects Models. Journal of
Statistical Software , 82, 1-26.
Lehmann, A., Zheng, W., Soutschek, K., Roy, J., Yurkov, A.M. & Rillig,
M.C. (2019). Tradeoffs in hyphal traits determine mycelium architecture
in saprobic fungi. Scientific Reports , 9, 14152.
Levi, M.P. & Cowling, E.B. (1969). Role of nitrogen in wood
deterioration. 7. Physiological adaptation of wood destroying and other
fungi to substrates deficient in nitrogen. Phytopathology , 59,
460-469.
Liang, C., Amelung, W., Lehmann, J. & Kästner, M. (2019). Quantitative
assessment of microbial necromass contribution to soil organic matter.Glob. Change Biol. , 25, 3578-3590.
Lilly, W.W., Wallweber, G.J. & Higgins, S.M. (1991). Proteolysis and
amino acid recycling during nitrogen deprivation inSchizophyllum
commune. Current Microbiology , 23, 27-32.
Loladze, I. & Elser, J.J. (2011). The origins of the Redfield
nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA
ratio. Ecology Letters , 14, 244-250.
Makino, W., Cotner, J.B., Sterner, R.W. & Elser, J.J. (2003). Are
bacteria more like plants or animals? Growth rate and resource
dependence of bacterial C : N : P stoichiometry. Funct. Ecol. ,
17, 121-130.
Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Agren, G.I.
(2012). Environmental and stoichiometric controls on microbial
carbon-use efficiency in soils. New Phytol. , 196, 79-91.
Manzoni, S., Trofymow, J.A., Jackson, R.B. & Porporato, A. (2010).
Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in
decomposing litter. Ecological Monographs , 80, 89-106.
Maynard, D.S., Crowther, T.W. & Bradford, M.A. (2017). Fungal
interactions reduce carbon use efficiency. Ecology Letters , 20,
1034-1042.
McGill, W.B., Hunt, H.W., Woodmansee, R.G. & Reuss, J.O. (1981).
PHOENIX, a model of the dynamics of carbon and nitrogen in grassland
soils. Ecological Bulletins , 33, 49-115.
McGroddy, M.E., Daufresne, T. & Hedin, L.O. (2004). Scaling of C : N :
P stoichiometry in forests worldwide: Implications of terrestrial
redfield-type ratios. Ecology , 85, 2390-2401.
Moore, D., Robson, G. & Trinci, A. (2011). 21st Century Guidebook
to Fungi . Cambridge University Press, Cambridge, UK.
Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S. & Richter, A.
(2014). Stoichiometric imbalances between terrestrial decomposer
communities and their resources: mechanisms and implications of
microbial adaptations to their resources. Frontiers in
Microbiology , 5, 22.
Mouginot, C., Kawamura, R., Matulich, K.L., Berlemont, R., Allison,
S.D., Amend, A.S. et al. (2014). Elemental stoichiometry of Fungi
and Bacteria strains from grassland leaf litter. Soil Biol.
Biochem. , 76, 278-285.
Newell, S.Y. & Statzell-Tallman, A. (1982). Factors for conversion of
fungal biovolume values to biomass, carbon and nitrogen: variation with
mycelial ages, growth conditions, and strains of fungi from asalt marsh.Oikos , 39, 261-268.
Nicolardot, B., Recous, S. & Mary, B. (2001). Simulation of C and N
mineralisation during crop residue decomposition: A simple dynamic model
based on the C : N ratio of the residues. Plant and Soil , 228,
83-103.
Paustian, K. & Schnürer, J. (1987a). Fungal growth response to carbon
and nitrogen limitation - a theoretical model. Soil Biol.
Biochem. , 19, 613-620.
Paustian, K. & Schnürer, J. (1987b). Fungal growth response to carbon
and nitrogen limitation - application of a model to laboratory and field
data. Soil Biol. Biochem. , 19, 621-629.
Persson, J., Fink, P., Goto, A., Hood, J.M., Jonas, J. & Kato, S.
(2010). To be or not to be what you eat: regulation of stoichiometric
homeostasis among autotrophs and heterotrophs. Oikos , 119,
741-751.
Peter, M. (2005). Chitin and Chitosan in Fungi. In: Biopolymers
Online (ed. Steinbüchel, A). Wiley‐VCH Verlag GmbH & Co. KGaA
Weinheim, Germany.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2020).
nlme: Linear and nonlinear mixed effects models. R package version
3.1-147, http://CRAN.R-project.org/package=nlme.
Pusztahelyi, T., Molnár, Z., Emri, T., Klement, É., Miskei, M.,
Kerékgyártó, J. et al. (2006). Comparative studies of
differential expression of chitinolytic enzymes encoded by chiA, chiB,
chiC and nagA genes in Aspergillus nidulans. Folia
Microbiologica , 51, 547-554.
R Core Team (2019). R: A language and environment for statistical
computing. Vienna, Austria, http://www.R-project.org/.
Redfield, A.C. (1958). The biological control of chemical factors in the
environment. American Scientist , 46, 205-221.
Reich, P.B. & Oleksyn, J. (2004). Global patterns of plant leaf N and P
in relation to temperature and latitude. Proceedings of the
National Academy of Sciences of the United States of America , 101,
11001-11006.
Reyes, F., Villanueva, P. & Alfonso, C. (1990). Nucleases in the
autolysis of filamentous fungi. FEMS Microbiology Letters , 69,
67-72.
Riley, W.J., Maggi, F., Kleber, M., Torn, M.S., Tang, J.Y., Dwivedi, D.et al. (2014). Long residence times of rapidly decomposable soil
organic matter: application of a multi-phase, multi-component, and
vertically resolved model (BAMS1) to soil carbon dynamics. Geosci.
Model Dev. , 7, 1335-1355.
Sardans, J., Rivas-Ubach, A. & Penuelas, J. (2012). The elemental
stoichiometry of aquatic and terrestrial ecosystems and its
relationships with organismic lifestyle and ecosystem structure and
function: a review and perspectives. Biogeochemistry , 111, 1-39.
Scott, J.T., Cotner, J.B. & LaPara, T.M. (2012). Variable stoichiometry
and homeostatic regulation of bacterial biomass elemental composition.Frontiers in Microbiology , 3, 42.
Spohn, M. (2016). Element cycling as driven by stoichiometric
homeostasis of soil microorganisms. Basic and Applied Ecology ,
17, 471-478.
Sterner, R.W. & Elser, J.J. (2002). Ecological Stoichiometry: the
Biology of Elements from Molecules to the Biosphere . Princeton
University Press, Oxford, UK.
Strickland, M.S. & Rousk, J. (2010). Considering fungal:bacterial
dominance in soils - Methods, controls, and ecosystem implications.Soil Biol. Biochem. , 42, 1385-1395.
Tanaka, T., Kawasaki, K., Daimon, S., Kitagawa, W., Yamamoto, K.,
Tamaki, H. et al. (2014). A hidden pitfall in the preparation of
agar media undermines microorganism cultivability. Applied and
environmental microbiology , 80, 7659-7666.
van Groenigen, J.W., van Kessel, C., Hungate, B.A., Oenema, O., Powlson,
D.S. & van Groenigen, K.J. (2017). Sequestering Soil Organic Carbon: A
Nitrogen Dilemma. Environmental Science & Technology , 51,
4738-4739.
Waring, B.G., Averill, C. & Hawkes, C.V. (2013). Differences in fungal
and bacterial physiology alter soil carbon and nitrogen cycling:
insights from meta-analysis and theoretical models. Ecology
Letters , 16, 887-894.
Watkinson, S., Bebber, D., Darrah, P., Fricker, M., Tlalka, M. & Boddy,
L. (2006). The role of wood decay fungi in the carbon and nitrogen
dynamics of the forest floor. In: Fungi in Biogeochemical Cycles(ed. Gadd, GM). Cambridge University Press, Cambridge, UK, pp. 151-181.
Wilson, W.A., Roach, P.J., Montero, M., Baroja-Fernández, E., Muñoz,
F.J., Eydallin, G. et al. (2010). Regulation of glycogen
metabolism in yeast and bacteria. FEMS Microbiology Reviews , 34,
952-985.
Zechmeister-Boltenstern, S., Keiblinger, K.M., Mooshammer, M., Peñuelas,
J., Richter, A., Sardans, J. et al. (2015). The application of
ecological stoichiometry to plant–microbial–soil organic matter
transformations. Ecol. Monogr. , 85, 133-155.
Zhang, J. & Elser, J.J. (2017). Carbon:Nitrogen:Phosphorus
Stoichiometry in Fungi: A Meta-Analysis. Frontiers in
Microbiology , 8, 1281.
Zheng, W. (2015). Soil stability and filamentous fungi. Institute
of Biology, Freie Universität Berlin , Berlin, Germany.
Zheng, W., Lehmann, A., Ryo, M., Valyi, K. & Rillig, M.C. (2018).
Growth rate trades off with enzymatic investment in soil filamentous
fungi. In: bioRxiv , p. 360511.