References
[1] L. L. Maragakis, E. N. Perencevich, and S. E. Cosgrove, “Clinical and economic burden of antimicrobial resistance.,”Expert Rev. Anti. Infect. Ther. , vol. 6, no. 5, pp. 751–63, Oct. 2008.
[2] M. E. A. De Kraker, M. Wolkewitz, P. G. Davey, and H. Grundmann, “Clinical impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related to methicillin-resistant Staphylococcus aureus bloodstream infections,”Antimicrob. Agents Chemother. , vol. 55, pp. 1598–1605, 2011.
[3] M. E. A. de Kraker, P. G. Davey, H. Grundmann, and BURDEN study group, “Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe.,” PLoS Med. , vol. 8, no. 10, p. e1001104, Oct. 2011.
[4] S. E. Cosgrove, “The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs.,” Clin. Infect. Dis. , vol. 42 Suppl 2, pp. S82-9, Jan. 2006.
[5] K. Rowland, “Totally drug-resistant TB emerges in India,”Nature , Jan. 2012.
[6] M. E. Falagas and D. E. Karageorgopoulos, “Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology.,” Clin. Infect. Dis. , vol. 46, no. 7, pp. 1121–2; author reply 1122, Apr. 2008.
[7] U. Theuretzbacher et al. , “Analysis of the clinical antibacterial and antituberculosis pipeline.,” Lancet. Infect. Dis. , vol. 19, no. 2, pp. e40–e50, 2019.
[8] D. S. Armstrong et al. , “Lower airway inflammation in infants and young children with cystic fibrosis.,” Am. J. Respir. Crit. Care Med. , vol. 156, no. 4 Pt 1, pp. 1197–204, Oct. 1997.
[9] E. C. Dasenbrook, C. A. Merlo, M. Diener-West, N. Lechtzin, and M. P. Boyle, “Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis.,” Am. J. Respir. Crit. Care Med. , vol. 178, no. 8, pp. 814–21, Oct. 2008.
[10] D. Dolce et al. , “Methicillin-resistant Staphylococcus aureus eradication in cystic fibrosis patients: A randomized multicenter study,” PLoS One , vol. 14, no. 3, p. e0213497, Mar. 2019.
[11] C. Cigana et al. , “Staphylococcus aureus Impacts Pseudomonas aeruginosa Chronic Respiratory Disease in Murine Models.,”J. Infect. Dis. , vol. 217, no. 6, pp. 933–942, 2018.
[12] S. K. Remold, C. K. Brown, J. E. Farris, T. C. Hundley, J. A. Perpich, and M. E. Purdy, “Differential habitat use and niche partitioning by Pseudomonas species in human homes.,” Microb. Ecol. , vol. 62, no. 3, pp. 505–17, Oct. 2011.
[13] J. Emerson, M. Rosenfeld, S. McNamara, B. Ramsey, and R. L. Gibson, “Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis.,” Pediatr. Pulmonol. , vol. 34, no. 2, pp. 91–100, Aug. 2002.
[14] G. M. Nixon et al. , “Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis.,” J. Pediatr. , vol. 138, no. 5, pp. 699–704, May 2001.
[15] N. Volkova et al. , “Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries.,” J. Cyst. Fibros. , vol. 19, no. 1, pp. 68–79, Jan. 2020.
[16] K. B. Hisert et al. , “Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.,” Am. J. Respir. Crit. Care Med. , vol. 195, no. 12, pp. 1617–1628, 2017.
[17] S. A. Sarker et al. , “Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh,”Virology , vol. 434, no. 2, pp. 222–232, Dec. 2012.
[18] A. Bruttin and H. Brussow, “Human Volunteers Receiving Escherichia coli Phage T4 Orally: a Safety Test of Phage Therapy,”Antimicrob. Agents Chemother. , vol. 49, no. 7, pp. 2874–2878, Jul. 2005.
[19] S. McCallin et al. , “Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects.,” Virology , vol. 443, no. 2, pp. 187–96, Sep. 2013.
[20] D. D. Rhoads, R. D. Wolcott, M. A. Kuskowski, B. M. Wolcott, L. S. Ward, and A. Sulakvelidze, “Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial.,” J. Wound Care , vol. 18, no. 6, pp. 237–8, 240–3, Jun. 2009.
[21] M. Kutateladze and R. Adamia, “Phage therapy experience at the Eliava Institute,” Médecine Mal. Infect. , vol. 38, no. 8, pp. 426–430, Aug. 2008.
[22] L. Kvachadze et al. , “Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens.,” Microb. Biotechnol. , vol. 4, no. 5, pp. 643–50, Sep. 2011.
[23] N. Law et al. , “Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient.,” Infection , vol. 47, no. 4, pp. 665–668, Aug. 2019.
[24] R. M. Dedrick et al. , “Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus,” Nat. Med. , vol. 25, no. 5, pp. 730–733, May 2019.
[25] R. C. T. Wright, V.-P. Friman, M. C. M. Smith, and M. A. Brockhurst, “Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure,” MBio , vol. 10, no. 5, Sep. 2019.
[26] R. Kassen, “The experimental evolution of specialists, generalists, and the maintenance of diversity,” J. Evol. Biol. , vol. 15, no. 2, pp. 173–190, Mar. 2002.
[27] D. L. Smith et al. , “Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria.,” J. Bacteriol. , vol. 189, no. 20, pp. 7223–33, Oct. 2007.
[28] P. E. Kortright, Kaitlyn E., Chan, Benjamin K., Turner, “High-throughput discovery of phage receptors using transposon insertion sequencing of bacteria.,” Proc. Natl. Acad. Sci. , vol. in press, 2020.
[29] A. R. Hall, D. De Vos, V.-P. Friman, J.-P. Pirnay, and A. Buckling, “Effects of Sequential and Simultaneous Applications of Bacteriophages on Populations of Pseudomonas aeruginosa In Vitro and in Wax Moth Larvae,” Appl. Environ. Microbiol. , vol. 78, no. 16, pp. 5646–5652, Aug. 2012.
[30] B. R. Levin and J. J. Bull, “Population and evolutionary dynamics of phage therapy.,” Nat. Rev. Microbiol. , vol. 2, no. 2, pp. 166–73, Feb. 2004.
[31] S. Duffy, C. L. Burch, and P. E. Turner, “Evolution of host specificity drives reproductive isolation among RNA viruses.,”Evolution , vol. 61, no. 11, pp. 2614–22, Nov. 2007.
[32] M. Dessau, D. Goldhill, R. C. McBride, R. L. McBride, P. E. Turner, and Y. Modis, “Selective pressure causes an RNA virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme.,” PLoS Genet. , vol. 8, no. 11, p. e1003102, 2012.
[33] A. M. Kropinski, A. Mazzocco, T. E. Waddell, E. Lingohr, and R. P. Johnson, “Enumeration of bacteriophages by double agar overlay plaque assay.,” Methods Mol. Biol. , vol. 501, pp. 69–76, 2009.
[34] P. E. Turner and L. Chao, “Sex and the evolution of intrahost competition in RNA virus phi6,” Genetics , vol. 150, pp. 523–532, 1998.
[35] P. E. Turner, “Parasitism Between Co‐Infecting Bacteriophages,” 2005, pp. 309–332.
[36] J. J. Dennehy and P. E. Turner, “Reduced fecundity is the cost of cheating in RNA virus phi6.,” Proceedings. Biol. Sci. , vol. 271, no. 1554, pp. 2275–82, Nov. 2004.
[37] R. Froissart, C. O. Wilke, R. Montville, S. K. Remold, L. Chao, and P. E. Turner, “Co-infection Weakens Selection Against Epistatic Mutations in RNA Viruses,” Genetics , vol. 168, no. 1, pp. 9–19, Sep. 2004.
[38] S. L. Díaz-Muñoz, R. Sanjuán, and S. West, “Sociovirology: Conflict, Cooperation, and Communication among Viruses.,” Cell Host Microbe , vol. 22, no. 4, pp. 437–441, Oct. 2017.
[39] P. E. Turner and L. Chao, “Sex and the evolution of intrahost competition in RNA virus phi6.,” Genetics , vol. 150, no. 2, pp. 523–32, Oct. 1998.