References
Batas, D., & Chaudhuri, J. B. (1996). Protein refolding at high concentration using size-exclusion chromatography. Biotechnology and Bioengineering, 50 , 16–23.doi: 10.1002/(SICI)1097-0290(19960405)50:1<16::AID-BIT3>3.0.CO;2-4
Briones, M. P. P., Honda, T., Yamaguchi, Y., Miyazaki, M., Nakamura, H., & Maeda, H. (2006). A practical method for rapid microchannel fabrication in polydimethylsiloxane by replica molding without using silicon photoresist. Journal of Chemical Engineering of Japan, 39 , 1108–1114. doi: 10.1252/jcej.39.1108
Clark, E. D. (2001). Protein refolding for industrial processes.Current Opinion in Biotechnology, 12 , 202–207.doi: 10.1016/s0958-1669(00)00200-7
Cleland, J. L., & Wang, D. I. C. (1992). Transient association of the first intermediate during the refolding of bovine carbonic anhydrase B.Biotechnology Progress, 8 , 97–103.doi: 10.1021/bp00014a002
Eiberle, M. K., & Jungbauer, A. (2010). Technical refolding of proteins: Do we have freedom to operate? Biotechnology Journal, 5 , 547–559. doi: 10.1002/biot.201000001
Gannon, G., Larsson, J. A., Greer, J. C., & Thompson, D. (2008). Guanidinium chloride molecular diffusion in aqueous and mixed water–ethanol solutions. Journal of Physical Chemistry B, 112 , 8906–8911. doi: 10.1021/jp8030336
Hood, R. R., Vreeland, W. N., & DeVoe, D. L. (2014). Microfluidic remote loading for rapid single-step liposomal drug preparation.Lab on a Chip, 14 , 3359–3367. doi: 10.1039/c4lc00390j
Ikai, A., Tanaka, S., & Noda, H. (1978). Reactivation kinetics of guanidine denatured bovine carbonic anhydrase B. Archives of Biochemistry and Biophysics, 190 , 39–45.doi: 10.1016/0003-9861(78)90251-5
Imura, Y., Yoshimura, E., & Sato, K. (2013). Microcirculation system with a dialysis part for bioassays evaluating anticancer activity and retention. Analytical Chemistry, 85 , 1683–1688.doi: 10.1021/ac302938q
Kashanian, F., Masoudi, M. M., Shamloo, A., Habibi-Rezaei, M., & Moosavi-Movahedi, A. A. (2018). Modeling, simulation, and employing dilution-dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency. Bioprocess and Biosystems Engineering, 41 , 707–714. doi: 10.1007/s00449-018-1904-5
Kohyama, K., Matsumoto, T., & Imoto, T. (2010). Refolding of an unstable lysozyme by gradient removal of a solubilizer and gradient addition of a stabilizer. Journal of Biochemistry, 147 , 426–431.doi: 10.1093/jb/mvp184
Lanckriet, H., & Middelberg, A. P. J. (2004). Continuous chromatographic protein refolding. Journal of Chromatography A, 1022 , 103–113. doi: 10.1016/j.chroma.2003.09.013
Li, J. J., Wang, A. Q., Janson, J. C., Ballagi, A., Chen, J., Liu, Y. D., … & Su, Z. G. (2009). Immobilized triton x-100-assisted refolding of green fluorescent protein-tobacco etch virus protease fusion protein using β-cyclodextrin as the eluent. Process Biochemistry, 44 , 277–282. doi: 10.1016/j.procbio.2008.10.021
Maeda, Y., Koga, H., Yamada, H., Ueda, T., & Imoto, T. (1995). Effective renaturation of reduced lysozyme by gentle removal of urea.Protein Engineering, 8 , 201–205.doi: 10.1093/protein/8.2.201
Menzella, H. G., Gramajo, H. C., & Ceccarelli, E. A. (2002). High recovery of prochymosin from inclusion bodies using controlled air oxidation. Protein Expression and Purification, 25 , 248–255.doi: 10.1016/s1046-5928(02)00006-2
Rasala, B. A., & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research, 123 , 227–239. doi: 10.1007/s11120-014-9994-7
Romanov, V. P., Kostromina, T. I., Miroshnikov, A. I., & Feofanov, S. A. (2016). Preparative method for obtaining recombinant human interferon α2b from inclusion bodies of Escherichia coli. Russian Journal of Bioorganic Chemistry, 42 , 631–637.doi: 10.1134/s1068162016040154
Sheng, Y. X., & Bowser, M. T. (2014). Isolating single stranded DNA using a microfluidic dialysis device. Analyst, 139 , 215–224.doi: 10.1039/c3an01880f
Wells, E. A., & Robinson, A. S. (2017). Cellular engineering for therapeutic protein production: product quality, host modification, and process improvement. Biotechnology Journal, 12 , 1600105.doi: 10.1002/biot.201600105
West, S. M., Chaudhuri, J. B., & Howell, J. A. (1998). Improved protein refolding using hollow-fibre membrane dialysis. Biotechnology and Bioengineering, 57 , 590–599.doi: 10.1002/(sici)1097-0290(19980305)57:5<590::aid-bit11>3.3.co;2-u
Wetlaufer, D. B., & Xie, Y. (1995). Control of aggregation in protein refolding: A variety of surfactants promote renaturation of carbonic anhydrase II. Protein Science, 4 , 1535–1543.
Yamaguchi, H., & Miyazaki, M. (2015). Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies. Bioengineered, 6 , 1–4.doi: 10.4161/21655979.2014.987022
Yamaguchi, H., Miyazaki, M., Briones-Nagata, M. P., & Maeda, H. (2010). Refolding of difficult-to-fold proteins by a gradual decrease of denaturant using microfluidic chips. Journal of Biochemistry, 147 , 895–903. doi: 10.1093/jb/mvq024
Yamaguchi, S., Yamamoto, E., Mannen, T., & Nagamune, T. (2013). Protein refolding using chemical refolding additives. Biotechnology Journal, 8 , 17–31. doi: 10.1002/biot.201200025
Yamamoto, E., Yamaguchi, S., Sasaki, N., Kim, H. B., Kitamori, T., & Nagamune, T. (2010). Artificial chaperone-assisted refolding in a microchannel. Bioprocess and Biosystems Engineering, 33 , 171–177. doi: 10.1007/s00449-009-0374-1
Zaccai, N. R., Yunus, K., Matthews, S. M., Fisher, A. C., & Falconer, R. J. (2007). Refolding of a membrane protein in a microfluidics reactor. European Biophysics Journal with Biophysics Letters, 36 , 581–588. doi: 10.1007/s00249-006-0125-z
Zhao, D. W., Liu, Y. D., Wang, Y. J., Li, X. N., Wang, Q. Q., & Su, Z. G. (2014). Membrane combined with hydrophilic macromolecules enhances protein refolding at high concentration. Process Biochemistry, 49 , 1129–1134. doi: 10.1016/j.procbio.2014.03.010
Table 1. Assumed GdnHCl concentration via microchannel GdnHCl dialysis calculated by eq. (3).