Reference
AgSTAR, U. S. (2018). Market opportunities for biogas recovery systems at U.S. livestock facilities.
Akberdin, I. R., Thompson, M., Hamilton, R., Desai, N., Alexander, D., Henard, C. A., … Kalyuzhnaya, M. G. (2018). Methane utilization in Methylomicrobium alcaliphilum 20Z R: a systems approach.Scientific Reports , 8 (1), 2512.
Badr, K., Hilliard, M., Roberts, N., He, Q. P., & Wang, J. (2019). Photoautotroph-Methanotroph Coculture – A Flexible Platform for Efficient Biological CO2-CH4 Co-utilization. IFAC-PapersOnLine ,52 (1), 916–921. https://doi.org/10.1016/j.ifacol.2019.06.179
Bernstein, H. C., McClure, R. S., Hill, E. A., Markillie, L. M., Chrisler, W. B., Romine, M. F., … others. (2016). Unlocking the constraints of cyanobacterial productivity: acclimations enabling ultrafast growth. MBio , 7 (4), 949.
Hill, E. A., Chrisler, W. B., Beliaev, A. S., & Bernstein, H. C. (2017). A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.Bioresource Technology .
Kip, N., van Winden, J. F., Pan, Y., Bodrossy, L., Reichart, G.-J., Smolders, A. J. P., … den Camp, H. J. M. O. (2010). Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience , 3 (9), 617–621.
Kliphuis, A. M. J., Janssen, M., van den End, E. J., Martens, D. E., & Wijffels, R. H. (2011). Light respiration in Chlorella sorokiniana.Journal of Applied Phycology , 23 (6), 935–947.
Milucka, J., Kirf, M., Lu, L., Krupke, A., Lam, P., Littmann, S., … Schubert, C. J. (2015). Methane oxidation coupled to oxygenic photosynthesis in anoxic waters. The ISME Journal .
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., Rijpstra, W. I. C., Wolters-Arts, M., Derksen, J., … others. (2005). Methanotrophic symbionts provide carbon for photosynthesis in peat bogs.Nature , 436 (7054), 1153–1156.
Rasouli, Z., Valverde-Pérez, B., D’Este, M., De Francisci, D., & Angelidaki, I. (2018). Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs. Biochemical Engineering Journal , 134 , 129–135.
Sabra, W., Dietz, D., Tjahjasari, D., & Zeng, A.-P. (2010). Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Engineering in Life Sciences , 10 (5), 407–421. Retrieved from http://pbi.hospedagemdesites.ws/wp-content/uploads/2012/12/Biosystems-analysis-and-engineering-of-microvial-consortia-for-industrial-biotechnology.pdf
Spiegelman, D., Whissell, G., & Greer, C. W. (2005). A survey of the methods for the characterization of microbial consortia and communities.Canadian Journal of Microbiology , 51 (5), 355–386. Retrieved from http://www.researchgate.net/profile/Dan_Spiegelman/publication/7672619_A_survey_of_the_methods_for_the_characterization_of_microbial_consortia_and_communities/links/0046353ac3ffbc37c5000000.pdf
Stone, K. A., He, Q. P., & Wang, J. (2019). Two Experimental Protocols for Accurate Measurement of Gas Component Uptake and Production Rates in Bioconversion Processes. Scientific Reports , 9 (1), 5899. https://doi.org/10.1038/s41598-019-42469-3
van der Ha, D., Nachtergaele, L., Kerckhof, F.-M., Rameiyanti, D., Bossier, P., Verstraete, W., & Boon, N. (2012). Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environmental Science & Technology , 46 (24), 13425–13431.
Wang, J., & He, Q. P. (2018). Methanotroph-microalgae coculture.US Provisional Patent Application 62/664,565 .